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Forwarding design with prescribed local

behavior

M.Sofiane Benachour, Vincent Andrieu, Laurent Praly and Hassan Hammouri

Abstract

Among the non-linear control techniques, some Lyapunov design methods (Forwarding / Backstep-

ping) take advantage of the structure of the system (Feedforward-form / Feedback-form) to formulate

a continuous control law which stabilizes globally and asymptotically the equilibrium. In addition to

stabilization, we focus on the local behaviour of the closed loop system, providing conditions under

which we can predetermine the behaviour around the origin for Feedforward systems.

Index Terms

Stabilization, Lyapunov design, Forwarding, First order approximation, Feedforward form.

I. INTRODUCTION

The synthesis of a stabilizing control law for systems described by nonlinear differential

equations has been the subject of great interest by the nonlinear control community during the

last three decades. Depending on the structure of the model, some techniques are now available

to synthesize control laws ensuring global and asymptotic stabilization of the equilibrium point.

For instance, we can refer to the popular backstepping approach (see [1] and the reference

therein), or the forwarding approach (see [2], [3], [4], [5]) and some others based on energy

considerations (see [6] for a survey of the available approaches).
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Honoré, 77305 Fontainebleau, France.

M.S. Benachour, V. Andrieu and H. Hammouri are with Université de Lyon, F-69622, Lyon, France;
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Although the global asymptotic stability of the equilibrium point can be achieved in some

specific cases, it remains difficult to address at the same time, performance issues of a nonlinear

system in a closed loop. However, when the first order approximation of the non-linear model

is considered, some performance aspects can be addressed by using linear optimal control

techniques (using LQ controller for instance).

Hence, it is interesting to raise the question of synthesizing a nonlinear control law which

guarantees the global asymptotic stability of the origin while ensuring a prescribed local linear

behavior. This type of question has been already discussed in the literature when backstepping

design is used to synthesize a nonlinear continuous control law (see [7]).

In the present paper, we consider the same problem in the case of a system whose structure

allows forwarding design techniques (see [3], [4])).

The paper is organized as follows. In Section II-A, the problem under consideration is de-

scribed. Section II-B is devoted to the statement of the main theorem and to its discussion in

the case of systems that are obtained after adding some dynamics composed of a stable part and

integrations. Section IV gives an illustration of the results on a class of systems composed of a

quadratic nonlinear part with a linear subsystem. Finally, Section V gives the conclusion.

II. PROBLEM DESCRIPTION AND GENERAL RESULT

A. Problem description

To present the problem under consideration, we introduce a general controlled nonlinear system

described by the following ordinary differential equation:

χ̇ = Φ(χ,u) , (1)

with the state χ in RN and Φ : RN×Rm→ RN is a C1 function such that Φ(0,0) = 0 and u is

a control input in Rm. For this system, we can introduce the two matrices describing its first

order approximation at the origin which is assumed to be stabilizable:

A0 :=
∂Φ

∂ χ
(0,0) , G :=

∂Φ

∂u
(0,0) .

For system (1), the problem we intend to solve can be described as follows:

Stabilization with prescribed local behavior: Let the linear state feedback law u = Koχ
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stabilizing the first order approximation of system (1) be given. We are looking for a stabilizing

control law αo : RN → Rm, differentiable at 0 such that:

1) the origin of the system:

χ̇ = Φ(χ,αo(χ)) ,

is globally and asymptotically stable.

2) The first order approximation of the control law αo satisfies:

∂αo

∂ χ
(0) = Ko .

A general answer to this problem has been given in [8], requiring the system to be input

affine. However, the set of local linear controllers Ko are those which satisfy a specific linear

matrix inequality. Adding some structural constraints on the system (1) this problem has been

addressed in [7] where the system is in strict feedback form.

In our study, we consider the case in which by decomposing the state as χ = [y,x] the system

(1) can be rewritten in the following Feedforward form. ẏ = Ay+h(x) ,

ẋ = f (x)+g(x)u ,
(2)

with y in Rny , x in Rnx and with f : Rnx → Rnx , g : Rnx → Rnx×m and h : Rnx → Rny are Cp

functions, p≥ 2 such that h(0) = 0 and f (0) = 0 and u is the control input in Rm.

The stabilization problem for this class of system has been deeply studied in the last two

decades employing forwarding techniques (see for instance [2], [3], [4], [5], [9], [10]). Compared

to our preliminary result in [11], the novelty comes from the fact that y is not a scalar.

The first order approximation of system (2) is denoted: ẏ = Ay+Hx ,

ẋ = Fx+Gu ,
(3)

with the matrices H, F and G given as

F =
∂ f
∂x

(0) , H =
∂h
∂x

(0) , G = g(0) . (4)

In the following, we make three structural Assumptions on the nonlinear system (2). The first

one establishes that the first order approximation is stabilizable.

Assumption 1: The system (3) is stabilizable.
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The second assumption we make is also a local property and concerns more specifically the

vector field g(x) = (g1(x), . . . ,gm(x)).

Assumption 2: The distribution Vect{g1(x), . . . ,gm(x)} is involutive and of constant dimen-

sion m in a neighborhood of the origin.

In the case where there is only one input (i.e. m= 1), this assumption is always satisfied provided

g(0) 6= 0.

In the spirit of [3], we make the following assumption on the matrix A in the y subsystem.

Assumption 3: There exists a positive definite matrix P in Rny×ny such that the following

equality holds

PA+A′P = 0 , (5)

This Assumption implies that the matrix A has all its eigenvalues with zeros real part and we

recover the case in which y is scalar as already studied in our preliminary conference paper [11].

Also, we assume that the stabilization problem with any prescribed local behavior can be

solved for the x subsystem in system (2). More precisely, given p in N we make the following

assumption on the functions f and g:

Assumption 4: For all matrix Kx in Rm×nx such that the matrix F +GKx is Hurwitz, there

exists a function αx : Rnx →Rm of class Cp such that the following two properties are satisfied:

1) the origin of the system:

ẋ = f (x)+g(x)αx(x) . (6)

is globally and asymptotically stable;

2) the first order approximation of this function satisfies:

∂αx

∂x
(0) = Kx . (7)

B. Main result

We are now ready to state the main result which gives sufficient conditions guaranteeing that

the stabilization with prescribed local behavior can be solved for system (2).

Theorem 1 (Adding integration with prescribed local behavior): Assume the System (2) sat-

isfies Assumptions 1, 2, 3 and 4 for a given p in N. Given a linear controller Ko = (Ko,y,Ko,x)
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in (Rm×ny×Rm×nx) such that the matrix:

A =

 A H

GKo,y F +GKo,x

 , (8)

is Hurwitz. Assume moreover that there exists a positive definite matrix P defined as

P =

 P Q

Q′ R

 (9)

which satisfies the weak Lyapunov inequality

[
PA +A ′P

]
≤−cL

 QGG′Q′ 0

0 S

 , (10)

and where P is a positive definite matrix in Rny×ny which satisfies (5) and where S is a nx×nx

positive definite matrix and cL is a positive real number and QG is left invertible. Then there

exists a Cp−1 function αo : Rnx+ny → Rm such that the following properties are satisfied :

1) the function αo satisfies:

∂αo

∂y
(0,0) = Ko,y ,

∂αo

∂x
(0,0) = Ko,x ; (11)

2) the origin of the system

ẏ = Ay+h(x) , ẋ = f (x)+g(x)αo(x,y) , (12)

is globally stable1. Moreover, if any forward bounded solution to the system

ẏ = Ay , y′QG = 0 , (13)

defined on [0+∞[, converges to the origin then the origin is globally asymptotically stable.

C. Discussion on Theorem 1

1) About Assumption 4 : Assumption 4 is stronger than a stabilizability property since it is

assumed that all local behaviors can be recovered for the closed loop system. However, employing

the result obtained in [7], yields that Assumption 4 is satisfied in the case in which the x sub-

system is in strict feedback form and when the functions f and g are sufficiently smooth. Note

also that it is trivially satisfied when this system is a linear controllable system as studied in

Section IV.

1An equilibrium point is said globally stable if it is stable and if all solutions are bounded (see [12, Page 40] for further

details).
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2) About the weak linear Lyapunov inequality:

The right hand side of inequality (10) may not be a full rank matrix. Indeed, this one is of

rank nx +m. In order to apply Theorem 1, we need to find P solution to the weak Lyapunov

inequality (10) and (5). Note that in the case there is one input (i.e. m = 1), this construction

can be reformulated in terms of an equivalent linear matrix inequality. Indeed, we can show the

following proposition.

Proposition 1: Let Ko = [Ko,y,Ko,x] in Rn be given such that Ko,y 6= 0. Let P be a positive

definite matrix in Rny×ny which satisfies (5). The matrix P defined in (9) satisfies (10) with

QG 6= 0 if and only if it satisfies the following linear matrix inequality

P > 0 ,
[
PA +A ′P

]
≤−cL

 K′o,yKo,y 0

0 S

 , S > 0 . (14)

Proof: Assume (14) is satisfied. Since Ko,y 6= 0 this implies that QG 6= 0. Moreover with

(5), PA +A ′P ≤ 0 implies that QGKo,y+K′o,yG′Q′ is a negative semidefinite matrix. For this

property to hold, this implies that there exists a positive real number2 λ such that QG =−λK′o,y.

Consequently (10) is satisfied. The proof that (10) implies (14) follows the same lines.

In the case in which ny = 1 (this implies that A = 0) this assumption can always be satisfied

(indeed, this is the usual Lyapunov inequality). However, this is not the case when ny > 1. For

instance, if we consider the case of a system whose first order approximation is a linear system

of the form 
ẏ1 =−y2

ẏ2 = y1 + x

ẋ = u

(15)

It is shown in Appendix A that for all stabilizing linear controllers in the form u = k2y2 + kxx

where (k2,kx) are real numbers (i.e. Ko = [Ko,y,Ko,x] with Ko,y = [0,k2]), it is not possible to find

P such that the weak Lyapunov inequality (10) is satisfied with QG 6= 0. Hence, our approach

can’t be applied for this stabilizing local control law.

2Given two real vectors v1 and v2 of the same dimension such that the matrix v1v′2 +v2v′1 is negative semidefinite. Note that

we have, (v1v′2+v2v′1)(|v2|v1+ |v1|v2) = (|v2|v1+ |v1|v2)(v′1v2+ |v1||v2|). Consequently, (v′1v2+ |v1||v2|) is an eigenvalue which

is strictly positive unless v′1v2 =−|v1||v2|. Hence the result.
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3) About the result: As mentioned in the previous comment, when ny = 1, the weak linear

Lyapunov inequality is satisfied for all stabilizing linear controller. Consequently when ny = 1,

the conclusion of Theorem 1 implies that Assumption 4 is valid for the entire system with

stabilizer in Cp−1. Hence, with an iterative procedure, higher order systems can be considered.

Indeed, let system (1) be with χ = (y,z,x), with z = (z1, . . . ,znz) in the form:

ẏ = Ay+h(x,z)

ż1 = h1(z2, . . . ,znz,x) ,
...

żnz = hnz(x) ,

ẋ = f (x)+g(x)u ,

(16)

with x in Rnx , zi in R and y in Rny , f : Rnx →Rnx , g : Rnx →Rm and hi : Rnz−i+nx →R are Ci+2

functions, such that hi(0, . . . ,0) = 0 and f (0) = 0 and u is the control input in R. Based on the

result obtained from Theorem 1, we can show the following result:

Theorem 2 (Case of higher order systems): Assume the x subsystem of (16) satisfies As-

sumptions 2 and 4 with p = nz + 2. Assume moreover the first order approximation of this

system is stabilizable. For all vector (Ko,y,Ko,z,Ko,x) in (Rm×ny×Rm×nz×Rm×nx) which stabilizes

globally and asymptotically the first order approximation of system (16) and such that there exists

a matrix P in the form (9) with Q in Rny×(nx+nz) which satisfies (10) with QG left invertible then

there exists a C1 function αo : Rny+nz+nx → Rm such that the following properties are satisfied :

1) the function αo satisfies:

∂αo

∂y
(0,0,0) = Ko,y ,

∂αo

∂ z
(0,0,0) = Ko,z ,

∂αo

∂x
(0,0,0) = Ko,x ;

2) the origin of the system (16) in closed loop with u = αo(y,z,x) is globally stable and if

moreover the origin is the only solution to the system (13) then the origin is globally

asymptotically stable.

Proof: First, employing Theorem 1 it is shown that the (znz,x)-subsystem in system (16)

satisfies Assumption 4 with p = nz +1. Recursively, we apply again Theorem 1 and we obtain

the result.

In the paper [8], the stabilization with prescribed local behavior has been addressed and studied

on an inverted pendulum model. In some specific coordinates, this inverted pendulum model can
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be put in forwarding form and a forwarding control law has been introduced in [3]. It is noticed in

[8] that, statistically, for all local behavior obtained from a LQ approach, the stabilization with

prescribed local behavior could be solved. Consequently, Theorem 1 establishes a theoretical

justification on the fact that the approach of [8] applies on the forwarding model of the inverted

pendulum.

III. PROOF OF THEOREM 1

The proof of this result is divided into four parts. In the first part, we focus on the linear

approximation of the system and we show that the quadratic Lyapunov function associated with

the local stabilizer (i.e. P) can be rewritten in the form of a Lyapunov matrix that would have

been obtained by following the forwarding design method of [3]. In the second part of the proof,

we construct a candidate Lyapunov function V for the nonlinear model such that its quadratic

approximation is the matrix P . In the third part, from this candidate Lyapunov function we

construct a control law which makes non positive the time derivative of the candidate Lyapunov

function. By interpolating this control law with the local controller, we finally get our solution

to the stabilization with prescribed local behavior. Finally, in the fourth part, we construct a

Lyapunov function associated to this control law and show that LaSalle invariance principle may

be applied to get asymptotic convergence of the closed loop trajectories toward the origin.

A. Part 1: Forwarding local Lyapunov function

In this part of the proof, we show that the weak Lyapunov matrix P associated with the

matrix A can be rewritten in the form of a Lyapunov matrix that would have been obtained

following the Forwarding design method of [3] or [5].

Indeed, note that the Lyapunov function associated to the matrix P can be decomposed as

follows. [
y′ x′

]
P

 y

x

= x′Rxx+(y−Mx)′P(y−Mx) , (17)

where Rx and M are respectively a matrix in Rnx×nx and a vector in Rnx defined as:

Rx = R−Q′P−1Q , M =−P−1Q . (18)

If we compare the decomposition in equation (17) and the structure of the Lyapunov function

obtained by the forwarding technique of [3] (see [5, equation (3)]), we see that the matrix P

February 12, 2013 DRAFT
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would be a Lyapunov matrix obtained by a forwarding design technique provided there exists

Kx a vector in Rnx such that the following two requirements are satisfied:

1) There exists a matrix Kx in Rm×nx which may differ from Ko,x and such that the following

algebraic equation is satisfied (see [3, equation (132)]):

M(F +GKx) = AM+H . (19)

2) u = Kxx is a control law for the x-subsystem associated to the Lyapunov matrix Rx. In

other words, F +GKx is a Hurwitz matrix and the following inequalities are satisfied :

Rx > 0 , Rx(F +GKx)+(F +GKx)
′Rx < 0 ; (20)

In this part of the proof we show that a vector Kx satisfying (19) and (20) does exist. Indeed,

we can decompose A = A0 +G Ko with3

A0 =

 A H

0n,1 F

 , G =

 0

G

 .

With these notation, we have

PG =

 QG

RG


and, employing the fact that PA+A′P = 0 we get

PA0 +A ′
0P =

 0 PH +QF +A′Q

Q′A+H ′P+F ′Q′ Q′H +RF +H ′Q+F ′R

 .

Since we have assumed that QG is left invertible we can introduce the two matrices respectively

in Rny×nx and Rny×ny

w1 =−QG(G′Q′QG)−1G′R , w2 = QG(G′Q′QG)−1G′Q′− I . (21)

Note that we have

w′1QG =−RG , w′2QG = 0 .

Hence, we have for all nx×ny real matrices β ,

v′PG = 0 , v =

 w1 +w2β

Inx

 . (22)

3the symbol 0a,b stands for a a×b zero matrix.
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Note moreover that we have

v′

 QGG′Q′ 0

0 S

v = S+RGG′R > 0 .

Hence, it implies with (10)

v′[PA +A ′P]v < 0 .

This yields recalling that A = A0 +G Ko and with (22)

v′[PA0 +A ′
0P]v < 0 . (23)

More precisely, the following inequality is satisfied for all β

v′[PA0 +A ′
0P]v =

[
β
′w′2(PH +QF +A′Q)+(H ′P+F ′Q′+QA)w2β

]
(24)

+
[
w′1(PH +QF +A′Q)+(H ′P+F ′Q′+QA)w1 +Q′H +RF +H ′Q+F ′R

]
< 0 .

The matrix inequality (24) being true for all matrices β , it is for instance true for β =αw′2(PH+

QF +A′Q) where α is a positive real number. Hence we get

α
2 [w′2(PH +QF +A′Q)(H ′P+F ′Q′+QA)w2

]
+
[
w′1(PH +QF +A′Q)+(H ′P+F ′Q′+QA)w1 +Q′H +RF +H ′Q+F ′R

]
< 0 .

Letting α goes to infinity implies that we have

w′2(PH +QF +A′Q) = 0 . (25)

This gives,

QG(G′Q′QG)−1G′Q′(PH +QF +A′Q)−PH−QF−A′Q = 0 .

Consequently it yields

−Q
[
F +G

[
−(G′Q′QG)−1G′Q′(PH +QF +A′Q)

]]
= A′Q+PH . (26)

Left multiplying the previous equality by P−1 and employing the fact that with (5) we have

P−1A′ =−AP−1 it yields

−P−1Q
[
F +G

[
−(G′Q′QG)−1G′Q′(PH +QF +A′Q)

]]
= A

[
−P−1Q

]
+H . (27)

Hence, we recover equation (19) with M =−P−1Q and

Kx =−(G′Q′QG)−1G′Q′(PH +QF +A′Q) . (28)
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It remains to check if Kx satisfies (20). Note that (24) and (25) imply that

w′1(PH +QF +A′Q)+(H ′P+F ′Q′+QA)w1 +Q′H +RF +H ′Q+F ′R < 0 .

Replacing w1 by its definition given in (21) in the previous inequality yields,

R(F +GKx)+(F +GKx)
′R+Q′H +H ′Q < 0 . (29)

On another hand, with (27), we have

Q′H =−Q′P−1Q [F +GKx]−Q′AP−1Q .

Hence (29) becomes employing again P−1A′ =−AP−1,

Sx := Rx(F +GKx)+(F +GKx)
′Rx < 0 . (30)

Therefore, for the time being, we showed this surprising property.

Lemma 1: Let P be a matrix in the form (9) solution to the weak Lyapunov inequality (10)

and such that its upper left block is a Lyapunov matrix associated to A (i.e. (5) is satisfied).

Then this matrix can be decomposed in a forwarding-like manner. In other words, M and Rx

defined in (18) satisfy (19) and (20).

From this crucial property, we will be able to get a candidate Lyapunov function for the

nonlinear system associated to the local controller.

B. Part 2: Construction of the global CLF

In this part of the proof we construct a global (weak) control Lyapunov function denoted Vg for

the nonlinear system (2) and such that its Hessian satisfies4 H (Vg)(0) = 2P . The construction

of the candidate Lyapunov function is based on a modified forwarding technique inspired from

[3] and employs Assumption 4. First, with Assumption 4, and the local stabilizer Kx given in

(28), there exists a Cp function αx : Rn→ Rm such that the origin of the system (6) is globally

and asymptotically stable and the local property (7) is satisfied.

Now, we can apply the following Lemma whose proof is given in Appendix B.

Lemma 2: There exists a C∞ Lyapunov function Vx : Rn→ R+, proper and positive definite,

such that:

4The symbol H denotes the operator which gives the Hessian of a given C2 function in Rn.
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• Vx is a Lyapunov function associated to the closed loop system (6). In other words, we

have:

−Wx(x) :=
∂Vx

∂x
(x) [ f (x)+g(x)αx(x)]< 0 , ∀ x 6= 0 ; (31)

• Vx is locally quadratic and its local approximation is Rx defined in (18). We have:

H (Vx)(0) = 2Rx . (32)

For the non linear system (2), following the forwarding design described in [13] and [3], we

can introduce the function M : Rnx → Rny defined as:

M (x) =
∫ 0

+∞

exp(−As)h(X1(x,s))ds , (33)

where X1(x,s) is the solution initiated from x and evaluated at time s of the system:

ẋ = f (x)+g(x)αx(x) .

The following Lemma can be obtained from [13, Lemma 6.88]. See also [4, Secction 5.2] et

[3].

Lemma 3 ([13]): The function M defined in (33) is zero at the origin, Cp and satisfies the

following partial differential equation:

∂M

∂x
(x)
[

f (x)+g(x)αx(x)
]
= AM (x)+h(x) ,∀ x ∈ Rn . (34)

With Vx obtained from Lemma 2, the function M given in (33) we consider the Cp candidate

Lyapunov function Vg : Rn+1→ R+ as:

Vg(y,x) =Vx(x)+(y−M (x))′P(y−M (x)) . (35)

This function is proper and positive definite and, according to [3], it is a global weak CLF5.

5Actually we can replace the function M by its first order approximation at the origin namely we can replace M (x) by
∂M
∂x (0)x = Mx. But then the Lyapunov function in (35) has to be modified in

Vg(y,x) = `(Vx(x))+
[√

1+(y−Mx)′P(y−Mx)−1
]

(36)

where ` is a C1 class K ∞ function to be tuned large (enough). For more details, see [3], [13] or [12].

February 12, 2013 DRAFT



13

To complete Part 2 of the proof, it remains to show the quadratic approximation of the

candidate Lyapunov function is P . More precisely, it remains to show that H (Vg)(0,0) = 2P .

Note that

H (Vg)(0,0) =

 2P −2P∂M
∂x (0)

−2
(

∂M
∂x (0)

)′
P H (Vx)(0)+2

(
∂M
∂x (0)

)′
∂M
∂x (0)

 . (37)

By evaluating the partial derivative of (34) at the origin where f , αx and h are zero, we get :

∂M

∂x
(0)(F +GKx)−A

∂M

∂x
(0) = H .

The eigenvalues of (F +GKx) and A being all different, the solution of this algebraic equation

is unique and with (19), we get:

∂M

∂x
(0) = M =−P−1Q .

Hence, equality (37) becomes:

H (Vg)(0,0) = 2

 P Q

Q′ R

= 2P . (38)

C. Part 3: Construction of the controller

In this part of the proof we construct the global control law denoted αo solution to stabilization

with prescribed local behavior problem. This one is obtained by interpolating Ko and a global

control law αg.

By looking at the time derivative of Vg along the solution of the system (2), we see that a

control law ensuring stabilization of the origin of the system (2) and boundedness of the solutions

can be obtained simply6 as:

αg(y,x) = αx(x)−
∂Vx

∂x
(x)g(x)+2(y−M (x))′P

∂M

∂x
(x)g(x) . (39)

Indeed, with (31) this gives along the trajectory of the system (2) :

˙︷ ︷
Vg(y,x)

∣∣∣∣
u=αg(y,x)

=−Wx(x)−
(

∂Vx

∂x
(x)Gg(x)−2(y−M (x))′P

∂M

∂x
(x)g(x)

)2

, (40)

6Note that to design this control, we need to construct the function M solution to the PDE (34). Hence, it may be difficult

to apply this strategy for general feedforward systems. However, as shown in the following Section, when we consider some

specific systems, this control law may be given in closed form. Moreover, when considering the Lyapunov function Vg given in

(36) and provided we are able to compute the function `, an explicit solution may be given.
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which is non positive. But, unfortunately, the first order approximation of the control law αg is

Kg =
[

∂αg
∂y (0,0)

∂αg
∂x (0,0)

]
=
[

Kg,x Kg,y

]
,

with

Kg,x = Kx−2G′Rx−2G′M′PM , Kg,y = 2G′M′P .

And this one is not equal to the given one Ko. Hence the control law u=αg(y,x) is not a solution

to the stabilization with prescribed local behavior.

The idea of the construction is to show that the two controllers u = αg(y,x) and u = Ko,yy+

Ko,xx makes the time derivative of a same Lyapunov function non positive in a small neighbor-

hood of the origin.

Indeed, we have the following lemma whose proof is given in appendix.

Lemma 4 (Same Lyapunov function for the two controllers αg and Ko): There exist a posi-

tive definite function VL : Rny ×Rnx → R+ and three positive real numbers RL, cg and co such

that for all (y,x) such that VL(y,x)≤ RL we have

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αg(y,x)

≤−cg
(
|x|2 + |y′PMG|2

)
, (41)

and,
˙︷ ︷

VL(y,x)
∣∣∣∣
u=Ko,yy+Ko,xx

≤−co
[
|x|2 + |y′PMG|2

]
. (42)

The proof of this Lemma relies on the use of change of coordinates which rectifies the controlled

vector field g around the origin. This property relies on Assumption 2.

The two controllers Ko and αg making non positive the time derivative of the same Lyapunov

function and the system being input affine it yields that any convex combination of both

controllers will have the same property. Hence, we can interpolate in a neighborhood of the

origin this control law with the prescribed one.

αo(y,x) = (1−ρ(y,x))(Ko,yy+Ko,xx)+ρ(y,x)αg(y,x) (43)

with ρ any smooth function taking value in [0,1] and such that:

ρ(y,x) =

 0 if VL(y,x) ≤ 1
3RL ,

1 if VL(y,x) ≥ 2
3RL .
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Indeed, in this case we get along the solution of the system (2) and for all (y,x) such that

VL(y,x) ≤ RL

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αo(y,x)

= (1−ρ(y,x))
˙︷ ︷

VL(y,x)
∣∣∣∣
u=Ko,yy+Ko,xx

+ρ(y,x)
˙︷ ︷

VL(y,x)
∣∣∣∣
u=αg(y,x)

≤ 0 .

This is sufficient to conclude that we have stability of the equilibrium. Note however that in

order to study its asymptotic behavior and its convergence toward zero we make in the following

section an analysis by introducing a Lyapunov function associated to our controller.

D. Part 4: Modification of the global CLF to prove asymptotic stability

In this part, we unite the two functions Vg and VL in order to obtain a Lyapunov function

associated to the controller αo. Following [14] consider the function Vo defined as

Vo(y,x) = γ(VL(y,x))VL(y,x)+d[1− γ(VL(y,x))]Vg(y,x)

where γ is any smooth and non increasing function such that

γ(s) =

 0 if s ≥ RL ,

1 if s ≤ 2
3RL ,

and d is a positive real number such that

VL(y,x)≤ dVg(y,x) , ∀(y,x) :
2
3

RL ≤VL(y,x)≤ RL .

Note that we have with u = αo(y,x),
˙︷ ︷

Vo(y,x)
∣∣∣∣
u=αo(y,x)

= γ
′(VL(y,x)) [VL(y,x)−dVg(y,x)]

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αo(y,x)

+γ(VL(y,x))
˙︷ ︷

VL(y,x)
∣∣∣∣
u=αo(y,x)

+d(1− γ(VL(y,x))
˙︷ ︷

Vg(y,x)
∣∣∣∣
u=αo(y,x)

.

and different cases may be distinguished:

1) If VL(y,x)≥ RL. In this case, we have αo(y,x) = αg(y,x), γ ′(VL(y,x)) = 0 and γ(VL(y,x)) =

0. Consequently, we get,

˙︷ ︷
Vo(y,x)

∣∣∣∣
u=αo(y,x)

=−dWx(x)−d
(

∂Vx

∂x
(x)Gg(x)−2(y−M (x))′P

∂M

∂x
(x)Gg(x)

)2

,

2) If RL ≥ VL(y,x) ≥ 2
3RL. In this case, we have αo(y,x) = αg(y,x). Consequently, we have

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αo(y,x)

≤ 0 and
˙︷ ︷

Vg(y,x)
∣∣∣∣
u=αo(y,x)

≤ 0 Moreover we have VL(y,x)− dVg(y,x) ≤ 0
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and γ ′(VL(y,x))≤ 0. Hence, with (41) it yields,
˙︷ ︷

Vo(y,x)
∣∣∣∣
u=αo(y,x)

≤−cgγ(VL(y,x))
[
|x|2 + |y′PMG|2

]
−d(1− γ(VL(y,x))

[
Wx(x)+

(
∂Vx
∂x (x)Gg(x)−2(y−M (x))′P∂M

∂x (x)Gg(x)
)2
]

3) If 2
3RL ≥VL(y,x). We have γ ′(VL(y,x)) = 0 and γ(VL(y,x)) = 1. Hence, it yields,

˙︷ ︷
Vo(y,x)

∣∣∣∣
u=αo(y,x)

= γ(VL(y,x))
˙︷ ︷

VL(y,x)
∣∣∣∣
u=αo(y,x)

.

On another hand we have,

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αo(y,x)

= (1−ρ(y,x))
˙︷ ︷

VL(y,x)
∣∣∣∣
u=(Ko,yy+Ko,xx)

+ρ(y,x)
˙︷ ︷

VL(y,x)
∣∣∣∣
u=αg(y,x))

,

≤ − [co(1−ρ(y,x))+ cgρ(y,x)]
[
|x|2 + |y′MG|2

]
.

Hence, we get global stability and local asymptotic stabilization. Moreover, the control law

satisfies the local property requested.

Finally, from LaSalle invariance principle, it follows that, for each trajectory, there exists a

real number v such that it converges the trajectories converge to the largest set of points (y,0),

invariant for the system

ẏ = Ay

and satisfying

Vo(y,0) = v , y′PMG = 0 .

Recalling that M =−P−1Q, we get the result.

IV. ILLUSTRATION ON A PARTICULAR CLASS OF SYSTEMS

In this section, we consider the problem of designing a robust stabilizing control law for a

class of disturbed strict feedforward systems with linear x dynamics and a quadratic function h.

In other words we consider the case in which the system (2) is in the form ẏ = Ay+h(x)+dy(y,x)ω

ẋ = Fx+Gu+dx(y,x)ω
, (44)

where to simplify the presentation we consider the mono input case (i.e. m = 1) and ω is an

unknown input which is assumed to be a locally bounded time function taking values in Rnω and
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dy and dx are locally Lipschitz function of appropriate dimension. We assume that the function

h(x) is a quadratic function. Hence, this one can be written in the form

h(x) = Hx+


x′H1x

...

x′Hnyx

 , (45)

where for all i in {1, · · · ,ny}, H ′i = Hi is in Rnx×nx .

A framework to design a robust control law for this system can be to follow the H∞ design

methodology (see [15]). In this context, we are looking for a control law that satisfies two distinct

objectives:

1) The first one is to guarantee the asymptotic stability of the origin when the disturbance

vanishes.

2) The second one is to guarantee a given attenuation level of a quadratic functional of the

state and control in the L2 framework. More precisely, given a positive definite matrix Q

in R(nx+ny)×(nx+ny) and a positive real number γ (the attenuation level) we want to find a

stabilizing feedback control law u = αo(y,x) such that the following inequality is satisfied

for all t in R+:∫ t

0

[
(y(s),x(s))′Q(y(s),x(s))+u(s)2] ds≤ γ

2
∫ t

0
|ω(s)|2 ds , (46)

where (y(.),x(.)) denotes the solution of system (44) initialized to the origin.

Solving this problem relies on the construction of a solution to a nonlinear Hamilton Jacobi

Bellman equality which can be difficult (or impossible) to solve (see [15]).

However, if we focuss on the linear approximation of system (44), then this problem can be

solved locally. The first order approximation of system (44) is a linear system defined as: ẏ = Ay+Hx+Dyω

ẋ = Fx+Gu+Dxω

,Dy = dy(0,0) , Dx = dx(0,0) . (47)

In compact form, this linear system can be rewritten as follows.

χ̇ = A0χ +G u+Dω χ
′ = [y′,x′] .

In the linear context, the Hamilton Jacobi Bellman equality is an algebraic equation defined as:

S A0 +A ′
0S +

1
γ
S DD ′S −S G G ′S +Q= 0 . (48)
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where the solution S is a positive definite matrix in R(nx+ny)×(nx+ny) , and a robust linear control

for system (47) solving the disturbance attenuation problem as defined by inequality (46) for

the linear approximation is given as:

u = Ko[y,x]′ =−G ′S χ . (49)

However, this control law guarantees only local asymptotic stability of the origin of system

(44). We may apply the design methodology given in Theorem 1 to design a global asymptotic

stabilizing controller u = αo(y,x) such that its local behavior is exactly Ko.

We assume that the system (47) is controllable and the matrix A is skew symmetric. This

yields that Assumption 1 and 3 are satisfied. Moreover, the x subsystem being linear, it yields

that Assumption 2 and 4 are trivially satisfied. In this case, we may apply the procedure of

Theorem 1 as described by the following four steps.

1) First, we choose a local prescribed behavior Ko by solving the HJB algebraic equation

(48) for given tuning parameters Q and γ .

2) We solve the linear matrix inequality (14) to find a forwarding like matrix P (see Theorem

1 equation (10)). Note that this step is not guaranteed to succeed when ny > 1. This gives

us a stabilizing controller Kx for the x-subsystem (see equation (28)) and its associated

Lyapunov matrix Rx (given in equation (18)).

3) Then, using this Kx and Rx, we give an explicit solution M to the partial differential

equation (34). As shown in appendix D, in our particular context this one can simply be

expressed as

M (x) = Mx+


x′M1x

...

x′Mnyx

 , (50)

where M is solution to the Sylvester equation

M[F +GKx]−AM = H , (51)

and (M1, · · · ,Mny) are matrices in Rnx×nx obtained by solving the unsquare Sylvester
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equation7:

[
Iny⊗ [F +GKx]

′−A⊗ Inx

]
·


M1
...

Mny

+


M1
...

Mny

 · [F +GKx] =


H1
...

Hny

 , (52)

where the operator ⊗ is the Kronecker tensor product.

4) Next we construct the globally stabilizing feedback law defined as

αg(y,x) =
(
Kx−2G′Rx

)
x+2 [y−M (x)]′P

∂M

∂x
(x)G . (53)

and we modify this, control law to match the local desired behavior. To complete the

modified forwarding procedure, we construct a control law αo(y,x) (see equation (43))

with function ρ(y,x) chosen as :

ρ(y,x) =


0 if [ y′ x′ ]P [ y

x ]≤ 1
3RL ,

3
Rl
[ y′ x′ ]P [ y

x ]−1 if 1
3RL ≤ [ y′ x′ ]P [ y

x ] ≤ 2
3RL ,

1 if [ y′ x′ ]P [ y
x ] ≥ 2

3RL .

(54)

where RL is computed with Lemma 4.

The benchmark example [9, equation (39)] (see also [10]) fits in the class of system considered

in this section. More precisely, system (44) is studied in the particular cases in which ny = 1,

nx = 2 and the parameters are selected as follows.

A= 0 , H1 =

 1 −1

−1 1

 , H =
[

1 0
]
, F =

 0 1

0 0

 , G=Dx =

 0

1

 , Dy = 0 . (55)

For this system we can follow the procedure to design a global stabilizer with local optimality.

1) We select the tuning parameter of the local optimal controller as:

Q=


1 0 0

0 1 0

0 0 10

 , γ ≈ 1.00 .

Solving the associated Riccati equation (see equation (48)) by employing the routine (care)

of Matlab with the attenuation level γ ≈ 1.00, it yields the local optimal controller

Ko ≈
[
−4.3674 −26.9105 −80.7232

]
.

7It is shown in appendix D that this Sylvester equation admits a solution.
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2) In the case ny = 1, we obtain directly the matrix P given as

P ≈


1 3 4.37

3 14.11 29.91

4.37 29.91 80.72

 .

This yields the controller Kx and the matrix Rx given as:

Kx ≈
[
−2.9997 −4.36

]
, Rx ≈

 −3.39 −2.18

−2.18 −3.90

 .

3) We get the solution to the PDE given in equation (50) with

M ≈
[
−2.11 −2.16

]
, M1 ≈

 −5.61 −2.16

−2.16 −3.24

 .

4) By a Matlab computation, it yields the positive real number RL given as:

RL ≈ 5 .

In the following figures is considered simulation of this control law when considering ω to

be a gaussian white noise with variance 2.

In Figure 1 is shown a state trajectory when considering a particular initial condition for the

disturbed model.

Fig. 1. Example of a closed loop trajectory

In Figure 2 is depicted the associated control law. The red one is the locally optimal control.

The blue is the evaluation of the optimal local and linear control law along the solution of the
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system. Finally the green one is the evaluation of the global forwarding control law. It can be

checked that the solution goes from the green toward the red one when the solution gets close

to the origin.

Fig. 2. Controllers

The last figure compares the proposed control law which is locally optimal with respect to a

given cost and the control law given in [9, equation (39)] when considering solution initiated

from the origin.

Fig. 3. Comparison with the controller of [9, equation (39)].

V. CONCLUSION

We have studied the problem of designing a stabilizing controller which ensures a desired

local behavior. We have shown that given a prescribed locally stabilizing control law, provided
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there exists a Lyapunov matrix with a specific structure, this stabilizing local behaviors can be

reproduced when using the forwarding design technique developed in [3], [4]. This is made

possible by modifying the forwarding design adequately. Note that when the y subsystem is of

dimension 1, this result establishes that all stabilizing local behaviors can be reproduced. This

result gives a theoretical justification of a statistical result given in [8].

APPENDIX

A. On the feasibility of the weak Lyapunov inequality

In this Section, we study the feasibility of the weak Lyapunov inequality (10) when considering

systems whose first order approximation is the system (15). Assume a stabilizing local controller

Ko = [0,k2,kx] is given. Note that, the necessary and sufficient conditions to make u = k2y2+kxx

a globally and asymptotically stabilizing input are

k2 < 0 , kx < 0 . (56)

First of all note that A =

 0 −1

1 0

. Let P =

 P11 P12

P12 P22

 in R2×2 be a Lyapunov matrix

which satisfies (5). Note that

PA+A′P =

 2P12 P22−P11

P22−P11 −2P12

= 0 .

Hence, this implies that P12 = 0 and P22 = P11. In other word, the only Lyapunov matrix which

satisfies (5) are those which take the form P = pI2. For a candidate Lyapunov matrix in the form

(we have normalized with respect to p):

P ,


1 0 q1

0 1 q2

q1 q2 r


to, be positive definite, parameters q1, q2 and r must satisfy:

r > q2
1 +q2

2

Assume there exists k2 and kx which satisfies (56) and such that there exists q1, q2 and r with

q1 and q2 not equal to zero such that the weak Lyapunov inequality (10) is satisfied. Inequality
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(10) implies that the following matrix is non positive

Q, [A ′P +PA ′] =


0 k2q1 q2 + kxq1

∗ 2k2q2 −q1 + k2r+1+ kxq2

∗ ∗ 2q2 +2kxr

 .

It implies that for all (v1,v2) in R2, we have

[v1,v2,0]Q


v1

v2

0

≤ 0⇔ k2q1v2v1−2k2q2v2
2 ≤ 0 .

Hence, this implies that q1 = 0. Moreover for all (v1,v3) in R2, we have

[v1,0,v3]Q


v1

0

v3

 := [v1,0,v3]


0 0 q2

∗ 2k2q2 k2r+1+ kxq2

∗ ∗ 2q2 +2kxr




v1

0

v3

≤ 0 ,

which means for all (v1,v3) in R2

q2v3v1 +(2q2 +2kxr)v2
3 ≤ 0 .

Hence, q1 = q2 = 0 which contradicts the assertion.

B. proof of Lemma 2

The proof of this Lemma is based on recent results obtained in [14]. Indeed, the design

of the function Vx is obtained from the uniting of a quadratic local control Lyapunov function

(denoted V0) and a global control Lyapunov function (denoted V∞) obtained employing a converse

Lyapunov theorem.

First of all, employing the converse Lyapunov theorem of Kurzweil [16], there exists a C∞

function V∞ : Rn→ R+ such that

∂V∞

∂x
(x)[ f (x)+g(x)αx(x)]< 0 , ∀ x 6= 0 .

On the other hand, with (20), the function V0(x) = x′Rxx is such that,

∂V0

∂x
(x)[F +GKx]x < 0 , ∀ x 6= 0 .
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Due to the fact that Kx satisfies equation (7) it yields that the matrix F +GKx is the first order

approximation of the x-subsystem in equation (2) with the control law u = αx(x). Consequently,

it implies that there exists a positive real number ε1 such that

∂V0

∂x
(x)[ f (x)+g(x)αx(x)]< 0 , ∀ |x| ≤ ε1 .

Employing [14, Theorem 2.1], it yields the existence of a function Vx and a positive real number

ε2 such that

1) for all x in Rn \{0},
∂Vx

∂x
(x)[ f (x)+g(x)αx(x)]< 0 .

2) for all x in Rn such that |x| ≤ ε2, we have

Vx(x) =V0(x) ,

and consequently H (Vx)(0) = 2Rx.

This conclude the proof of Lemma 2

C. Proof of Lemma 4

With Assumption 2, there exists a neighborhood of the origin in which the distribution

Vect{g1(x), . . . ,gm(x)} is regular, involutive and of constant dimension m. Employing Frobenius

theorem [17, Theorem 1.4.1], we know there exists a neighborhood of the origin U ⊂ Rnx and

a diffeomorphism ϕ = (ϕ1, . . . ,ϕnx) : U → ϕ(U) such that

∂ϕi

∂x
(x)g j(x) = 0 , m+1≤ i≤ nx , 1≤ j ≤ m , ∀x ∈U .

Let ψ :U→ψ(U) be the diffeomorphism defined as
(

∂ϕ

∂x (0)
)−1

ϕ(x). Note that we have ∂ψ

∂x (0)=

Inx . Moreover, we have

G = g(0) =
(

∂ϕ

∂x
(0)
)−1



∂ϕ1
∂x (0)g(0)

...
∂ϕm
∂x (0)g(0)

0
...


.

Hence, we get
∂ψ

∂x
(x)g(x) = Gr(x) , ∀x ∈U ,
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where

r(x) =


∂ϕ1
∂x (0)g(0)

...
∂ϕm
∂x (0)g(0)


−1

∂ϕ1
∂x (x)g(x)

...
∂ϕm
∂x (x)g(x)

 .

If we denote the new coordinates x̃ = ψ(x), the system (2) takes the form

˙̃x = f̃ (x̃)+Gr̃(x̃)u . (57)

where r̃(x̃) is a matrix in Rm×m for all x̃ in ψ(U) and r̃(0) = Im. Note that since ∂ψ

∂x (0) = Inx ,

we have ∂ f̃
∂ x̃ (0) = F .

Consider now the Lyapunov function

VL(y,x) =
[

y′ ψ(x)′
]
P

 y

ψ(x)

 .

We will show that this Lyapunov function is nonincreasing in a neighborhood of the origin

when employing the control law u = αg(y,x). Note that there exists a and b such that

αg(y,x) = a(x̃)+b(x̃)y .

Note that we have the properties

∂a
∂ x̃

(0) = Kg,x , b(0) = Kg,y .

When u = αg(y,x) the time derivative of the function VL(y,x) satisfies along the trajectories

of the nonlinear system (2)

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αg(y,x)

= 2
[

y′ x̃′
]
P

 Ay+ h̃(x̃)

f̃ (x̃)+Gr̃(x̃)αg(y,x)

 .

This gives

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αg(y,x)

= 2
[

y′ x̃′
]
P

 A H

GKg,y F +GKg,x

 y

x̃



+


h̃(x̃)−Hx̃

f̃ (x̃)−Fx̃+G

r̃(x̃)(a(x̃)+b(x̃)y)−Kg

 y

x̃



 .
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Hence we get,

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αg(y,x)

=
[

y′QG x̃′
]
M

 G′Q′y

x̃

+∆1(x̃)+ y′∆2(x̃)+ y′QG∆3(x̃)y (58)

where,

M=

 −4 −4(G′M′PM+G′Rx)

−4(RxG+M′PMG) Sx−4(G′M′PM+RxG′)(GRx +M′PMG)

<−cMInx+1 , (59)

where Sx is the negative definite matrix defined in (30) and cM = λmax{M} is a positive real

number,

∆1(x̃) = 2
[

0 x̃′
]
P

 h̃(x̃)−Hx̃

f̃ (x̃)−Fx̃+G [r̃(x̃)a(x̃)−Kg,xx̃]


∆2(x̃)= 2

[
1 0

]
P

 h̃(x̃)−Hx̃

f̃ (x̃)−Fx̃+G [r̃(x̃)a(x̃)−Kg,xx̃]

+
[ 0 x̃′

]
P

 0

G [r̃(x̃)b(x̃)−Kg,y]

′
∆3(x̃) = 2r̃(x̃)b(x̃)−Kg,y

Moreover, we have,

|y′QG∆3(x̃)y| ≤
|y′QG|2 + |∆3(x̃)|2

2
|y| . (60)

Hence, (58) becomes,

˙︷ ︷
VL(y,x)

∣∣∣∣
u=αg(y,x)

≤−|x̃|2
(

cM−
∆1(x̃)
|x̃|2

−|y|
|∆2(x̃)|+ 1

2 |∆3(x̃)|2

|x̃|2

)
−
∣∣G′Q′y∣∣2(cM−

1
2
|y|
)

(61)

Note that

|∆1(x̃)|= O(|x̃|3) , |∆2(x̃)|= O(|x̃|2) , |∆3(x̃)|= O(|x̃|) .

Hence, this implies that there exists a positive real number Rg such that when u = αg(y,x) we

get along the solutions of the system (2)
˙︷ ︷

VL(y,x)
∣∣∣∣
u=αg(y,x)

≤−cM
2
[
|x̃|2 + |y′PMG|2

]
, ∀(x,y) : VL(y,x)≤ Rg . (62)

With the same analysis, it is possible to find a positive real number Rl such that by taking

u = Ko,yy+Ko,xx we get a positive real number co such along the trajectories of the closed loop

system we have
˙︷ ︷

VL(y,x)
∣∣∣∣
u=Ko,yy+Ko,xx

≤−co
[
|x̃|2 + |y′PMG|2

]
, ∀(x,y) : VL(y,x)≤ Rl . (63)

Note that since ψ is a diffeomorphism, we get the existence of a positive real number such cψ

that around the origin |x̃| ≥ cψ |x|. Hence, we get the result with RL = min{Rl,Rg}.
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D. Solving the PDE for the illustrative example

In this section we show that given, a vector Kx ∈ Rnx such that F +GKx is Hurwitz the

following partial differential equation

∂M

∂x
(x)[F +GKx]x = AM (x)+h(x) ,∀ x ∈ Rn . (64)

can be solved explicitly when the function h is the quadratic function defined in (45).

First of all, note that following (33), the solution M : Rnx → Rny can be expressed as

M (x) =
∫ 0

+∞

exp(−As)h
(

exp
(
[F +GKx]s

)
x
)

ds . (65)

The function h being quadratic, this implies that the function M is also quadratic and may be

written in the form (50) with (M,M1, . . . ,Mny) are matrices in Rnx×nx to be selected. Assume

for the time being that there exist solutions to the two Sylvester equations (51) and (52) and let

(M,M1, . . . ,Mny) be these solutions. Note that we have,

∂M

∂x
(x)[F +GKx]x =

[
Iny⊗ x′

]
Ψx+M[F +GKx]x ,

where Ψ is the matrix in R(nynx)×nx defined by

Ψ =


M1(F +GKx)+(F +GKx)

′M1
...

Mny(F +GKx)+(F +GKx)
′Mny

 .

However, employing the fact that
[
M1, . . . ,Mny

]′ is solution to the Sylvester equation (52), we

get

Ψ=
[
Iny⊗[F+GKx]

′
]

M1
...

Mny

+


M1
...

Mny

 [F+GKx]+


H1
...

Hny

=
[
A⊗Inx

]
M1
...

Mny

+


H1
...

Hny

 .

Hence, it implies

∂M

∂x
(x)[F +GKx]x =

[
Iny⊗ x′

][
A⊗ Inx

]
M1
...

Mny

x+
[
Iny⊗ x′

]


H1
...

Hny

x+AMx+Hx ,
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where we have used the fact that M satisfies the Sylvester equation (51). Employing the fact

that

[
Iny⊗ x′

][
A⊗ Inx

]
M1
...

Mny

= A


x′M1

...

x′Mny

 ,

it yields

∂M

∂x
(x)[F +GKx]x = A


x′M1

...

x′Mny

x+
[
Iny⊗ x′

]


H1
...

Hny

x+AMx+Hx = AM (x)+h(x) .

Consequently, if (M,M1, . . . ,Mny) are matrices in Rnx×nx solution to the Sylvester equations (51)

and (52) the function M defined in (50) is solution to the PDE (64).

It remains to show that the two Sylvester equations (51) and (52) admit a solution. Note that

for the first one (i.e. equation (51)), this is trivial since the two matrices F +GKx and −A have

different eigenvalues (F +GKx is Hurwitz and A is stable).

The same property holds for equation (52). Indeed, with the matrix Rx given in equation (18),

we have

(Iny⊗Rx)
[
Iny⊗ [F +GKx]−A′⊗ Inx

]
+
[
Iny⊗ [F +GKx]

′−A⊗ Inx

]
(Iny⊗Rx)

= Iny⊗ (Rx[F +GKx]+ [F +GKx]
′Rx)− (Iny⊗Rx)(A′⊗ Inx)− (A⊗ Inx)(Iny⊗Rx)

Note that we have,

(Iny⊗Rx)(A′⊗ Inx)+(A⊗ Inx)(Iny⊗Rx) = A′⊗Rx +A⊗Rx = 0

since, by assumption, A′ =−A. Consequently, it implies with (20)

(Iny⊗Rx)
[
Iny⊗ [F +GKx]−A′⊗ Inx

]
+
[
Iny⊗ [F +GKx]

′−A⊗ Inx

]
(Iny⊗Rx)

= Iny⊗ (Rx[F +GKx]+ [F +GKx]
′Rx)< 0

which is a Lyapunov equality with Lyapunov matrix (Iny ⊗Rx). Hence, it establishes that the

matrix
[
Iny ⊗ [F +GKx]−A′⊗ Inx

]
is Hurwitz and has different eigenvalues with the matrix

−[F +GKx].
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