Automatic efficient data layout for multithreaded stencil codes on CPUs and GPUs

Julien Jaeger 1 Denis Barthou 2, 3
2 RUNTIME - Efficient runtime systems for parallel architectures
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : Stencil based computation on structured grids is a kernel at the heart of a large number of scientific applications. The variety of stencil kernels used in practice make this computation pattern difficult to assemble into a high performance computing library. With the multiplication of cores on a single chip, answering architectural alignment requirements became an even more important key to high performance. In addition to vector accesses, data layout optimization must also consider concurrent parallel accesses. In this paper, we develop a strategy to automatically generate stencil codes for multicore vector architectures, searching for the best data layout possible to answer architectural alignment problems. We introduce a new method for aligning multidimensional data structures, called multipadding, that can be adapted to specificities of multicores and GPUs architectures. We present multiple methods with different level of complexity. We show on different stencil patterns that generated codes with multipadding display better performances than existing optimizations.
Type de document :
Communication dans un congrès
High Performance Computing conference, Dec 2012, India. pp.1-10, 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00793201
Contributeur : Denis Barthou <>
Soumis le : jeudi 28 février 2013 - 13:37:26
Dernière modification le : jeudi 11 janvier 2018 - 06:22:12
Document(s) archivé(s) le : mercredi 29 mai 2013 - 03:25:10

Fichier

Jaeger_Barthou_hipc2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00793201, version 1

Citation

Julien Jaeger, Denis Barthou. Automatic efficient data layout for multithreaded stencil codes on CPUs and GPUs. High Performance Computing conference, Dec 2012, India. pp.1-10, 2012. 〈hal-00793201〉

Partager

Métriques

Consultations de la notice

400

Téléchargements de fichiers

187