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Abstract

This paper deals with maintenance strategies with minimal repairs for single-unit repairable systems which

are subject to competing and dependent failures due to degradation and traumatic shocks. The main aims

are to study different approaches for making a minimal repair decision (i.e. time-based or condition-based)

which is a possible corrective maintenance action under the occurrence of shocks, and to show under a given

situation which approach can lead to a greater saving in maintenance cost. Two age-based maintenance

policies with age-based minimal repairs and degradation-based minimal repairs are modeled, and their

performance is compared with a classical pure age-based replacement policy without minimal repairs.

Numerical results show the cost saving of the maintenance policies and allow us to make some conclusions

about their performance under different situations of system characteristic and maintenance costs. It is

shown that carrying out minimal repairs is useful in many situations to improve the performance of main-

tenance operations. Moreover, the comparison of optimal maintenance costs incurred by both maintenance

policies with minimal repairs allows us to justify the appropriate conditions of time-based minimal repair

approach and condition-based minimal approach.
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RG Relative gain on the optimal maintenance cost rate

DTS Degradation-Threshold-Shock

1. Introduction

With the growth in complexity of modern systems, maintenance strategies have become more important

and play an essential role directly related to the competitiveness of organizations. Many mechanical and

structural systems (e.g. cutting tool [1], hydraulic structure [2], airplane engine compressor blades [3],

corroding pipelines [4], etc.) usually suffer an underlying degradation process which can cause random

failures. Such degradation process can be modeled using stochastic processes. According to Lehmann [5], the

stochastic-processes-based approach shows great flexibility in describing the failure-generating mechanisms

and can give alternative time-to-failure-distributions defined by the degradation model.

In the literature, developments on maintenance models based on the degradation process have provided

satisfactory results for the maintenance operation (e.g. see [6, 7] for time-based maintenance model and [8–

10] for condition-based maintenance model). But, considering a degradation process only, as in these papers,

seems to be unsatisfactory for modeling dynamic systems that suffer a degradation with their operational

age and that are subject to traumatic events or shocks which can lead to a sudden failure [11]. In these

dynamic systems, the system is regarded as failed when its degradation reaches a critical threshold or when a

catastrophic shock occurs although the degradation process has not reached the threshold. The models that

describe these systems are called Degradation-Threshold-Shock (DTS) models. As far as we know, Lemoine

and Wenocur were the first to analyze the DTS model [12]. Singpurwalla presents a comprehensive review

of this class of models in [11]. Lehmann derived in [5] an expression of the survival function and the failure

rate of the time to the system failure in the DTS model.

Most of the papers that deal with competing DTS models assume that the degradation process and the

shock process are independent [5, 13–15]. But, in many practical situations, the dependence between them

is of importance and should not be neglected, as it leads to a competing risk model. Therefore, the present

paper aims to expand the DTS model [5] by introducing the dependence between the shock process and

the degradation process. The dependence between the shock process and the degradation process of the

DTS model considered in this paper is described showing that the failure rate of the shocks depends on the

degradation level of the system.

Based on such a degradation/failure model, this paper aims to develop a mathematical model to assess the

benefit of carrying out minimal repairs as possible corrective maintenance actions under the occurrence of

shocks. The basic concept of minimal repair was first introduced by Barlow and Hunter in [16], this has

been extended in many ways, see e.g., [17–21]. The minimal repair is described by the fact that the repair

action returns the system to an operational state but the system characteristics are the same as just before
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the failure. For a repairable system, carrying out minimal repairs is a natural approach, because it can keep

the system working at a minimal cost. However, with a competing risk model under consideration as in this

paper, performing a minimal repair requires more knowledge about the system state (e.g. failure type or

degradation level) and cannot restore the system to “as good as new” condition as in a system replacement,

hence it can incur an unnecessary maintenance cost. So the question is whether to replace the system or

to perform a minimal repair when the system fails, and under which conditions the minimal repair can

delay the undertaking of system replacements at a more convenient time. We analyze whether carrying

out a minimal repair should be based on the operational age of the system (time-based decision) or should

be based on the degradation of the system (condition-based decision). To answer the above questions, we

develop the maintenance cost models for two age-based policies: a policy implementing age-based minimal

repairs at failure times, a policy implementing degradation-based minimal repairs at failure times. These

policies are compared with a pure age-based replacement policy without minimal repairs in order to assess

the value of the minimal repairs. Furthermore, comparing optimal maintenance costs incurred by both kinds

of maintenance policy with minimal repairs allows us to give some conclusions about their performance under

different situations of system characteristics and maintenance costs.

Hence, the main aims and contributions of the present study are:

1. Expanding DTS models introducing a dependence scheme between the shock process and the degra-

dation process.

2. Developing the analytical cost models for the age-based maintenance policies which use different ap-

proaches to make a minimal repair decision.

3. Performing a quantitative comparison between the proposed maintenance models to assess the value

of the minimal repair in the maintenance.

4. Providing the indicators for choosing the adequate maintenance policy according to different system

characteristics.

The remainder of this paper is organized as follows. Section 2 is devoted to modeling the different competing

failure modes of the system and to characterizing the associated failure times. The detailed description and

formulation of the different age-based maintenance policies with and without minimal repairs are introduced

in Section 3. Then in Section 4, we give the comparison of the relative gain in the optimal maintenance

cost rate between the maintenance strategies under the different possible situations to assess the effect of

resorting to minimal repairs and the value of investing in condition monitoring. Finally, the paper ends with

some conclusions and directions for future works.

3



2. System degradation and failure modeling

The present paper considers a single-unit repairable system whose failures are due to the competing causes

of degradation and shocks. The system is described by a so-called Degradation-Threshold-Shock (DTS)

model [5]. In such a model, the degradation is modeled using a time-dependent stochastic process, and the

system is regarded as failed when the degradation process reaches a critical threshold or when a shock occurs

although the degradation process has not reached the threshold. As Singpurwalla advocated in [11], such

a failure/degradation model can be seen as a combination and a more versatile - and hopefully realistic -

extension of many classical failure models based either only on degradation or only on parametric lifetime

distributions. More recently, Bocchetti et al. apply this model to describe the competing risks due to wear

degradation and thermal cracking for the cylinder liners of a marine Diesel engine [22]. In the following, the

modeling of the different failure modes and the distributions of the associated hitting times are analyzed in

detail, highlighting the dependence between the failure types.

2.1. Degradation-based failure

2.1.1. Degradation modeling

We consider a system deteriorating with use and age, and subject to a continuous accumulation of degra-

dation. The degradation evolution of the system is modeled by a stochastic process. Let X(t) be the

accumulated degradation (or wear level) at time t. If no maintenance action is performed, the stochastic

process {X(t), t ≥ 0} is continuous-time and monotonically increasing with X(0) = 0. The degradation is

strictly increasing which means that the system worsens with time due to ageing and accumulated wear or

damage.

We assume in this paper that {X(t), t ≥ 0} is a homogeneous gamma process as defined by Singpurwalla

in [39] (by opposition to the gamma process defined by Berman in [36]). According to this definition,

the gamma process is a monotone increasing stochastic process with continuous state space (often used to

model a continuous degradation phenomena), completely defined by the law of the increments between two

arbitrary instants (usually named increments of degradation) in the state space. This law is a gamma law.

In the framework of continuous state degradation models, this definition of the Gamma process is really

mainly used [27]. The gamma processes were satisfactorily fitted to data of different gradual degradation

phenomena such as erosion, corrosion, concrete creep, crack growth or wear of structural components [23–

25]. Moreover, the existence of an explicit probability distribution function of the gamma process permits

feasible mathematical developments. Therefore, since the initial proposal by Abdel-Hameed in [26], the

gamma process has been analyzed for different maintenance applications by several authors (see [27] for a

thorough review on the use of gamma process in maintenance modeling).

The gamma process assumption for the degradation means that the probability density function of the

degradation level X(t) at time t is a gamma density function with shape parameter αt and scale parameter
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β,

fαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
, u ≥ 0,

where Γ is the function gamma given by

Γ(α) =

∫ ∞

0

uα−1e−udu.

Such a process depends on two parameters α and β which allow to model various degradation behaviors

of the system from almost deterministic to highly variable. The parameters α and β can be estimated

from degradation data with classical statistical methods. The average degradation rate is m = α/β and its

variance is σ2 = α/β2.

2.1.2. Hitting times of the degradation process

To characterize the degradation-based failures, it is necessary to study the hitting times of the gamma

process. Two types of hitting times are showed in this section.

Firstly, we assume the system fails when the level of degradation exceeds a predetermined failure threshold L

which depends on the properties of the considered system. Denoting by σL the time at which the degradation

failure occurs

σL = inf {t ≥ 0, X(t) ≥ L} , (1)

and by FσL
its distribution, one obtains

FσL
(t) = P [σL ≤ t] = P [X(t) ≥ L] =

∫ ∞

L

fαt,β(x)dx =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0, (2)

where

Γ(α, x) =

∫ ∞

x

zα−1e−zdz

denotes the incomplete gamma function for x ≥ 0 and α > 0. Distribution FσL
in (2) is known as the first

hitting time distribution to the level L with density function given by [27]

fσL
(t) =

∂

∂t
FσL

(t) =
α

Γ(αt)

∫ ∞

Lβ

{log(z)− ψ(αt)}zαt−1e−zdz, t ≥ 0, (3)

where the function ψ(a) is called the digamma function that corresponds to the derivative of the logarithm

of the gamma function

ψ(a) =
Γ′(a)

Γ(a)
=
∂logΓ(a)

∂a
.

Let M be a degradation level with M < L and let σM be the time in which the degradation of the system

exceeds the value M with distribution FσM
. In the models showed subsequently, the distribution of the

random variable σL−σM is used but it is more difficult to derive because of the “overshoot behavior” of the
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gamma processes [28], i.e., X(σM ) 6=M and σL − σM 6= σL−M . The distribution of σL − σM was obtained

by [9] and it is given by

F̄σL−σM
(t) =











−

∫ ∫

M<x<L,0<x+y<L,0<y

(
∫ ∞

0

fαu,β(x)du

)

∂fαt,β(y)

∂t
dxdy y > x > 0

∫∞

t

∫ y−t

0
α
∫M

0
fαx,β(w)dw

(

∫∞

L−y
e−βz

z dz
)

dxdy y = x > 0

(4)

Expression (4) is complicated and specially burdensome to compute numerically. This fact makes us propose

an approximation of the distribution of the random variable σL − σM to make the computation faster

and easier. This approximation is based on the distribution of σL−M . If the trajectories of the process

{X(t), t ≥ 0} were continuous, then σL − σM would have the same probability as σL−M . But, since

{X(t), t ≥ 0} is a jump process (see [27, 29] for more properties of gamma process), X(σM ) ≥M and hence

E[X(σM )] ≥M . Bérenguer et al. proposed in [9] as approximation of E[X(σM )] the following expression

E[X(σM )] =
α

β
E[σM ] =

α

β

1

α

(

βM +
1

2
−

∫ ∞

βM

(ϕ(y)− 1)dy

)

,

where ϕ is a function closed to 1,

ϕ(y) =

∫ ∞

0

fu,1(y)du, y ≥ 1

hence, when βM is large enough (at least greater 1),

E[X(σM )] ≃M +
1

2β
.

Consequently, the distribution of the random variable σL − σM can be approximated by the distribution of

σL−M−1/(2β) when βM < βL − 1/2, thus the distribution of σL − σM given in (4) and its density fσL−σM

can be approximated as

FσL−σM
(t) ≃ Fσ

L−M−

1

2β

(t) =
Γ(αt, β(L −M)− 1/2)

Γ(αt)
,

fσL−σM
(t) ≃ fσ

L−M−

1

2β

(t) =
α

Γ(αt)

∫ ∞

(Lβ−Mβ−1/2)

{log(z)− ψ(αt)}zαt−1e−zdz,

and this approximation will be used later in the numerical examples to compare different maintenance

strategies.

2.2. Shock failures

2.2.1. Shock failures modeling

As mentioned above, in most practical situations the system failure is not solely due to degradation but also

to shocks. Moreover the degradation process and the shock process can depend on each other, for example

the higher the degradation, the more the system is vulnerable to shocks. We assume that the shock arrival

times can be modeled by a non-homogeneous Poisson process {Ns(t), t ≥ 0} with stochastic increasing
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intensity which depends on the degradation level r(X(t)), and that can represented by the following relation

[30]

r(X(t)) = r1(t)1{X(t)≤M} + r2(t)1{X(t)>M}, t ≥ 0, (5)

where 1{} denotes the indicator function which equals 1 if the argument is true and 0 otherwise, r1(t) and

r2(t) denote two continuous and non-decreasing failure rates at time t with r1(t) ≤ r2(t), ∀t ≥ 0. The

quantity M represents a fixed degradation level. The quantities r1(t), r2(t) and M are the parameters of

the shock process and can be estimated from shock failures and degradation data with classical statistical

methods. Expression (5) means that the degradation evolution affects to the occurrence of shock failures,

that is, the system is more prone to shock failures when the degradation increases and exceeds a given

degradation level.

2.2.2. Failure time of the shock process

Let Ns(t) be the number of shocks in (0, t]. Under this model, the failure rate for the shocks r(X(t)) given

by (5) is stochastic and the process {Ns(t), t ≥ 0} is called a doubly stochastic process or a Cox process

(see [31] for a theoretical development of the Cox process). We denote by F̄1 and F̄2 the survival functions

associated with the failure rate functions r1 and r2, that is,

F̄i(t) = exp

{

−

∫ t

0

ri(u)du)

}

, t ≥ 0, i = 1, 2. (6)

Let σs be the time to a failure provoked by a shock, that is,

σs = inf {t ≥ 0, Ns(t) = 1} ,

and let F̄s(t) be its survival function. One has

F̄s(t) = P [σs > t]

= P [σs > t|X(t) ≤M ]P [X(t) ≤M ] + P [σs > t,X(t) > M ]

= F̄σM
(t)F̄1(t) +

∫ t

0

fσM
(u)F̄1(u)exp

{

−

∫ t

u

r2(v)dv

}

du, t ≥ 0.

where FσM
(resp. fσM

) denotes the distribution (resp. density) of the hitting time for the degradation level

M obtained using (2) and (3) respectively.

3. Age-based maintenance models

In this section, we are interested in the nature of the corrective maintenance actions (i.e. replacement or

minimal repair) at failures due to shocks and in the optimal approach for the minimal repair decision (i.e.

time-based or condition-based). When no restriction (or very few) are put on the decision rule structure,

dynamic programming algorithms (Policy Iteration Algorithm for example) can be used to find optimal
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policies [40–42]. However, without reasonable restriction about the structure, it comes to be very difficult

to formalize and to solve numerically the optimization problem and at last, from a practical point of view,

the optimal strategy can be impossible to implement. Hence, an alternative reasonable approach is to fix

some decision rule structures, to focus on the probabilistic model allowing their parameters optimization

and to compare them with numerical studies. Even if in some cases, some results give indications about the

structure of the optimal policy (for example in the framework of pure degradation models with monotone

stationary markovian degradation phenomena [3, 43–47]), generally speaking, the selection of some specific

decision rules is proposed after analyses of practical constraints and realistic considerations (see [38, 49] for

example) to make sense. This selection can also be connected to the specific discussion objective of the

research work to enhance some relevant conclusions in a specific context (value of preventive maintenance

compared to corrective one, interest of condition based decision rules compared to periodic ones, value of

the condition monitoring for the maintenance, ...).

In the present paper, we consider a complex case which is not a pure lifetime model, nor a pure degradation

model. We consider a degradation model combined with a shock model. In the framework of systems subject

to such competing failure modes, we do not think that the absolute optimality of one maintenance decision

rule can be guaranteed theoretically. Hence we have a classic approach that is to fix some maintenance

decision rules that are realistic from a practical point of view, that can be proved to be optimal in more

simple cases, and that are relevant to evaluate the value of exact degradation level knowledge for decision

making. Then, the major contribution of our paper is in the optimization of the parameters of these decision

rules (with probabilistic calculation of the associated costs), and the participation to the recent discussions

about the value of monitoring information that we address with the following question: is it necessary to

inspect the system at failure time to know the origin of the failure (degradation or shock) and/or the system

state at the failure (degradation level)? More precisely we analyze whether carrying out a minimal repair

upon failure time due to a shock should be based:

• on the operational age of the system (age-based maintenance model with minimal repairs depending

on the system age, (τ, T ) maintenance policy)

• on the degradation of the system (age-based maintenance model with minimal repairs depending on

the system degradation, (A, T ) maintenance policy).

Another age-based maintenance model without minimal repair is also introduced as a benchmark to assess

the value of the minimal repairs in the maintenance decision-making. The analytic cost model of each

maintenance policy is developed based on renewal considerations. Then numerical results in section 4 on a

relevant study case give us a validation of the coherence of our decision rules and show the utility of our

probabilistic quantification method for parameters optimization.

8



3.1. Assumptions and objective cost function

3.1.1. Assumptions

Consider a repairable single-unit system described as in Section 2. We suppose that the system starts

working at time t = 0. The degradation of the system is hidden, and when the system fails, it can be

self-announced but not reveal the failure type. It means that a system failure is immediately detected, but

its degradation level and its failure type are only revealed through an inspection. These assumptions can be

justified in practice because e.g. the system degradation and the failure type cannot be observed directly,

due to the difficulty of placing sensors under harsh operating environments (high pressure, high temperature,

high irradiation fields, etc.). However the system failure is usually easy to detect since the system stops

working. The inspections are assumed to be instantaneous, perfect and non-destructive. After a failure, the

system is immediately replaced or repaired by a maintenance action, hence it is never in a state of inactivity.

Three maintenance operations of the system are available: the minimal repair with cost Cm, the preventive

replacement with cost Cp, and the corrective replacement with cost Cc. A minimal repair is performed after

a failure due to shocks and brings the system back to the same working conditions as it was just before the

failure occurred. In our case, this means that it does not modify the degradation level of the system. A

replacement can be either a physical replacement, an overhaul or a repair such that the system is as-good-

as-new after the repair. Even though both the preventive and the corrective maintenance actions restore

the system to the as-good-as-new state, they are not necessarily identical in practice. Since a corrective

replacement (or renewal) is unplanned and has to be carried out on a more deteriorated system, it is more

complex and expensive than a preventive replacement. The constraint of the maintenance operations costs

is thus Cm < Cp < Cc. All the maintenance actions are assumed to take negligible time.

3.1.2. Objective cost function

To evaluate the performance of a maintenance policy, we focus on an asymptotic evaluation of a cost criterion

which is the expected maintenance cost per unit time over an infinite time span. Assuming an as-good-as-

new maintained system, an analytical formula of this long-run expected cost rate can be computed using the

regenerative properties of the maintained system state [32]. We call a replacement cycle the time between

two successive replacements of the system and we denote by σr the time of a replacement cycle. Hence

C∞ = lim
t→∞

E [C (t)]

t
=
E [C (σr)]

E [σr]
(7)

with probability 1 where C (t) is the accumulated maintenance cost at time t. Thus, the long-run average

cost per unit time is equal to the expected cost in a replacement cycle divided by the expected length of the

replacement cycle for almost any realization of the process.
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3.2. Age-based maintenance model with minimal repairs depending on the system age

This section presents a modified age-based maintenance policy in which the decision of performing a minimal

repair depends on the age τ of the system. Since the minimal repair decision is performed regardless of

the actual condition of system, this policy is referred to as an age-based maintenance policy with “blind”

minimal repairs and it is noted by (τ, T ) policy. We also consider, in this policy, the system soft failure as

the failure provoked by the shocks which arrive before age τ , and hard failure as the failure provoked by the

degradation or by the shocks which arrive after age τ .

3.2.1. (τ, T ) maintenance policy

Under the (τ, T ) policy, if the system fails before the age τ < T , an inspection with cost Cif is performed

to check the type of failure. If the failure is due to degradation (i.e. hard failure), a corrective replacement

with cost Cc is performed. If the failure is provoked by a shock (i.e. soft failure), a minimal repair with cost

Cm is performed. If the system fails after τ , it is, by definition, a hard failure and a corrective replacement

is performed regardless of the type of failure (i.e. without inspection). And if the system has not reached a

hard failure state at age T , it is preventively replaced with cost Cp. Accordingly, (τ, T ) policy reverts to the

PAR policy (see subsection 3.4) when τ = 0. Practical conditions define the constraints of the maintenance

costs as follows: 0 < τ , Cif < Cp < Cc and Cm < Cp < Cc. The preventive replacement age T and the

maximum age to perform a minimal repair τ are the decision variables for this maintenance strategy. Figure

1 shows a sample behavior of the maintained system under this policy.

Figure 1: Schematic sample behavior of the maintained system under the (τ, T ) policy

3.2.2. Cost model formulation

Let σf be the time to a corrective maintenance, its distribution function Ff at time t is given by

F f (τ, t) = F f,1 (τ, t) · 1{t≤τ} + F f,2 (τ, t) · 1{t>τ} (8)
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where

F f,1 (τ, t) = P (σL ≥ t) = F σL
(t)

and F̄σL
is given by equation (2). On the other hand,

F f,2 (τ, t) = P (σL ≥ t, Ns(τ, t] = 0)

=
F̄1(t)

F̄1(τ)
F̄σM

(t) +
F̄2(t)

F̄1(τ)

∫ t

τ

F̄σL−σM
(t− u)

F̄1(u)

F̄2(u)
fσM

(u)du

+
F̄2(t)

F̄2(τ)

∫ τ

0

F̄σL−σM
(t− u)fσM

(u)du (9)

where F̄σM
, fσM

, F̄σL−σM
and F̄i, i = 1, 2, are given by equations (2), (3), (4) and (6) respectively.

Hence the probability of a preventive maintenance in a replacement cycle is given by

P τT
p (τ, T ) = F̄f (τ, T ) (10)

and the probability of a corrective maintenance in a replacement cycle is therefore given by

P τT
c (τ, T ) = 1− P τT

p (τ, T ) = Ff (τ, T ) (11)

Inspections are performed when the system fails before the age τ . Let E
[

N τT
i (t)

]

be the expected number

of inspections effected until the time t ≤ τ , then it can be computed by

E[N τT
i (t)] =

∫ t

0

r1(u)F̄σM
(u)du+

∫ t

0

fσM
(u)

(
∫ t

u

r2(v)F̄σL−σM
(v − u)dv

)

du+ FσL
(t). (12)

Therefore, the expected number of inspections in a replacement cycle E[N τT
i (τ, T )] is given by

E
[

N τT
i (τ, T )

]

= E
[

N τT
i (T )

]

· 1{T≤τ} + E
[

N τT
i (τ)

]

· 1{T>τ}. (13)

The number of minimal repairs is equal to the number of inspections minus the number of failures due to

degradation before the age τ . Let E
[

N τT
mr (t)

]

be the expected number of minimal repairs effected until the

time t ≤ τ , then it can be computed by

E[N τT
mr(t)] = E[N τT

i (t)]− FσL
(t) ,

where E[N τT
i (t)] is given by (12). Therefore, the expected number of minimal repairs in a replacement cycle

E[N τT
mr(τ, T )] is given by

E
[

N τT
mr (τ, T )

]

= E
[

N τT
mr (T )

]

· 1{T≤τ} + E
[

N τT
mr (τ)

]

· 1{T>τ}. (14)

From equation (8), the expected length of a replacement cycle is given by

E
[

στT
r (τ, T )

]

= E
[

στT
r,1 (τ, T )

]

· 1{T≤τ} + E
[

στT
r,2 (τ, T )

]

· 1{T>τ} (15)
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where

E
[

στT
r,1 (τ, T )

]

=

∫ T

0

F σL
(t) dt,

and

E
[

στT
r,2 (τ, T )

]

=

∫ τ

0

F σL
(t) dt+

∫ T

τ

F f,2 (τ, t) dt,

where F̄f,2 is given by (9). Taking into account equations (7), (10), (11), (13), (14) and (15), the expression

of the expected cost rate for this maintenance model CτT
∞ (τ, T ) is given by

CτT
∞ (τ, T ) =

CcP
τT
c (τ, T ) + CpP

τT
p (τ, T ) + CifE

[

N τT
i (τ, T )

]

+ CmE
[

N τT
mr (τ, T )

]

E [στT
r (τ, T )]

. (16)

The optimization problem for this maintenance strategy is reduced to find the values τ and T that minimize

CτT
∞ (τ, T ) given by (16), that is

CτT
∞ (τopt, Topt) = inf{CτT

∞ (τ, T ) , τ > 0, T > 0}

3.2.3. Numerical example

To have a numerical illustration for the expected cost rate and the optimal maintenance strategy of the (τ, T )

policy, we use the following data set: α = β = 1, L = 30, M = 20, r1 (t) = λ1 = 0.05, r2 (t) = λ2 = 0.5,

Cif = 20, Cm = 40, Cp = 50 and Cc = 100. This data set represents a case of intermediate variance

in degradation increment (m = α
β = 1, σ2 = α

β2 = 1) and high intensity of failures due to shocks. This

numerical example is illustrated in Figure 2. Figure 2 shows the expected cost rate of the (τ, T ) policy as
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(b) Iso-level cost curves of expected maintenance cost

Figure 2: Optimization of the age-based maintenance policy with minimal repairs depending on the system

age - (τ, T ) policy

a function of the preventive replacement age T and the minimal repair threshold τ . It can be seen that we
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can obtain an optimal solution under the (τ, T ) policy, and in this case, the optimal values of the decision

variables (obtained by a classical optimization scheme) are Topt = 19 and τopt = 11 with an optimal cost

rate given by CτT
∞ (τopt, Topt) = 6.2725 monetary units.

3.3. Age-based maintenance model with minimal repairs depending on the system degradation

The (τ, T ) policy developed in Section 3.2 seems to be an effective age-based maintenance policy with

minimal repairs. However, minimal repairs are based on the age of the system at the time of failure which

can be less effective than the decisions based on the condition of the system in some situations [33, 34].

Therefore, this section aims to develop a more complex age-based maintenance policy in the sense that the

minimal repair decision is performed depending on the actual condition of system, and this policy is called

(A, T ) policy. We define, in this policy, a system soft failure as the failure provoked by the occurrence of

a shock when the degradation level does not exceed the degradation value A, and as a hard failure as the

failure provoked by the degradation, or by a shock which has occurred when the degradation level exceeds

the value A.

3.3.1. (A, T ) maintenance policy

Under this maintenance strategy, if the system is not in a hard failure state at the age T , a preventive

replacement is performed with a cost Cp. If the system stopped working before the age T , an inspection

with cost Cid is performed to check the type of failure and the degradation level of system. If the inspection

detects the system is in a hard failure state, a corrective replacement is performed with a cost Cc. But if the

system is just in a soft failure state, a minimal repair is performed with an additional cost Cm. Practical

conditions define the constraint of the maintenance costs as follows: 0 < A < L, Cid < Cp < Cc and

Cm < Cp < Cc. The preventive replacement age period T and the maximum degradation level to perform a

minimal repair A are the decision variables for this maintenance strategy. Figure 3 shows a sample behavior

of the maintained system under this policy.

Comparing the (A, T ) strategy with the (τ, T ) strategy, inspection costs verify the inequality Cid ≥ Cif .

It means that an inspection under the (A, T ) policy is more expensive than an inspection under the (τ, T )

policy. The reason for this is that in the (A, T ) policy, the inspection determines not only the type of failure

(due to degradation or due to shock), but also the degradation level of the system.

3.3.2. Cost model formulation

Let σfs be the time to a system replacement due to shocks,

σfs = inf {t ≥ 0, Ns(t)−Ns(0, σA) = 1, X(t) > A} , (17)

where σA denotes the first hitting time to the level A .
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Figure 3: Schematic sample behavior of the maintained system under the (A, T ) policy

Let σf be the time to the system replacement due to a hard failure, then

σf = min(σL, σfs)

where σL and σfs are given by (1) and (17) respectively. The survival function of the time to the system

replacement σf is given by

F̄f (t) = P (σf > t) = E

[

1{σA>t} + 1{σL>t>σA} exp

(

−

∫ t

σA

r(X(s))ds

)]

, t ≥ 0.

The survival function of the time to the system replacement σf can also be expressed by

F f (A, t) = F f,1 (A, t) · 1{A≤M} + F f,2 (A, t) · 1{A>M},

where

F f,1 (A, t) = F̄σA
(t) + F̄1 (t)

∫ t

0

F̄σM−σA
(t− u)

1

F̄1 (u)
fσA

(u)du

+F̄2 (t)

∫ t

0

∫ t

u

F̄σL−σM
(t− v)

F̄1 (v)

F̄1 (u) F̄2 (v)
fσM−σA

(v − u)fσA
(u)dvdu,

and

F f,2 (A, t) = F̄σA
(t) + F̄2 (t)

∫ t

0

F̄σL−σA
(t− u)

1

F̄2 (u)
fσA

(u)du.

Hence the probability of a preventive maintenance in a replacement cycle is given by

PAT
p (A, T ) = F f (A, T ), (18)

and the probability of a corrective maintenance in a replacement cycle is given by

PAT
c (A, T ) = 1− PAT

p (A, T ) = Ff (A, T ). (19)
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The expected length of the renewal cycle is obtained as

E
[

σAT
r (A, T )

]

=

∫ T

0

F̄f (A, t)dt. (20)

Considering the assumptions of the maintenance strategy, if no replacement is performed, the expected

number of minimal repairs at time t is given by

E[NAT
mr (A, t)] = E[Ns(t) · 1{σA>t} +Ns(σA) · 1{σA≤t}], t ≥ 0.

Therefore, the expected number of minimal repairs in a replacement cycle E[NAT
mr (A, T )] is given by

E
[

NAT
mr (A, T )

]

= E
[

NAT
mr,1 (A, T )

]

· 1{A≤M} + E
[

NAT
mr,2 (A, T )

]

· 1{A>M}, (21)

where

E
[

NAT
mr,1 (A, T )

]

=

∫ T

0

r1(u)F̄σA
(u)du,

and

E
[

NAT
mr,2 (A, T )

]

=

∫ T

0

r1(u)F̄σM
(u)du+

∫ T

0

∫ T

u

r2(z)F̄σA−σM
(z − u)fσM

(u)dzdu.

Taking into account equations (7), (18), (19), (20) and (21), the expected cost rate for this maintenance

model CAT
∞ (A, T ) is given by

CAT
∞ (A, T ) =

(Cc + Cid)P
AT
c (A, T ) + CpP

AT
p (A, T ) + (Cm + Cid)E

[

NAT
mr (A, T )

]

E [σAT
r (A, T )]

, 0 < A < L, T > 0.

(22)

The optimization problem for this maintenance strategy is reduced to find the values A and T that minimize

CAT
∞ (A, T ) given by (22), that is

CAT
∞ (Aopt, Topt) = inf{CAT

∞ (A, T ) , 0 < A < L, T > 0}.

3.3.3. Numerical example

For a numerical illustration of the (A, T ) policy, we use in this section the same data set given in the numerical

example of Section 3.2. To obtain a preliminary estimation of the profit gained by the (A, T ) policy compared

to the (τ, T ) policy, we set the inspection cost Cid equal to Cif . Figure 4 shows the expected maintenance

cost rate as a function of decision variables A and T . The optimal solution is obtained at Topt = 17 and

Aopt = 17 with an optimal expected cost rate of CAT
∞ (Aopt, Topt) = 6.4621 monetary units.

We notice that, though the (A, T ) policy is more complex than the (τ, T ) policy from the point of view

of the maintenance structure, its optimal maintenance cost rate can be higher (CAT
∞ (Aopt, Topt) = 6.4621

v.s. CτT
∞ (τopt, Topt) = 6.2725). But there are some situations where the (A, T ) policy can save costs when

compared to the (τ, T ) policy, because it allows for a timely minimal repair thanks to the decision based

on the actual condition of the system. So a detailed analysis on the optimal expected maintenance cost of

these maintenance policies under the different possible situations of system characteristics and maintenance

cost is essential to select an adequate strategy of maintenance. This will be elucidated in subsection 4.2.3.
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Figure 4: Optimization of the age-based maintenance policy with minimal repairs depending on the system

degradation - (A, T ) policy

3.4. Pure age-based replacement model and synthesis of maintenance policies

This section introduces a classical maintenance model as benchmark to assess the advantages of the two

proposed maintenance policies (i.e. (A, T ) policy and (τ, T ) policy), and the effect of the minimal repair

in the maintenance decision. Then we summarize the considered maintenance model through a comparison

table. The summary table shows the differences in the approach of the minimal repair decision of the

maintenance policies.

3.4.1. Pure age-based replacement model

This pure age-based replacement policy (PAR policy) is representative of the class of maintenance strategies

without minimal repairs. In the present paper, this strategy is used as a benchmark to assess the performance

of the age-based maintenance strategies with minimal repairs.

1. Pure age-based replacement policy [35]. Under this maintenance policy, the system is correctively re-

placed upon failure (i.e. when the degradation of the system exceeds the value L or when a shock

occurs) or preventively replaced at a specified operational age T , whichever occurs first. A preven-

tive (resp. corrective) replacement is performed with a cost Cp (resp. Cc > Cp). The preventive

replacement age period T is the only decision variable for this policy.

When we compare (τ, T ) and (A, T ) policies with a PAR policy, additional inspection costs are incurred

to find out the failure type and/or the degradation level at the failure time but we can decide to keep

a not-too-worn system in use thanks to any minimal repairs undertaken.
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2. Cost model formulation. Applying equation (7), the expected cost rate for this maintenance model is

given by

Cp
∞(T ) =

CcFf (T ) + CpF̄f (T )
∫ T

0

F̄f (t)dt

, T > 0, (23)

where F̄f (t) denotes the survival distribution of the time of failure for the system,

F̄f (t) = P [σL ≥ t, Ns(t) = 0]

= F̄1(t) · F̄σM
(t) + F̄2(t)

∫ t

0

F̄σL−σM
(t− u)

F̄1(u)

F̄2(u)
fσM

(u)du, t ≥ 0, (24)

where F̄σM
, fσM

, F̄σL−σM
and F̄i, i = 1, 2 are given from equations (2), (3), (4) and (6) respectively.

The optimization problem for this maintenance strategy is to find a value of T that minimizes Cp
∞(T )

given by equation (23), that is

Cp
∞(Topt) = inf{Cp

∞(T ), T > 0}.

3.4.2. Synthesis of maintenance strategies developed in this paper

The summarized characteristics of the considered maintenance models are listed in Table 1. Table 1 shows

and compares the differences in the nature of the maintenance decision from the viewpoint of the maintenance

structure of each model.

Policy PRa decision CRa decision MRa decision Inspection for Optimization

(A, T ) policy
at T (no hard

at hard failure
condition-based (A) degradation &

A, T
failure before) at soft failure failure types (Cid)

(τ, T ) policy
at T (no hard

at hard failure
age-based (τ) failure types

τ , T
failure before) at soft failure (Cif < Cid)

PAR policy
at T (no

at failure Ø Ø T
failure before)

a PR: preventive replacement - CR: corrective replacement - MR: minimal repair

Table 1: Summary of the age-based maintenance policies for the considered degradation/failure model

The fundamental difference between the age-based maintenance policies with and without minimal repairs is

the maintenance decision at a failure due to shocks. For the PAR policy, it is always a corrective replacement,

while for the strategies with minimal repairs, this can be either a corrective replacement or a minimal repair

depending on the observed situations. Of course, for the maintenance strategies with minimal repairs, an

additional inspection cost is incurred in order to detect the type of failure or, even, the degradation level at

the failure time. An interesting problem is which maintenance policy should be applied according to given

system characteristics and maintenance costs. The next section aims to answer this question.
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4. Analysis and discussion of the numerical results

To obtain a thorough analysis of the effectiveness of each maintenance policy, as well as the value of the

minimal repair in the maintenance decision, we carry out, in this section, numerical comparisons on the

expected cost rate among the considered maintenance models under different characteristics of the system

(i.e. variance of the degradation process, degradation speed, shock failure rate, and maintenance costs).

The numerical results will be the indicators to justify or not the choice to implement minimal repairs in the

maintenance strategies and to invest in condition monitoring.

4.1. Relative gain on the optimal maintenance cost rate

In order to compare the performance of the different maintenance strategies, criteria on the relative gain

(RG) in the optimal maintenance cost rate are introduced. The RG of the policy A compared to the policy

B is computed as follows

RGA/B =
CB,opt

∞ − CA,opt
∞

CB,opt
∞

where CA,opt
∞ and CB,opt

∞ are the optimal maintenance cost rates of the policies A and B respectively. If

RGA/B > 0, policy A is more profitable than policy B in terms of the maintenance cost. If RGA/B < 0,

policy A is less profitable than policy B in terms of the maintenance cost. And RGA/B = 0 means that the

policy A and B have the same optimal maintenance cost.

4.2. Numerical results and discussions

We are interested in the effect of minimal repair cost and inspection cost on the performance of each

maintenance policy considered, so we vary these costs and fix the preventive replacement cost Cp = 50 and

the corrective replacement cost Cc = 100. The degradation level that changes the shock failure rate M and

the degradation failure threshold L are chosen by M = 20 and L = 30.

4.2.1. (τ, T ) policy vs. PAR policy

In order to illustrate the use of our model to assess the advantage of time-based minimal repairs as possible

corrective maintenance actions, we vary the inspection cost and the minimal repair cost together, and observe

the RG of the (τ, T ) policy compared to the PAR policy under different characteristics of the maintained

system. We are interested in the impact of the degradation variance, the degradation speed, and the failure

rate due to shocks on the maintenance cost of each maintenance policy, so four different cases of system

behavior are considered:

1. Case 1. Low variance in degradation increment, low degradation speed and high intensity to shock

failures: α = β = 1 (σ2 = 1, m = 1), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

2. Case 2. High variance in degradation increment, low degradation speed and high intensity to shock

failures: α = β = 0.1 (σ2 = 10, m = 1), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.
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3. Case 3. High variance in degradation increment, high degradation speed and high intensity to shock

failures: α = 0.4, β = 0.2 (σ2 = 10, m = 2), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

4. Case 4. High variance in degradation increment, high degradation speed and low intensity to shock

failures: α = 0.4, β = 0.2 (σ2 = 10, m = 2), r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.05.

The RG of the (τ, T ) policy compared to the PAR policy - RG(τ,T ) policy/PAR policy - for these cases are

represented in Figure 5.
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Figure 5: Relative gain on the optimal maintenance cost rate of the (τ, T ) policy compared to the PAR

policy

Obviously, the RG of the (τ, T ) policy compared to the PAR policy decreases with the increase of the

inspection cost Cif and/or the minimal repair cost Cm. Figure 5 shows that the higher the intensity to shock

failures and the lower the degradation speed and variance, the more the (τ, T ) policy is profitable against

the PAR policy. It can be explained by the fact that minimal repairs are performed more frequently with

high intensity to shock failure and low speed of degradation process; moreover since the sum of inspection

cost Cif and minimal repair cost Cm is usually so much smaller than a corrective replacement cost Cc, so in

this case, the proposed (τ, T ) policy can lead to more profit (e.g. case 2 vs. case 3, and case 3 vs. case 4).

Furthermore, the minimal repair in the (τ, T ) policy is based on the age of the system which is more suitable

for a smoother behavior of the degradation process, hence the (τ, T ) policy is more profitable in terms of

cost when the variance of the degradation process is low (e.g. case 1 vs. case 2). Since the PAR policy is a

special case of (τ, T ) policy, the latter can always lead to more savings in maintenance cost compared with

the former for any given system characteristics and maintenance costs (RG(τ,T ) policy/PAR policy ≥ 0). Hence

it is always preferable to apply a maintenance policy with time-based minimal repairs instead of a classical

pure-age based replacement policy for a repairable system.
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4.2.2. (A, T ) policy vs. PAR policy

To show the interest of resorting to minimal repairs depending on the degradation level as corrective mainte-

nance actions, we study the evolution of RG of the (A, T ) policy compared to the PAR policy under different

characteristics of the maintained system by varying both the inspection cost and the minimal repair cost.

We are interested in the influence of the degradation variance, the degradation speed and the shock failure

rate on the cost of the (A, T ) policy against the PAR policy, so we consider four cases of system behaviors:

1. Case 1. High variance in degradation increment, low degradation speed and high intensity to shock

failures: α = β = 0.1 (σ2 = 10,m = 1), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

2. Case 2. Low variance in degradation increment, low degradation speed and high intensity to shock

failures: α = β = 1 (σ2 = 1,m = 1), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

3. Case 3. Low variance in degradation increment, low degradation speed and low intensity to shock

failures: α = β = 1 (σ2 = 1,m = 1), r1 (t) = λ1 = 0.0375, r2 (t) = λ2 = 0.1875.

4. Case 4. Low variance in degradation increment, high degradation speed and low intensity to shock

failures: α = 4, β = 2 (σ2 = 1,m = 2), r1 (t) = λ1 = 0.0375, r2 (t) = λ2 = 0.1875.

Figure 6 shows the RG of the (A, T ) policy compared to the PAR policy - RG(A,T ) policy/PAR policy - for

these cases.
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Figure 6: Relative gain on the optimal maintenance cost rate of the (A, T ) policy compared to the PAR

policy

Not surprisingly, the levels of RG(A,T ) policy/PAR policy always decrease according to the increase in the

inspection cost Cif and/or minimal repair cost Cm. We can see in Figure 6 that the (A, T ) policy may

lead to a significant saving in the maintenance cost when the inspections and/or minimal repairs are not

too expensive. For the same reason as in Section 4.2.1, the (A, T ) policy becomes more profitable when the
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intensity to shock failure becomes higher (e.g. case 2 vs. case 3) and the degradation speed is lower (e.g.

case 3 vs. case 4). The benefit of the (A, T ) policy compared to the PAR policy is more evident in the

case of high variance in the degradation increment (e.g. case 1 vs. case 2), as in this case, the degradation

level gives a lot of information on the actual condition of the system and thus the minimal repair decision

based on the degradation level can give a timely intervention, leading to more savings in maintenance costs.

However, the (A, T ) policy is not always more profitable than the PAR policy (e.g. in the case of high

minimal repair cost and inspection cost, and/or in the case of low failure rate of shock and low variance

of degradation). Therefore, even if it may be interesting to perform a condition-based minimal repair, one

needs to be cautious about the system characteristics and maintenance costs when making a decision.

4.2.3. (A, T ) policy vs. (τ, T ) policy

The numerical results in the subsections above show that the introduction of minimal repair can lead to

a significant saving in some maintenance strategies for a repairable system. However between the (τ, T )

policy and the (A, T ) policy, which one can yield more savings, and under which conditions which one of

them is the more appropriate? To answer this question, we vary the inspection cost in (τ, T ) policy Cif and

the difference between the inspection costs of both policies ∆Ci = Cid − Cif together, and investigate the

evolution of the corresponding RG of the (A, T ) policy against the (τ, T ) policy - RG(A,T ) policy/(τ,T ) policy

- under different characteristics of the maintained system and minimal repair costs.

To study the sensitivity to the dynamic behavior of system, we fix the minimal repair cost Cm = 30 and

consider the following case studies:

1. Case 1. High variance in the degradation increment and high intensity to shock failures: α = β = 0.1

(σ2 = 10), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

2. Case 2. Low variance in the degradation increment and high intensity to shock failures: α = β = 1

(σ2 = 1), r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5.

3. Case 3. High variance in the degradation increment and low intensity to shock failures: α = β = 0.1

(σ2 = 10), r1 (t) = λ1 = 0.025, r2 (t) = λ2 = 0.125.

To study the sensitivity to the minimal repair costs, we fix the system characteristics by the data set:

α = β = 0.1, r1 (t) = λ1 = 0.1, r2 (t) = λ2 = 0.5 and we consider different values for the minimal repair cost

Cm = 5, 25, and 45 respectively.

Figure 7 and 8 show the numerical results of these case studies. The RG(A,T ) policy/(τ,T ) policy is a decreasing

function of Cid−Cif and a concave function of Cif . When ∆Ci is small (i.e. the inspection in (A, T ) policy is

not so expensive compared to the inspection in (τ, T ) policy), (A, T ) policy seems to have an advantage over

the (τ, T ) policy. Nevertheless, it is hard to give a general conclusion about the benefit of each maintenance

policy. The reason being that compared to the (τ, T ) policy, the cost saving of (A, T ) policy depends largely
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Figure 8: Relative gain on the optimal maintenance cost rate of the (A, T ) policy compared to the (τ, T )

policy for different minimal repair costs

on the characteristics of the maintained system, and it is a compromise between a loss due to a more

expensive inspection and a gain due to the minimal repair decision at the right time according to the system

condition. Notwithstanding the above, we can still bring out some conclusions for some observed cases. For

example when ∆Ci and Cif are small enough and the variance in the degradation increment is large, the

(A, T ) policy is more profitable than the (τ, T ) policy for (see figure 7). This is because the minimal repair

under the (A, T ) policy is a condition-based decision which can adapt to the real system state better than

an age-based minimal repair decision in (τ, T ) policy, and especially with a high variance of the degradation
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process. Under this situation, it is indeed useful to follow closely the actual evolution of the degradation

path to carry out a condition-based minimal repair instead of a “blind” time-based minimal repair. Figure

8 also shows some situations where depending on the minimal repair cost and inspection cost, the (A, T )

policy can give more saving in maintenance cost when compared to the (τ, T ).

Consequently, through the numerical results analyzed in subsections 4.2.1, 4.2.2 and 4.2.3, we can conclude

that the minimal repair action can be more profitable than a system replacement when the inspection and

the minimal repair are not too expensive, especially for a repairable system with a high shock failure rate

and a low degradation speed. The different approaches of minimal repair decisions should be carefully

used according to the different characteristics of a system to avoid inopportune maintenance spending.

When the difference of inspection cost between both minimal repairs approaches is high, and the system

degradation process is quite smooth (low variance in the degradation increment), the use of time-based

minimal repair approach can be more adequate than condition-based minimal repair approach. Otherwise,

using the condition-based minimal repair approach can lead to a significant saving in the maintenance cost.

Notwithstanding the above, an analysis on the relative gain in the maintenance cost among the maintenance

policies should be used before choosing a maintenance policy.

5. Conclusions

The present paper provides a realistic extension of the DTS model by introducing an interdependence of

the shock and degradation processes for a single-unit repairable system. The analytical formulation of

expected cost rate for the two proposed age-based maintenance policies (i.e. the policy implementing time-

based minimal repairs and the policy implementing condition-based minimal repairs) has been obtained.

The comparisons of the relative gain in the optimal maintenance costs for both maintenance policies under

different system characteristics have been made. Using numerical examples, it has been shown a minimal

repair can lead to a substantial saving in maintenance cost. However one has to be cautious when deciding

the approach of minimal repair actions: an analysis of the relative saving in the maintenance cost can allow

one to make a right choice.

The present paper assumes that the degradation-based failure mode occurs when the degradation level

of the system exceeds a fixed deterministic value L. However, in practice, depending on the operating

environments, or on the use made by each customer, this failure threshold cannot be deterministic. Future

research can be continued considering a model with a random degradation failure threshold. The uncertainty

in the inspections could then be taken into account to make the model more realistic.
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