Optimization of MIMO systems capacity using large random matrix methods

Abstract : This paper provides a comprehensive introduction of large random matrix methods for input covariance matrix optimization of mutual information of MIMO systems. It is first recalled informally how large system approximations of mutual information can be derived. Then, the optimization of the approximations is discussed, and important methodological points that are not necessarily covered by the existing literature are addressed, including the strict concavity of the approximation, the structure of the argument of its maximum, the accuracy of the large system approach with regard to the number of antennas, or the justification of iterative water-filling optimization algorithms. While the existing papers have developed methods adapted to a specific model, this contribution tries to provide a unified view of the large system approximation approach.
Type de document :
Article dans une revue
Entropy, MDPI, 2012, 14 (11), pp.2122-2142. 〈10.3390/e14112122〉
Liste complète des métadonnées

Contributeur : Philippe Loubaton <>
Soumis le : mardi 19 février 2013 - 13:35:07
Dernière modification le : lundi 10 décembre 2018 - 16:14:08

Lien texte intégral



Florian Dupuy, Philippe Loubaton. Optimization of MIMO systems capacity using large random matrix methods. Entropy, MDPI, 2012, 14 (11), pp.2122-2142. 〈10.3390/e14112122〉. 〈hal-00790072〉



Consultations de la notice