
HAL Id: hal-00789951
https://hal.science/hal-00789951

Submitted on 19 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal dynamics of soft shapes in shallow waters
Bijan Mohammadi, Afaf Bouharguane

To cite this version:
Bijan Mohammadi, Afaf Bouharguane. Optimal dynamics of soft shapes in shallow waters. Computers
and Fluids, 2011, 40 (1), pp.291-298. �10.1016/j.compfluid.2010.09.031�. �hal-00789951�

https://hal.science/hal-00789951
https://hal.archives-ouvertes.fr


Optimal dynami
s of soft shapes in shallowwatersBijan Mohammadi and Afaf BouharguaneInstitut de Mathématiques et de Modélisation de MontpellierUniversité Montpellier II, CC51, 34095 Montpellier, Fran
ePublished by Computers and Fluids,DOI:10.1016/j.
omp�uid.2010.09.031Abstra
t - A sandy sea bottom is seen as a stru
ture with low sti�ness whi
hadapts to the motion of water in a shallow domain des
ribed by the Saint Venantequations. The 
oupling is based on the minimization of water wave energy withminimal sand transport. The approa
h is shown being similar to the use of anoriginal Exner equation for the bottom with non lo
al �ux expressions. Also,examples of the appli
ations of the framework to inverse problems in 
oastalengineering are shown.Keywords: Bottom sea morphodynami
s, level set, shape optimization,�uid-stru
ture 
oupling, Saint Venant Equations, sensitivity analysis by adjoint,Exner equation.
1 Introdu
tionIn 
oastal morphodynami
s some events o

ur over small spa
e and time s
ales.One 
an 
ite the removal of sediment from the toe of 
oastal stru
tures whi
hoften o

urs and re
overs 
ompletely during the 
ourse of a single tide (hourly1



basis). Then, the time and spa
e s
ales 
on
ern storm response lasting for afew tides (say daily basis). Here the bea
h 
an be modi�ed both long and
ross-shore by hundreds of meters. Re
overy between storms will take longer(monthly basis). This 
lassi�
ation 
an 
ontinue with seasonal and inter-annualvariability. Hen
e, 
oastal morphodynami
s o

ur over a broad range of timeand length s
ales where the spatial s
ale in
reases with the times
ale. This latterremark also implies that long-shore transport gains importan
e over 
ross-shorewith in
reasing times
ale.The litterature on 
oastal morphodynami
s use either lo
al 
on
epts su
has sediment transport using �uid-indu
ed shear in the sediment modelling andbottom fri
tion 
oe�
ient or global ones su
h as global bea
h morphodynami
sbased on long and 
ross-shore �uxes and global bea
h lines dynami
s [7, 8, 19℄.We would like to unify lo
al and global analysis by the appli
ation of the
ontrol theory to the evolution of sandy bottom seas. This melange of lo
aland global natures is made evident when looking at how the question of bottommorphodynami
s is often treated in the literature using the solution of an Exnerequation [25℄. One will indeed show that the approa
h provides a new �ux termfor the Exner equation linking lo
al and global informations.In the past we have used minimization prin
iple to design defen
e stru
turesagainst bea
h erosion [3, 4℄. In these works, the designed stru
ture were in-dependent of time and were built on
e for all. Here, we would like to go onestep further giving the possibility to the stru
ture to 
hange in time. One par-ti
ular 
ase is then the sea bottom seen as a stru
ture with low sti�ness. Thefundamental assumption is that the bottom adapts to the �ow by some sort ofoptimal sand transport in order to minimize some energy expression. Optimaltransport 
an be seen as minimal 
hange in the bottom shape. The approa
his not limited by the parti
ular expressions we 
onsider here for the fun
tionalnor by the �ow equations whi
h 
an also be more sophisti
ated.The paper starts with the problem of bottom motion formulated as an opti-mal 
ontrol problem. Shallow water equations are brie�y re
alled with emphasis2



on boundary 
onditions by level set for emerged stru
tures. Follows a dis
ussionon the 
hoi
e of 
ost fun
tions. A 
omparison is then made between modellingthe transport of sediments by the Exner equation and by our minimization prin-
iple. Sensitivity evaluation being an important issue in this 
al
ulus of variationproblem, a model problem is introdu
ed to dis
uss various questions on 
omplex-ity and the need for the adjoint equation for the �ow equation. The extensionto the 
ase of the Saint Venant equations is also presented. Throughout thepaper, one shows simulations featuring qualitative behavior of the approa
h.2 Bottom motion as a 
ontrol problemIn what follows, the parameterization of the bottom sea and the 
orrespondingbathymetry are both denoted by ψ. The latter is a two dimensional positivefun
tion ψ(x, y) : Ω ⊂ R
2 → R

+ and the former is a multidimensional fun
tionin an admissible spa
e Oad ⊂ R
n with n the dimension of the parameter spa
eand de�ning uniquely ψ(x, y).We 
onsider a 
ontrol problem where the 
ontrol is the bottom sea repre-sented through a parameterization ψ. ψ 
hanges with time following the 
hangesin the state given by the �ow 
onditions U. The admissible spa
e is to spe
-ify not any shape 
an be taken by the bottom. For instan
e, ψ should be aunivo
al fun
tion with some regularity. The regularity is spe
i�ed through theparameterization 
hosen. We assume that ψ 
hanges in order to minimize atime dependent fun
tional: min ψ∈OadJ(ψ,U(ψ)), (1)where U(ψ) = {U(ψ, τ), τ ∈ [t − T, t]} gathers the state evolution in timesolution of some state equation (here the shallow water equations). The 
ost
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fun
tion involves this state evolution as, for instan
e, in:
J(ψ,U(ψ)) =

∫ t

t−T

j(ψ,U(ψ, τ))dτ. (2)
T indi
ates a time dependen
y window and also permits to introdu
e a di�er-en
e in time s
ales between the bottom sea and the �ow motions. We will seeexamples of su
h fun
tionals in se
tion 4.3 Governing equations for shallow watersGiven a sea bed bathymetry ψ, the two-dimensional nonlinear shallow water orSaint Venant equations [5℄ with topobathymetry are:

∂tU + ∂xF (U) + ∂yG(U) = S(U), (3)where U = t(h, hu, hv), F (U) = t(hu, hu2+
g

2
h2, huv), G(U) = t(hv, huv, hv2+

g

2
h2) and S(U) = t(0,−g h ∂xψ,−g h ∂yψ). u = t(u, v) the depth-averagedvelo
ity with u and v the s
alar 
omponents in the horizontal x, y dire
tionsand h is the lo
al water depth. U is the ve
tor for the 
onservative variables,

F (U) and G(U) stand for the �ux fun
tions respe
tively along the x and ydire
tions and S(U) represents the bed slope sour
e term.These equations are dis
retized by a �nite volume formulation [10℄. Our�nite volume implementation preserves steady state solutions on non �at bottomseas in the absen
e of perturbations [1, 2℄. It is also suitable to 
apture wettingand drying phenomena [18, 17℄.Overall, four boundary 
onditions are needed at slip, inlet, shoreline andoutlet boundaries. The slip boundary 
ondition (u.n = 0) is naturally takeninto a

ount in a �nite volume formulation. The outlet 
ondition for open seasis a transmissive boundary 
ondition. Values at boundary 
ells are obtainedby se
ond order extrapolations normal to the boundary from the values insidethe domain. To des
ribe in
oming waves we use an absorbing/generating inlet4



boundary 
ondition where the values of water depth are pres
ribed. To sim-ulate sea 
onditions, water depth variations at inlet are obtained by additionof mono
hromati
 waves following, for instan
e, a Jonswap energy spe
tral dis-tribution [14, 13℄. In sub
riti
al regimes, 
hara
teristi
 
urves and Riemanninvariants provide normal velo
ity. In open sea we allow for re�e
ted waves tofreely exit the domain not 
reating re�e
tion [16℄. The shoreline is an impli
itfun
tion of the �ow and the bed. Dry 
ells are those where the water depth isbelow a given value (say 10−10). On
e those identi�ed, the shoreline lo
ation issolution of Riemann problems at the interfa
es between wet and dry 
ells [18℄.For the basin simulations presented here only the slip and inlet 
onditionshave been applied as there is not outgoing wave in the basin and also waterdepth never vanishes here so none of the open sea or the shoreline 
onditionshave been a
tivated.Time integration is expli
it for the �ow. Due to the di�eren
e of the times
ales between �uid motion and 
hanges in sea beds, several times steps will betaken in the �ow solver before a new time step by the bed model.3.1 Level setWhen there is an emerged stru
ture or bathymetry, slip boundary 
onditionneeds be applied along the emerged surfa
e. In order to avoid �tting the meshto the 
ontour of emerged stru
tures, we use their level set representation and donot modify the mesh to a

ount for their presen
es. Level set is an establishedte
hnique to represent �xed or moving interfa
es on 
artesian grids. Immersedboundary, �
titious domain methods as well as penalizing te
hniques are meth-ods to impose boundary 
onditions on surfa
es whi
h are not unions of edgesand fa
es of elements of the (non-body �tted) 
omputational mesh [9, 24, 26, 23℄.A parametrization of a boundary Γ of a domain Ω by the level set methodis based on the zero-level 
urve of a fun
tion φ:
Γ = {x ∈ Ω : φ(x) = 0}5



The fun
tion φ 
ould be the signed Eu
lidean distan
e to Γ:
φ(x) = ± inf

y∈Γ
|x− y|with the 
onvention of a plus sign if x ∈ Ω and minus sign otherwise. Hen
e

φ|Γ = 0, φ|R2\Ω < 0, φ|Ω > 0 (4)The de�nition 
an be extended to open shapes by using Γ± instead of Ω.For a given shape given by (4) the normal to Γ is n = ∇φ/|∇φ| at φ = 0.A relaxed 
hara
teristi
 fun
tion of Ω is
χ = max(0, φ/(|φ| + εopt(h))) (5)where εopt(h) is a stri
tly positive relaxation fun
tion whi
h tends to zero withthe ba
kground mesh size h. It is de�ned solving minimization problems for asampling in h:

εopt(h) = argminε(h)>0‖uh(χ(φh(ε(h)))) − Πh uref‖where Πh is the restri
tion operator to mesh h and uh the dis
rete state. Thenumeri
al results given below have been 
omputed with εopt(h) = ch for some
onstant c > 0. This 
hoi
e guarantees the 
onsisten
y of the s
heme. The
oe�
ient c is �tted, on
e for all, in order to minimize the error ‖uref − uεh‖ fora referen
e solution uref whi
h 
an be either a solution obtained with a body�tted mesh or, when available, an analyti
al solution.On
e φh is known, we take into a

ount the boundary 
onditions for a theshallow water equations through:
(∂tUh + ∂xFh(Uh) + ∂yGh(Uh) − Sh(Uh))χ(φh) + Eh(uh.nh)δφh = 0 (6)Here Eh builds an extension of the boundary 
ondition on Γh over the domain6



Ωh and δφ is a relaxed Dira
 measure whi
h is 
onstru
ted using χ(φh) andwhose support approximates the boundary. In other words, the shallow waterequations degrade to an algebrai
 equation on the velo
ity when χ tends to zero.At this level, we have still a limitation: the stru
ture 
an be either submergedor fully emerged. One does not target situations where the water pass and runsover the stru
ture and drops afterward. This is not a limitation for our problemas these situations do not represent mu
h in term of water wave energy (seese
tion 4).Figure 1 shows an example of an in
oming wave where slip boundary 
ondi-tion is enfor
ed along a 
ylindri
al stru
ture using (6).4 Cost fun
tionOne of the main ingredients in the 
hain of 
ontrol is the 
ost fun
tion to beminimized. One expe
ts the bottom to a
t as a �exible stru
ture and to adaptto �ow 
onditions in order to minimize some energy-based fun
tional. One
an, for instan
e, 
onsider an energy made of the sum of instantaneous waterme
hani
al energy and involving a 
onstraint on sand displa
ements requiringminimal bathymetry 
hanges from ψ(t− T ) at the beginning of a time intervalof in�uen
e T . We assume that the in�uen
e of water 
onditions on a sandybottom at a given instant does not involve time history of more than a few waveperiods:
J1(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (7)where Ω is the physi
al domain, ρw and ρs respe
tively the water and sanddensity and η is the �ow elevation de�ned as:
η(x, y, ψ, t) = h(x, y, ψ, t) −

1

T

∫ t

t−T

h(x, y, ψ, τ)dτ
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This fun
tional aims at redu
ing wave elevations with minimal 
hanges in theoriginal bottom. Minimizing J1 does not mean that a �at bottom will remain�at. Indeed, one observes the apparition of ripples and dunes on a �at bottomeven at moderate �ow speeds.We have observed that 
ontrolling water wave energy is 
ru
ial to �ght ero-sion. Indeed, this is responsible for sediments put in suspension by generatingbottom orbital velo
ity [19, 8, 4℄. Figure 2 shows an example of bottom sea
hanges due to intera
tions with water motion based on the minimization of(7) after about one day. The approa
h predi
ts the apparition of two longshorenatural sand bars. The bars appear after six hours and remain stable in time.Water elevation in time is pres
ribed on the left boundary whi
h 
reates wavesentering normal to this boundary. The starting bottom pro�le is linear. Theapparition of sand bars is 
ompatible with what observed in nature.A fundamental idea motivating the introdu
tion of the se
ond term in thefun
tional (7) is the 
on
ept of optimal transport. In other words, one thinksthat the bottom will adapt to the �ow in some optimal way in term of sandtransport. A more general fun
tional 
ould therefore involve the Wassersteindistan
e between two bottom seas. Suppose ψ(t − T, x, y) and ψ(t, x, y) arepositive fun
tion des
ribing two bathymetries at instants t− T and t su
h thatthe total amount of sand is 
onserved:
∫

Ω

ψ(t, x, y) dΩ =

∫

Ω

ψ(t− T, x, y) dΩ (8)An optimal transport of ψ(t − T, x, y) to ψ(t, x, y) will 
onsist in �nding theappli
ation M : Ω → Ω realizing the transformation from ψ(t − T, x, y) to
ψ(t, x, y) minimizing:

dW (ψ(t− T, x, y), ψ(t, x, y)) =

∫

Ω

‖(x, y) −M(x, y)‖2ψ(t− T, x, y) dΩ (9)
8



and su
h that for all 
ontinuous fun
tion ϕ
∫

Ω

ψ(t− T, x, y)ϕ(M(x, y)) dΩ =

∫

Ω

ψ(t, x, y)ϕ(x, y) dΩ (10)
dW is a measure of the transport e�ort from one bathymetry to another. Oneknows that there is a unique M = ∇φ with φ a 
onvex potential satisfying (9)[27, 6, 21℄. And, as the bathymetries in sandy bottom seas are stri
tly positiveand 
ontinuous fun
tions then one 
an look for φ solution of the Monge-AmpèreEquation (MAE) (H(φ) being the Hessian of φ and det(H) its determinant),

det(H(φ(x, y))) =
ψ(t− T, x, y)

ψ(t,∇φ(x, y))
(11)In other words, the governing equations for our �uid-stru
ture system are theShallow water equations for the �uid, and the Monge-Ampère equation for thestru
ture and one would like to minimize the total water me
hani
al energyunder these PDE 
onstraints. Solving the MAE equation is a di�
ult task andwe would like to avoid it. The se
ond term in 
ost fun
tion (7) is an upperbound for dW .The previous fun
tional involves water elevations. In the same way, one
ould imagine that bottom sea will adapt to the �ow in order to redu
e itshorizontal velo
ity gradients with minimum variation in bathymetry. A se
ondfun
tional 
an then be built:

J2(ψ) =

∫ t

t−T

∫

Ω

(

‖∇xyu‖ + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (12)where ∇xy indi
ates the spatial gradient of the variables along x and y andthe norm stands for ‖∇xyu‖ = (u2
x + v2

x + u2
y + v2

y)
1/2. Figure 3 shows anexample of bathymetry 
hanges after 20 hours starting from the same linearinitial bottom pro�le than in Figure 2 and applying the same water elevation intime on the left boundary. One noti
es a transfer from 
ross-shore to long-shorevariations. The latter was zero initially. The 
ost fun
tion is redu
ed during9



time as the bottom adapts to the �ow. Figure 4 shows the same analysis butwith an emerged 
ylindri
al stru
ture represented by the level set te
hnique.The 
ost fun
tion redu
tion is less e�
ient as some part of the bottom is nowrigid and the emerged stru
ture ampli�es the �ow gradients.Another 
ost fun
tion of interest involves average 
urrent patterns:
J3(ψ) =

(

1

T

∫

Ω

(

∫ T

0

u dτ

)

− udes dΩ

)2

, (13)where udes indi
ates a target mean 
urrent distribution. Minimizing this fun
-tional means �nding the bottom sea shape whi
h realizes 'best' a mean �owpattern. Of 
ourse, as often in inverse problems, existen
e of a solution is notobvious. Indeed, it is not always possible to �nd a shape realizing the requiredstate distribution.Figure 5 shows an example of appli
ation. In a square basin of side L,we start from a �at bottom for whi
h the mean 
urrent vanishes for periodi
�ow elevations pres
ribed on the left boundary. we aim at �nding a new shaperealizing a given target mean �ow 
urrent. Here, the target mean 
urrent isgiven by 1
T

∫ T

0 u dτ = (a, 0) for y ∈ [0, L/3] ∪ [2L/3, L] and (−2a, 0) for y ∈

[L/3, 2L/3]. One sees that a non intuitive bottom shape found by minimizationalmost realizes the target mean 
urrent. On
e this is a
hieved, the fun
tionaland gradient are small and the bottom shape does not 
hange anymore. Herethe bottom shape does not depend on time be
ause the target mean 
urrent istaken stationary. One 
ould have targeted a mean 
urrent with low frequen
ytime variations. Then the bottom shape adapts to the variation in time of
udes(t) and the 
ost fun
tion is then time dependent too.

J4(t, ψ) =

(

1

T

∫

Ω

(
∫ t

t−T

u dτ

)

− udes(t) dΩ

)2

, (14)
10



5 Minimization prin
iple and the Exner equationConsider the following equation whi
h in dis
rete form minimizes J(ψ):
ψt = −ρ∇ψJ, ψ(t = 0, x, y) = ψ0 (15)Here ρ 
hara
terizes the ability of sand to be put in motion by water. Togetherwith the interval of in�uen
e T , mentioned in (7), ρ is the se
ond parameter tobe assimilated using experimental data.One well-known approa
h to model bottom motion is through the Exnerequation [25℄. This equation models the 
onservation of mass between in the bedand transported sediments. More pre
isely, this is a 
onservation equation forthe mass of sediments in the bed of a 
hannel and sediments that are in motiondue to transport by the �ow. Bed elevation or degradation are supposed linearwith respe
t to the amount of sediment that drops out or be
omes entrained bythe �ow:

ψt +
1

1 − λp
∇.q = 0, ψ(t = 0, x, y) = given, (16)where λp ∈ [0, 1[ is the porosity of the bed. One remarks that 1/(1 − λp) playsthe role of ρ in the minimization equation (15). This in
reases with the porosityof the bed. To link both analysis we de�ne ρ byρ = 1/(1 − λp)

n, 1 ≤ n. q isusually a fun
tion of U and involves several 
onstants 
hara
terizing the sand.La
k of data is one major di�
ulty with this approa
h. This is why Exnerequation is often 
onsidered in one dimension in spa
e
ψt +

1

1 − λp
qx = 0, ψ(t = 0, x) = given,where one simple and popular expression for q is of the form q ∼ u|u|m−1 with

m > 1 [28℄.
11



Equation (15) is an Exner equation with a non lo
al �ux:
q(x) = q(−∞) +

∫ x

−∞

(1 − λp(ζ))
1−nJψ(ζ)dζ,where one 
an suppose that q(−∞) = 0 as x → −∞ denotes o�shore lo
ationsand far from the shallow domain where the e�e
t of the �ow motion on thebottom sea is negligible. In the same way, Jψ(ζ) → 0 when ζ → −∞. Thisalso means that the integral will have a �nite support. One 
an also noti
e thatthe main 
ontributions to the �ux 
ome from regions in the bed where λp → 1(porous).Now, 
onsider J = 1

2u
2
x. Minimizing J would for
e the bottom to adaptin order to redu
e gradients in the �ow. This is similar to what we expe
tminimizing (12). For this fun
tional q reads:

q(x) =

∫ x

−∞

(1 − λp)
1−n uζ uψζ dζ,and integrating by part,

q(x) = −

∫ x

−∞

(

(1 − λp)
1−n uζ

)

ζ
uψ dζ + (1 − λp(x))

1−n ux(x)uψ(x).This shows a lo
al term plus a global 
orre
tion involving se
ond order deriva-tives of the state upstream. Similar nonlo
al terms 
an be found, for instan
e,in a model by Fowler for the motion of sand dunes [11℄.6 Sensitivity evaluationSensitivity evaluation for large dimension minimization problems, like our sit-uation, is not an easy task. The most e�
ient approa
h is to use an adjointvariable with the di�
ulty that it requires the development of a spe
i�
 soft-ware. Automati
 di�erentiation (AD) brings some simpli�
ation, but does notavoid the main di�
ulty of intermediate states storage in time dependent 
al
u-12



lations. Che
k-pointing te
hni
s bring, however, some relief [12℄. In this se
tion,we explain the adjoint method through a model problem and its 
omputer-basedimplementation through automati
 di�erentiation for a time-dependent modelproblem [20, 22℄.6.1 A model problemConsider the following time dependent state equation for u(y, t), − ψ ≤ y ≤

ψ, t ≥ 0 in a in�nite 
hannel of width 2ψ.
ut − uyy = F (ψ, y, t), u(ψ, t) = u(−ψ, t) = 0, (17)with

F (ψ, y, t) = −εω sin(ωt)(ψ2 − y2) + 2(1 + ε cos(ωt)),indu
ing small perturbation in time around a paraboli
 solution if ε << 1. Theexa
t solution for this equation is:
u(y, t) = (ψ2 − y2)f(t), f(t) = (1 + ε cos(ωt)).And 
onsider a fun
tional J of the form:

J(ψ, t) = ψmuy(y = ψ, t), m ∈ IN∗ (18)involving instantaneous state quantities. The sensitivity with respe
t to ψ is:
J
ψ
(ψ, t) = mψm−1uy(ψ, t) + ψmuyψ(ψ, t). (19)The �rst term is what we 
all in
omplete sensitivity [20℄ where the sensitiv-ity of the state with respe
t to the shape is negle
ted. This is a very strongapproximation. But, as we have:

uy(ψ, t) = −2ψf(t), and uyψ(ψ, t) = −2f(t),13



the di�erent 
ontributions in (19) 
an be expressed:
J
ψ
(ψ, t) = mψm−1(−2ψf(t)) + ψm(−2f(t)).Comparing with −2(m + 1)ψmf(t), one sees that the in
omplete sensitivityapproximation of the gradient is a

urate and its pre
ision in
reases with m.Most important, the in
omplete sensitivity has always the right sign. It isobvious that the analysis still holds if the fun
tional involves a time integral:
J(ψ, T ) =

∫

(0,T )

ψmuy(y = ψ, t) dt.Now, if the fun
tional involves an integral over time and spa
e:
J(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

j(y, t) dt dy, j(ψ, t) = ψmuy(y = ψ, t), m ∈ IN∗Linearizing J one has:
J
ψ
(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

(mψm−1uy(ψ, t) + ψmuyψ(y, t)) dt dy

+

∫

(0,T )

[ψmuy(y, t)]±ψ dt.An in
omplete evaluation of the sensitivity is still a

urate be
ause uyψ = 0.One also noti
es that if m is odd the last integral vanishes. However, thisintegral is 
heap to get as it does not involve any state sensitivity with respe
tto ψ.In
omplete sensitivity is therefore e�
ient and very 
heap to get be
ause itdoes not require the linearization of the state equations. However, it only holdsfor fun
tionals of the form:
J(ψ, T ) =

∫

(0,T )

j(ψ, t) dt, (20)
14



where j features a separation in variables ψ and u [20℄:
j(ψ, t) = α(ψ)β(u),with α and β di�erentiable fun
tions.Now, if J is of the form:

J(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

j(y, t) dt dy, (21)with j arbitrary, the sensitivity reads:
Jψ(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

(j
ψ

+ juuψ) dt dy +

∫

(0,T )

j(±ψ, t) dt.In this expression only u
ψ
is 
ostly to get as it requires the linearization of thestate equation.The solution of the linearized state equation (17) permits to write for allfun
tion v:

0 =

∫

(0,T )×(−ψ,ψ)

((u
ψ
)t − (u

ψ
)yy − F

ψ
)v dt dy.Integrating by part, it gives:

0 =

∫

(0,T )×(−ψ,ψ)

(−vt−vyy)uψ dt dy+

∫

(0,T )×(−ψ,ψ)

−F
ψ
v dt dy+

∫

(−ψ,ψ)

[vu
ψ
]0Tdy.Let us introdu
e a ba
kward adjoint problem, suitable when the dimension ofthe 
ontrol spa
e parameter is large (as it is the 
ase in our problem of bottomsea modi�
ation):

vt − vyy = ju, v(y, T ) = v(±ψ, t) = 0. (22)Therefore, with v solution of the ba
kward adjoint equation (22) with the 
hosen
15



boundary and �nal 
onditions one has:
∫

(0,T )×(−ψ,ψ)

juuψ dt dy =

∫

(−ψ,ψ)

u
ψ
(0)v(0)dy −

∫

(0,T )×(−ψ,ψ)

F
ψ
v dt dy.The important point here is that, unlike with the linearized equation, with ψ ofany dimension v is 
omputed only on
e before assembling the right-hand-sideabove.Here, the state equation is linear and no storage of intermediate states wasne
essary in adjoint 
al
ulation. On the other hand, if the state equation isnonlinear, solution of the adjoint equation requires the storage all intermediatestates between 0 and T . For instan
e, 
onsider

ut + uuy − uyy = F (t), u(ψ, t) = u(−ψ, t) = 0.For the same fun
tional (21), the adjoint equation in this 
ase reads
vt + uvy − vyy = ju, v(y, T ) = v(±ψ, t) = 0,

u is now present in the left-hand-side of the equation to be solved ba
kwardfrom T to 0.In the 
ontext of the Saint Venant equations, if W is solution of the ba
kwardSaint Venant adjoint equation (W has the same stru
ture than U), the analysisabove leads to:
∫

(0,T )×Ω

j
U
U
ψ

= −

∫

Ω

Uψ(0)W(0) +

∫

(0,T )×Ω

WS
ψ
(U, ψ), (23)where S is the sour
e term in the Saint Venant equations (3). Indeed, forthe Saint Venant equations the dire
t dependen
y in ψ is only in gh∇ψ inthe momentum equations. Also, as in our 
ase there is no dire
t dependen
ybetween the initial 
ondition U(0) and ψ the �rst term in the right-hand-side of(23) vanishes. Denoting W = (w1,w2)t with w2 the adjoint variable asso
iated16



to u, one has in weak form:
∫

(0,T )×Ω

WS
ψ
(U, ψ) = −

∫

(0,T )×Ω

g∇.(hw2).Slip or Diri
hlet boundary 
onditions give the same homogeneous 
onditions forthe 
orresponding adjoint variables removing the boundary terms in weak form.7 Con
luding remarksMinimization prin
iples have been used in a 
ontext of �uid-stru
ture 
ouplingand the adaptation of a soft stru
ture to a �ow in order to minimize somefun
tional under geometri
 and state 
onstraints. This study, therefore, takespla
e in the 
ontext of shape optimization for unsteady �ows where both timedependent and independent shapes 
an be targeted. Bottom sea motion is anexample of the former and building defen
e stru
tures against erosion the latter.For instan
e, one 
an design an immersed stru
ture with geotextile tube [4℄ totarget a �ow having a given energy spe
trum (e.g. spe
trum of waves breakingon the shore based on the number of waves versus their height for a given timeinterval). When used to model sandy bottom seas evolutions, the study showsthat the out
ome of the 
oupling has suitable qualitative behavior 
omparableto what observed on natural sites. Still, as in any modelling pro
edure, oneneeds now an assimilation step for the two parameters of the model (ρ and T ).The �ow motion is des
ribed by the shallow water equations but this 
an beextended to more sophisti
ated models in
luding dispersion e�e
ts. Also, theapproa
h 
an obviously be applied to situations where the �ow is des
ribed bya spe
tral approa
h and where time has been removed from the equations usingseparation of variables in time and spa
e [15, 3, 4℄. This is espe
ially interestingif the fun
tional is based on spe
tral information as well, as mentioned above.Several assumptions have been analyzed and the 
orresponding 
ost fun
-tionals des
ribed. The approa
h enables for the introdu
tion of the physi
alme
hanisms responsible for sand motions. Also, geographi
 and e
onomi
al17




onsiderations 
an be introdu
ed in the fun
tional.Sensitivity analysis has been then used to lo
ally minimize these fun
tionals.The gradients of these fun
tionals also provide valuable information to identifydominant fa
tors whi
h should therefore re
eive more attention in the modellingpro
ess. It has been shown that when possible the fun
tional should be 
hosenin order to take advantage of in
omplete sensitivity evaluation whi
h makes the
ost of sensitivity evaluation negligible and so the minimization pro
edure. In
ases the fun
tional 
annot be of the form of (20), one needs to develop anadjoint solver for the state equations. This is the 
ase for the fun
tionals (7),(12) and (13) des
ribed in se
tion 4.Finally, it has been shown that the minimization approa
h is equivalent tosolving an Exner equation for the bottom with an original �ux term linkingglobal and lo
al informations. In one dimension in spa
e, this �ux term 
anbe derived as non lo
al fun
tion involving at a given point the 
ontributions ofupwind regions and the 
ontribution in
reases with the porosity of the bed.
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Figure 1: Example of �ow in a domain without and with an emerged 
ylindri
alstru
ture modelled by a level set fun
tion. Snapshots of �ow velo
ity �elds(upper line) and water elevation (lower line) for both 
ases. In parti
ular, onesees the slip boundary 
ondition on the velo
ity is well enfor
ed by the level setformulation.
22



Figure 2: Bottom morphodynami
s by �uid-stru
ture 
oupling based on mini-mization prin
iples. Upper line: water elevation (left) and bathymetry 
hanges(right) after 10 hours. Middle line: same after 20 hours. Lower line showsbathymetry variabilities longshore. The 
oupling is started from an initial lin-ear bathymetry. The horizontal line indi
ates water level at rest.
23



Figure 3: Bottom 
hanges minimizing J2 after 20 hours starting from a linearbottom. Water elevation (upper/left), bathymetry (upper/right) and evolutionof the normalized 
ost fun
tion in time (lower).

Figure 4: Bottom 
hanges minimizing J2 starting from a linear bottom plusan immersed 
ylindri
al stru
ture. Water elevation (upper/left), bathymetry(upper/right) and evolution of the normalized 
ost fun
tion in time (lower).24



Figure 5: Finding a bottom surfa
e (right) generating a target mean 
urrent(left). On the �at bottom the mean 
urrent is zero. The �ow elevation isperiodi
 and pres
ribed on the left boundary. The �nal shape is far from beingintuitive.
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