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Abstract

We consider, in the presence of covariates, non independent competing risks that are
subject to right censoring. We define a nonparametric estimator of the incident regression
function through the generalized product-limit estimator of the conditional censorship
distribution function. Under suitable conditions we establish the almost sure uniform
convergence of those estimators with appropriate rate.

Keywords: Competing risks, nonparametric regression function, right censoring, gen-
eralized product-limit estimator, convergence rate.

AMS Subject Classification: 62N02; 62G05; 62G20, 62H12

1 Introduction

The model of competing risks has been widely studied in the literature (see e.g. Kalbfleisch
and Prentice (1980), Heckman and honoré (1989), Kwan and Singh (2001), Fermanian
(2003), El Barmi and Mukerjee (2006), Geffray (2009), Bordes and Gneyou (2009)). Com-
peting risks arise in medical, reliability or finance follow up involving multiple causes of
failure when only the smallest failure time and the associated cause type are observed. In
this mechanism, several failure times are right censored by the observed failure time in
an informative way but in addition each failure time may be right censored by an event
in a non informative manner. In many approaches, the competing risks are assumed to
be either all independent or not. Here, we consider a population in which each individual
is exposed to m mutually exclusive competing risks of failure eventually dependent. We
study the strong uniform consistency of nonparametric estimators of classes of incident
regression functions.

Let us denote by Tj the failure time from the jth cause with j ∈ {1, . . . ,m} and
m ≥ 2. Assume that each individual or entity is characterized by a Rd-valued covariate Z
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and denote by X = min(T1, , . . . , Tm) the smallest failure time, η the indicator of failure
cause equal j if and only if X = Tj where 1 ≤ j ≤ m. Assume that X is also at risk
of being right-censored by a continuous random variable C, independent of X given Z.
Set Y = min(X,C) and δ = I(X ≤ C) where I(A) denotes the indicator function of any
event A. Hence δ = 0 if X is right-censored by C and δ = 1 otherwise. In addition we
define ξ = ηδ satisfying ξ = 0 if X (and then all durations Tjs) is right-censored by C
and ξ = j if X = Tj ≤ C. In statistical applications, a sample {(Yi, ξi, Zi)}1≤i≤n of n
independent copies of (Y, ξ, Z) is observed.

In this paper our aim is to estimate with appropriate almost sure uniform convergence
rate with respect to Z = z over a subset ∆ of Rd, the competing risk regression function
r defined by

r(z) = E[ψ(X)|Z = z],

where ψ belongs to a family of real-valued measurable functions on R+, without any para-
metric or independence assumption. For example, nonparametric estimation of the con-
ditional distribution FX(t|z) = P[X ≤ t|Z = z] is obtained for ψ(x) = ψt(x) = I(x ≤ t).
For the case of a single duration (m = 1) Dabrowska (1989) gave some uniform conver-
gence results with rates.

Unfortunately, in the competing risks model, without specific assumptions, the joint or
marginal distribution functions, together with the related probability densities and hazard
functions of the underlying failure times and the previous regression function are not
identifiable (Tsiatis, 1975). In order to avoid the non identifiability problem, most models
make parametric assumptions on the joint distribution function of the failure times or
assume their independence. When no such assumptions are made, the quantities usually
estimated are the cause specific functions instead of the overall or latent distribution
functions. However, if each individual is characterized by a ’sufficiently informative’ set of
covariates, these distribution functions are identifiable under some regularity conditions
(Heckman and Honoré, 1989). The problem of identifiability discussed in literature leads
to concentrate no more on the latter regression function but on cause specific regression
functions which are expressed in terms of observable functions of failure times given by

(1.1) rj(z) = E[ψ(X)I(η = j)|Z = z], j = 1, . . . ,m,

where in order to insure the existence of rj(z), we assume that E|ψ(X)| < +∞.

The problem of estimating regression functions has been considered in the literature
in non censored as well as censored frameworks (see e.g. Beran (1981), Dabrowska (1987,
1989), Haerdle et al. (1988), Derzko and Deheuvels (2000), Einmahl and Mason (2000),
Kohler and Mathé (2002), Sun (2003), Gneyou (2005), Bordes and Gneyou (2009) and
references therein).

In this paper, we propose a kernel-type estimator r̂jn(z) of the incident regression
function rj defined in (1.1) and we establish that under suitable conditions it converges
uniformly on ∆ with some rates that are given in Section 3.
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2 Definitions and nonparametric estimators

Recall that ξ = ηδ where η and δ are respectively the failure cause and censoring indica-
tors. Let us define the following conditional distribution functions:

FX(t|z) = P[X ≤ t|Z = z],
G(t|z) = P[C ≤ t|Z = z],
H(t|z) = P[Y ≤ t|Z = z],

and for 1 ≤ j ≤ m
F (j)(t|z) = P[X ≤ t, η = j|Z = z].

The conditional subdistribution functions are defined by:

H(j)(t|z) = P[Y ≤ t, ξ = j|Z = z], for j = 0, . . . ,m.

Note that
H(0)(t|z) = P[Y ≤ t, ξ = 0|Z = z] = P[Y ≤ t, δ = 0|Z = z],

and since conditionally on Z the random variables X and C are independent, we have

1−H(t|z) = (1− FX(t|z))(1−G(t|z)).

The connections between the observable incident cumulative distribution functions F (j)

and H(j) (0 ≤ j ≤ m), and the unobservable cumulative distribution functions FX , H
and H(0) are given by:

H(j)(t|z) =
∫ t

0
Ḡ(s−|z)dF (j)(s|z) for 1 ≤ j ≤ m,

H(0)(t|z) =
∫ t

0
F̄X(s−|z)dG(s|z),

and FX =
∑m

j=1 F
(j), H =

∑m
j=0H

(j) where for a real function L we define L(s−) =
limu↗s L(u) and L̄ = 1− L.

Our nonparametric estimators of competing risks regression functions will be based
on empirical versions of the jth cause specific conditional cumulative hazard function
Λ(j)(t|z) and the censoring conditional cumulative hazard function Λ(c)(t|z) which are
defined by:

Λ(j)(t|z) =
∫ t

0

dF (j)(s|z)
F̄X(s−|z) =

∫ t

0

dH(j)(s|z)
H̄(s−|z) , j = 1, . . . ,m

Λ(c)(t|z) =
∫ t

0

dG(s|z)
Ḡ(s−|z) =

∫ t

0

dH(0)(s|z)
H̄(s−|z) .(2.2)

Instead of considering rj(z) defined by (1.1) we consider r̄j(z) defined by

r̄j(z) =
∫ τz

0
ψ(t)F̄X(t−|z))dΛ(j)(t|z) =

∫ τz

0

ψ(t)
Ḡ(t−|z)dH

(j)(t|z),(2.3)

where for each z ∈ ∆ and a given (small) real number γ > 0, τz = inf{t ≥ 0; H̄(t|z) ≥ γ}.
Note that whenever rj exists, the smaller will be γ the closer will be the competing risks
regression functions r̄j and rj .
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As a consequence we can estimate r̄j(z), by replacing H(j)(t|z) and Ḡ(t|z) in (2.3) by
some appropriate estimators. The cumulative distribution function H(t|z) and the sub-
cumulative distribution functions H(j)(t|z) (0 ≤ j ≤ m) can be respectively estimated
by:

Hn(t|z) =
n∑

i=1

I(Yi ≤ t)Wi(hn, z),

and

H(j)
n (t|z) =

n∑

i=1

I(Yi ≤ t, ξi = j)Wi(hn, z),

where for 1 ≤ i ≤ n the Nadaraya-Watson weights are defined by

Wi(h, z) =
Kh(z − Zi)∑n
j=1Kh(z − Zj)

.

In the above formula K is a kernel function on Rd, Kh(·) = h−dK(·/h), and (hn)n≥1 is a
bandwidth sequence of non-increasing positive real numbers tending to 0. The censorship
conditional survival function Ḡ(t|z) satisfies the one-to-one map relation (product integral
mapping)

Ḡ(t|z) =
∏

s≤t

(
1− Λ(c)(ds|z)

)
.

Because of relation (2.2), the conditional cumulative hazard function Λ(c) associated to
Ḡ(t|z) is naturally estimated by

Λ(c)
n (t|z) =

∫ t

0

dH
(0)
n (s|z)

H̄n(s−|z) =
n∑

i=1

I(ξi = 0)I(Yi ≤ t)Wi(hn, z)
N(Yi, z)

,

where N(t, z) =
∑n

i=1 I(Yi ≥ t)Wi(hn, z). This leads to the Beran’s (see Beran (1981) or
Dabrowska (1989)) estimator Ḡn of Ḡ defined by

Ḡn(t|z) =
∏

s≤t

(
1−∆Λ(c)

n (s|z)
)

=
n∏

i=1

(
1− I(ξi = 0)I(Yi ≤ t)Wi(hn, z)

N(Yi, z)

)
,

where ∆Λ(c)
n (s|z) = Λ(c)

n (s|z)− Λ(c)
n (s−|z).

The final nonparametric estimator of r̄j(z) is therefore defined by

(2.4) r̂jn(z) =
n∑

i=1

ψ(Yi)I(Yi ≤ τz)I(ξi = j)Wi(hn, z)
Ḡn(Yi|z)

,

for 1 ≤ j ≤ m.
Note that if C is independent of the covariate Z then Ḡ(t|z) = Ḡ(t) and then the

weights Wi(hn, z) are replaced by 1/n in Ḡn(·|z) and the estimator in (2.4) reduces to the
estimator of Bordes and Gneyou (2009). The later authors established strong consistency
of their estimator for fixed z in Rd and, using the delta method, they gave a central limit
theorem for their estimator. In the next section, we show that under suitable assumptions,
the strong convergence of r̂jn to r̄j holds uniformly over a compact subset ∆ ⊂ Rd.
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3 Strong uniform consistency

Let f be the marginal probability density function of the covariate Z and ∆ ⊂ suppf ⊂ Rd

be a compact subset of Rd. Our asymptotic results are obtained under smoothness condi-
tions on the conditional subdistribution function given in the previous section and some
conditions on both the kernel function and the bandwidth.

F1. infz∈∆ H̄(τz|z) = γ > 0.

F2. The marginal density function f is continuous on ∆. We note α = infz∈∆ f(z) > 0.

F3. Functions f and z 7→ H(j)(t|z) (for all t ∈ [0, τz], j = 0, . . . ,m) are twice continu-
ously differentiable with respect to z, and the second derivative of z 7→ K(j)(z) =
H(j)(t|z)f(z) is continuous on ∆ uniformly in t ∈ [0, τz].

F4. Let P be a polynomial and φ a positive bounded real function of bounded variation
such that K = φ ◦ P is a kernel function satisfying:

(i)
∫

Rd

K(x)dx = 1, (ii)
∫

Rd

xK(x)dx = 0, (iii)
∫

Rd

xxTK(x)dx is positive definite.

F5. sup
z∈∆

∫ τz

0
|dψ(s)| ≤M < +∞.

F6. The sequence of bandwidth (hn)n≥1 satisfies:

(i) hn → 0, (ii)
nhdn
| log hn|

→ +∞, (iii)
| log hn|
log logn

→ +∞, (iv) hdn ≤ chd2n

for some c > 0.

Assumption F1 allows to ensure an uniform observation rate in z ∈ ∆ and t ∈ [0, τz],
while F2 allows to control the denominator of the estimator r̂nj of r̄j . Assumptions F3
and F4 (i)–(iii) allows to control the sup-norm distance between any involved function
L and its regularized version L ∗ Kh. The class of kernel functions we consider in F4
was introduced by several authors (see e.g. Giné and Guillou, 2002) it ensures that some
classes of function are VC-classes. Concerning F5 it is easy to check that together with
F1 it leads to:

(3.5) sup
z∈∆

∫ τz

0

∣∣∣∣d
ψ(s)
Ḡ(s|z)

∣∣∣∣ ≤M ′ < +∞.

As a consequence it guarantees that r̄j(z) exists for all z ∈ ∆. Assumptions in F6 are
those given by Giné and Guillou (2002). Under such assumptions these authors obtain
uniform consistency of kernel estimators for multivariate densities. Hereinafter we show
almost sure uniform consistency results on the set {(t, z); t ∈ [0, τz], z ∈ ∆} ⊂ Rd+1. Let
us begin with the following lemmas.

Lemma 3.1 Let Γ be a compact subset of R × Rd, ∆ the restriction of Γ to Rd, and
` : Γ → R be a function such that z 7→ `(t, z) is twice continuously differentiable on the
compact set ∆ and the partial derivative (t, z) 7→ ∂2`

∂z∂zT (t, z) is continuous on Γ. Then
under assumptions F4 and F6-(i)

sup
(t,z)∈Γ

∣∣∣∣
∫

Rd

Khn(z − s)`(t, s)ds− `(t, z)
∣∣∣∣ = O(h2d

n ).
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The proof of this lemma is a straightforward extension of the proof of Lemma A.2
of Bordes and Gneyou (2009), hence it is omitted. For simplicity from now on we set
Γ = {(t, z); t ∈ [0, τz], z ∈ ∆} ⊂ Rd+1.

Lemma 3.2 Assume that F1–F4, and F6 hold. Then for 0 ≤ j ≤ m we have

sup
(t,z)∈Γ

∣∣∣H(j)
n (t|z)−H(j)(t|z)

∣∣∣ = O
((
| log hn|/nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

Proof. For all 0 ≤ j ≤ m and all (t, z) ∈ Γ we have

H(j)
n (t|z)−H(j)(t|z) =

1
nfn(z)

n∑

k=1

I(Yk ≤ t, ξk = j)Khn(z − Zk)−H(j)(t|z)

=
1

nfn(z)

n∑

k=1

[
I(Yk ≤ t, ξk = j)Khn(z − Zk)−H(j)(t|z)f(z)

]

+ H(j)(t|z)f(z)− fn(z)
fn(z)

,

where fn(z) = 1
n

∑n
k=1Khn(z − Zk) is the usual kernel estimator of the marginal proba-

bility density function f of Z. It readily follows that

(3.6)
∣∣∣H(j)

n (t|z)−H(j)(t|z)
∣∣∣ ≤

(
inf
z∈∆

fn(z)
)−1

(An +Bn + Cn) ,

where

An = sup
(t,z)∈Γ

∣∣∣∣∣
1
n

n∑

k=1

[I(Yk ≤ t, ξk = j)Khn(z − Zk)− E(I(Yk ≤ t, ξk = j)Khn(z − Zk))]
∣∣∣∣∣ ,

Bn = sup
(t,z)∈Γ

∣∣∣E(I(Yk ≤ t, ξk = j)Khn(z − Zk))−H(j)(t|z)f(z)
∣∣∣ ,

Cn = sup
(t,z)∈Γ

∣∣∣H(j)(t|z)(f(z)− fn(z))
∣∣∣ .

By assumptions F2, F4, and F6, applying Theorem 2.3 of Giné and Guillou (2002), we
have

(3.7) sup
z∈∆

∣∣fn(z)− f̄n(z)
∣∣ = O

((
| log hn|/nhdn

)1/2
)

a.s.

where
f̄n(z) = f ? Khn(z) =

∫

Rd

Khn(z − s)f(s)ds.

By assumptions F3 and F4, applying Lemma 3.1 we obtain

(3.8) sup
z∈∆
|f̄n(z)− f(z)| = O

(
h2d
n

)
.

As a straightforward consequence of (3.7) and (3.8) and because of assumptions F2 and
F6 (i)–(ii) we have

(3.9) inf
z∈∆

fn(z) = α+ o(1) a.s.
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Moreover since
Cn ≤ sup

z∈∆
|fn(z)− f̄n(z)|+ sup

z∈∆
|f̄n(z)− f(z)|

we have by (3.7) and (3.8) the following result

(3.10) Cn = O
((
| log hn|/nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

Let us now consider Bn. First remark that

E [I(Yk ≤ t, ξk = j)Khn(z − Zk)] = E [Khn(z − Zk)E [I(Yk ≤ t, ξk = j)|Zk]]

=
∫

Rd

Khn(z − s)H(j)(t|s)f(s)ds.

Applying Lemma 3.1 to z 7→ Kj(t, z) = H(j)(t|z)f(z) we obtain under assumptions F3–F4,
and F6 that

(3.11) Bn = O
(
h2d
n

)
.

For the remaining term An, for h > 0 and (t, z) ∈ Γ we define functions

gt,z,h(y, x, s) = I(y ≤ t, x = j)K
(
z − s
h

)
.

Let P be the probability measure generated by (Y, ξ, Z), we note Pgt,z,hn = E [gt,z,hn(Y, ξ, Z)].
Considering the empirical measure Pn =

∑n
i=1 δ(Yi,ξi,Zi) where δx denotes the Dirac mea-

sure at x, we have

Pngt,z,hn =
n∑

i=1

I(Yi ≤ t, ξi = j)K
(
z − Zi
hn

)
.

By Lemma 2.6.16 and 2.6.18 of van der Vaart and Wellner (1996)

{(y, x) 7→ I(y ≤ t, x = j); t ≥ 0}

is a bounded VC–class of measurable functions. Moreover, by Giné and Guillou (2002),
under assumption F4 the class of functions

F =
{
s 7→ K

(
z − s
h

)
; z ∈ Rd, h ∈ (0,+∞)

}

is a bounded VC–class of measurable functions. Applying Lemma A.1 of Einmahl and
Mason (2000), we see that under assumption F4, the class of functions

G =
{

(y, x, z) 7→ gt,s,h(y, x, z) = I(y ≤ t, x = j)K
(
z − s
h

)
;h > 0, t ≥ 0, s ∈ Rd

}

is a VC–class of bounded measurable functions satisfying for all probability measures Q
on the Borel subsets of Rd+2

N (ε‖K‖∞,G, L2(Q)) ≤
(
A

ε

)ν
0 < ε < 1,
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where A and ν are suitable constants. The measurability follows from the continuity of
the kernel function and the measurability of the indicator functions. Let us consider Gk,
the VC–subclasses of G defined by

Gk = {gt,z,h ∈ G; (t, z) ∈ Γ, h2k < h ≤ h2k−1}

for k ≥ 1, we have:

sup
g∈Gk

‖g‖∞ ≤ ‖K‖∞ = uk,

and

sup
g∈Gk

Var[gt,z,h(Y, ξ, Z)] ≤
∫

Rd

K2

(
z − s
h

)
f(s)ds ≤ ‖f‖∞‖K‖22hd2k−1 = σ2

k.

The end of the proof follows the lines of the proof of Theorem 2.3 of Giné and Guillou
(2002). Indeed

An =
1
nhdn

sup
(t,z)∈Γ

|(Pn − P )gt,z,hn |

where

(Pn − P )g =
n∑

i=1

(g(Yi, ξi, Zi)− Eg(Yi, ξi, Zi)) .

Hence by the Montgomery-Smith’s maximal inequality (Montgomery-Smith, 1993) we
have for some finite positive constant C > 0

P

(
max

2k−1<n≤2k

√
nhdn
| log hn|

An > C

)

≤ P

(
max

2k−1<n≤2k

1√
nhdn| log hn|

sup
(t,z)∈Γ

|(Pn − nP )gt,z,hn | > C

)

≤ 9P


 sup

(t, z) ∈ Γ
h2k−1 ≤ h ≤ h2k

|(P2k − P )g| > C

30

√
2k−1hd

2k | log h2k |




≤ 9P

(
sup
g∈Gk

|(P2k − P )g| > C

30

√
2k−1hd

2k | log h2k |
)
.

It is easy to check that σk < uk/2 and
√

2kσk ≥ uk
√

log(uk/σk) for k large enough, thus
the version of the exponential inequality from Talagrand (1996) given in Giné and Guillou
(2002, Corollary 2.2) may be applied for some constant C > 0:

(3.12) P

(
sup
g∈Gk

‖(P2k − P )g‖ >
C
(
2k−1hd

2k | log h2k |
)1/2

30

)
≤ K exp

(
−K ′ log

(
uk
σk

))

where K and K ′ are positive constants that do not depend on k. Because of F6 (iii) we
have

log(uk/σk)
log k

→ +∞,
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thus for k large enough the right hand side of inequality (3.12) is less than K ′′/kα with
α > 1 and K ′′ a positive constant. Hence by the Borel-Cantelli lemma, we obtain

(3.13) An = O
((
| log hn|/nhdn

)1/2
)

a.s.

Lemma 3.2 follows from (3.6), (3.9), (3.10), (3.11) and (3.13). 2

Before proving the next theorem we need the following Lemma.

Lemma 3.3 Under assumptions F1–F4 and F6 we have

sup
z∈∆

∑n
i=1W

2
i (hn, z)

N2(τz, z)
= O

(
(nhdn)−1

)
a.s.

Proof. For (t, z) ∈ Γ we haveN(τz, z) = H̄n(τ−z |z) =
∑m

j=0H
(j)
n (τ−z |z) then by Lemma 3.2

we have sup(t,z)∈Γ |N(t, z)− H̄(t−|z)| = o(1) a.s. Both N and H are [0,1]–valued then for
n large enough

1
N2(τz, z)

≤ 1
H̄2(τ−z |z) + (N2(τz, z)− H̄2(τ−z |z))

≤ 1
γ2 + (N(τz, z) + H̄(τ−z |z))(N(τz, z)− H̄(τ−z |z))

≤ 1
γ2 − 2 sup(t,z)∈Γ |N(t, z)− H̄(t−|z)| = O(1) a.s.

Moreover we have

n∑

i=1

W 2
i (hn, z) =

h−2d
n

∑n
i=1K

2
(
z−Zi
hn

)

(
∑n

i=1Khn(z − Zi))2

=
n−1

∑n
i=1K

∗
hn

(z − Zi)
(n−1

∑n
i=1Khn(z − Zi))2 (nhdn)−1

∫

Rd

K2(x)dx

=
f∗n(z)
f2
n(z)

(nhdn)−1

∫

Rd

K2(x)dx,

where K∗h(x) = h−dK2(x/h)/
∫

Rd K
2(x)dx is a kernel function satisfying conditions re-

quired in Theorem 3.2 in Giné and Guillou (2002). Because f is continuous on ∆ and
the bandwidth satisfies F6 we obtain by Theorem 3.2 in Giné and Guillou (2002) that
both f∗n and fn converge almost surely to f uniformly on ∆. As a consequence we have
supz∈∆

∑n
i=1W

2
i (hn, z) = O

(
(nhdn)−1

)
a.s. which proves the lemma. 2

Theorem 3.1 Assume that assumptions F1-F4 and F6 hold. Then for n large enough
we have

sup
(t,z)∈Γ

|Gn(t|z)−G(t|z)| = O
((
|log hn| /nhdn

)1/2
)

+O
(
h2d
n

)
a.s.
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Proof. Let us introduce Λ̃(c)
n , a perturbation of Λ(c)

n defined by

Λ̃(c)
n (t|z) =

n∑

i=1

I(ξi = 0, Yi ≤ t)Wi(hn, z)
N(Yi, z) +Wi(hn, z)

,

with the corresponding product limit estimator ˜̄Gn defined by

˜̄Gn(t|z) =
n∏

i=1

(
1− I(ξi = 0, Yi ≤ t)Wi(hn, z)

N(Yi, z) +Wi(hn, z)

)
.

Since |e−x − e−y| ≤ |x− y| for all x, y ≥ 0 we have

∣∣Ḡn(t|z)−G(t|z)
∣∣ ≤

∣∣∣Ḡn(t|z)− ˜̄Gn(t|z)
∣∣∣+
∣∣∣exp

(
−Λ̃(c)

n (t|z)
)
− exp

(
−Λ(c)(t|z)

)∣∣∣

+
∣∣∣exp

(
log ˜̄Gn(t|z)

)
− exp

(
−Λ̃(c)

n (t|z)
)∣∣∣

≤ An(t, z) +Bn(t, z) + Cn(t, z),

where An(t, z) =
∣∣∣Ḡn(t|z)− ˜̄Gn(t|z)

∣∣∣, Bn(t, z) =
∣∣∣Λ̃(c)

n (t|z)− Λ(c)(t|z)
∣∣∣ and Cn(t, z) =∣∣∣log ˜̄Gn(t|z) + Λ̃(c)

n (t|z)
∣∣∣.

Because |∏n
i=1 ai −

∏n
i=1 bi| ≤

∑n
i=1 |ai− bi| whenever |ai| ≤ 1 and |bi| ≤ 1 for 1 ≤ i ≤

n we have

An(t, z) ≤
n∑

i=1

∣∣∣∣
Wi(hn, z)
N(Yi, z)

− Wi(hn, z)
N(Yi, z) +Wi(hn, z)

∣∣∣∣

≤
∑n

i=1W
2
i (hn, z)

N2(τz, z)
.

Applying Lemma 3.3 we obtain that sup(t,z)∈ΓAn(t, z) = O
(
(nhdn)−1

)
a.s. Now using the

fact that 0 ≤ − log(1− x)− x ≤ x2(1− x)−1 for x ∈ [0, 1) we have

Cn(t, z) ≤
n∑

i=1

∣∣∣∣log
(

1− I(ξi = 0, Yi ≤ t)Wi(hn, z)
N(Yi, z) +Wi(hn, z)

)
+
I(ξi = 0, Yi ≤ t)Wi(hn, z)
N(Yi, z) +Wi(hn, z)

∣∣∣∣

≤
n∑

i=1

W 2
i (hn, z)

(N(Yi, z) +Wi(hn, z))
2

(
1− Wi(hn, z)

N(Yi, z) +Wi(hn, z)

)−1

≤
∑n

i=1W
2
i (hn, z)

N2(τz, z)
.

By Lemma 3.3 we conclude that sup(t,z)∈ΓCn(t, z) = O
(
(nhdn)−1

)
a.s. It remains to study

the convergence rate of Bn. We have

Bn(t, z) ≤
∣∣∣Λ̃(c)

n (t|z)− Λ(c)
n (t|z)

∣∣∣+
∣∣∣Λ(c)

n (t|z)− Λ̃(c)(t|z)
∣∣∣

it is straightforward to see that applying again Lemma 3.3 we have

sup
(t,z)∈Γ

∣∣∣Λ̃(c)
n (t|z)− Λ(c)

n (t|z)
∣∣∣ = O

(
(nhdn)−1

)
.
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Furthermore note that from Section 2 Λ(c)
n − Λ(c) can be written

Λ(c)
n (t|z)− Λ(c)(t|z) = Dn(t, z) + En(t, z)

where

Dn(t, z) =
∫ t

0

d(H(0)
n (s|z)−H(0)(s|z))

1−H(s−|z) ,

En(t, z) =
∫ t

0

(Hn(s−|z)−H(s−|z))
(1−H(s−|z))(1−Hn(s−|z))dH

(0)
n (s|z).

By integration by parts formula and assumption F1 we have

Dn(t, z) =
H

(0)
n (t|z)−H(0)(t|z)

1−H(t−|z) −
∫ t

0

(
H(0)
n (s|z)−H(0)(s|z)

)
d
(
H̄(s−|z)−1

)

≤ sup
(t,z)∈Γ

∣∣∣H(0)
n (t|z)−H(0)(t|z)

∣∣∣× 2− γ
γ

.

Hence by Lemma 3.2 we obtain

(3.14) sup
(t,z)∈Γ

|Dn(t, z)| = O
((
| log hn|/nhdn

)1/2
)

+O
(
h2d
n

)
.

Remark that

(3.15)
∫ t

0

∣∣∣dH(j)
n (s−|z)

∣∣∣ =
n∑

i=1

Wi(hn, z) ≤ 1

then for n large enough we have with probability one

|Dn(t, z)| ≤ sup
(t,z)∈Γ

∣∣∣H(0)
n (t|z)−H(0)(t|z)

∣∣∣× sup
(t,z)∈Γ

∫ t

0

∣∣∣dH(j)
n (s−|z)

∣∣∣

× 1

γ(γ − sup(t,z)∈Γ

∣∣∣H(0)
n (t|z)−H(0)(t|z)

∣∣∣)

≤ O(1)× sup
(t,z)∈Γ

∣∣∣H(0)
n (t|z)−H(0)(t|z)

∣∣∣ ,

thus by Lemma 3.2 we obtain

(3.16) sup
(t,z)∈Γ

|En(t, z)| = O
((
| log hn|/nhdn

)1/2
)

+O
(
h2d
n

)
.

The theorem follows from results on An, Bn, Cn, Dn and En. 2

Note that analogous strong convergence results of the nonparametric estimator of the
conditional distribution function distribution has been established earlier by Dabrowska
(1987, 1989), and more recently by Ghouch and van Keilegom (2008) for the conditional
censoring distribution in the dependent data setup.
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Theorem 3.2 Suppose that assumptions F1–F6 are fulfilled, then for 1 ≤ j ≤ m, as n
tends to infinity we have:

(3.17) sup
z∈∆
| r̂jn(z)− r̄j(z) |= O

((
|log hn| /nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

Proof. Let us consider j ∈ {1, . . . ,m} and z ∈ ∆. We have

r̂jn(z)− r̄j(z) =
∫ τz

0

ψ(s)
Ḡn(s−|z)dH

(j)
n (s|z)−

∫ τz

0

ψ(s)
Ḡ(s−|z)dH

(j)(s|z)

= Qn(τz, z) +Rn(τz, z),(3.18)

where

Qn(t, z) =
∫ t

0

ψ(s)
Ḡ(s−|z)d(H(j)

n (s|z)−H(j)(s|z)),

Rn(t, z) =
∫ t

0

ψ(s)(Gn(s−|z)−G(s−|z))
Ḡn(s−|z)Ḡ(s−|z) dH(j)

n (s|z).(3.19)

Using F5 and the integration by parts formula we have

Qn(t, z) =
ψ(t)(H(j)

n (t|z)−H(j)(t|z))
Ḡ(t|z) −

∫ t

0
(H(j)

n (s|z)−H(j)(s|z))d
(

ψ(s)
Ḡ(s−|z)

)
.

Because of assumption F1 and (3.5) derived from F5 we have

sup
z∈∆
|Qn(τz, z)| ≤ ‖ψ‖∞(γ−1 +M ′) sup

(t,z)∈Γ

∣∣∣H(j)
n (t|z)−H(j)(t|z)

∣∣∣ ,

then by Lemma 3.2 we derive

(3.20) sup
z∈∆
|Qn(t, z)| = O

((
|log hn| /nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

By assumptions F1 and F5 and (3.15) we have

sup
z∈∆
|Rn(τz, z)|

≤ ‖ψ‖∞
γ

sup
(t,z)∈Γ

1
Ḡn(t|z) sup

(t,z)∈Γ
|Gn(t|z)−G(t|z)|

≤ ‖ψ‖∞
γ

1
γ − sup(t,z)∈Γ |Ḡn(t|z)−G(t|z)| sup

(t,z)∈Γ
|Gn(t|z)−G(t|z)| .

By Theorem 3.1 for n large enough we have

1
γ − sup(t,z)∈Γ |Ḡn(t|z)−G(t|z)| = O(1) a.s.

then it follows that

(3.21) sup
z∈∆
|Rn(τz, z)| = O

((
|log hn| /nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

Finally by (3.18), (3.20) and (3.21) we obtain the expected uniform convergence rate for
r̂jn − r̄j . 2
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4 Concluding remarks

The estimation method we proposed is quite general and allows to estimate many quan-
tities like the classical incident regression function

rj(z) = E(XI(η = j)|Z = z),

which is obtained for ψ(x) = x. Function ψ(x) = x2 yields the nonparametric estimator of
the incident conditional variance. Because the incident conditional distribution function
F (j) may be estimated at (t, z) ∈ Γ by

F̂ (j)
n (t|z) = r̂jn(t|z)

where for a given z ∈ ∆ we replace the function ψ by a function ψt(x) = I(x ≤ t) indexed
by t ∈ [0, τz]. Following the lines of the proof of Theorem 3.2 it is straightforward to
obtain the following convergence rate.

Corollary 4.1 Under assumptions of Theorem 3.1 we have

sup
(t,z)∈Γ

∣∣∣F̂ (j)
n (t|z)− F (j)(t|z)

∣∣∣ = O
((
|log hn| /nhdn

)1/2
)

+O
(
h2d
n

)
a.s.

Some simulation results are provided in Bordes and Gneyou (2009) where asymptotic
results deals with consistency and central limit theorem for rjn(z) given a fixed value of
z ∈ ∆. Here convergence results are obtained uniformly in z ∈ ∆ when moreover the
censoring variables may depend on the covariate Z. The convergence rates we obtain
depend on the bandwidth hn. Choosing hn = cn−α it is easy to see that F6 is satisfied
whenever α ∈ (0, 1/d) and the best rate is obtained for α = 1/5d. For the same bandwidth
the convergence rate we obtain for the conditional Kaplan-Meier estimator is optimal and
is the same as in Dabrowska (1989). More generally the O(h2d

n ) term involved in the
rates come from the regularity of the function to be estimated and this rate could be
improved by assuming more regularity on these functions. Concerning the choice of the
kernel function K the multivariate gaussian kernel function

K(z) =
1

(2π)d/2
exp

(
−1

2

d∑

k=1

z2
k

)
z ∈ Rd,

fulfills the condition F4. However, as discussed in Giné and Guillou (2002) many other
kernel functions satisfying their condition (K1) are possible, like for example the uniform
kernel on [−1, 1]d.
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