N

N

A Software Framework for General-purpose Information
Retrieval
Adrian O’Riordan

» To cite this version:

Adrian O’Riordan. A Software Framework for General-purpose Information Retrieval. 13th Interna-
tional Conference on Software & Systems Engineering and their Applications (ICSSEA), Dec 2000,
Paris, France. pp.1-5. hal-00789534

HAL Id: hal-00789534
https://hal.science/hal-00789534
Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00789534
https://hal.archives-ouvertes.fr

A Software Framework for General-Purpose
Information Retrieval

Adrian P. O’Riordan
Department of Computer Science

University College Cork - National University of Ireland, Cork
Cork, Ireland
phone: +353-21-902143
fax: 4+353-21-274390
e-mail: a.oriordan@cs.ucc.ie

Abstract

A software frameworks is a way of tackling the issue of software
re-usability. The concept of a software framework is introduced and
we design a general-purpose framework for probabilistic information
retrieval. We discuss software engineering aspects of retrieval systems
in general and previous efforts at building re-usable IR systems. De-
sign patterns are utilised throughout the framework. Issues associated
with a C4++ implementation are also touched upon.

1 Introduction

We developed a software framework for probabilistic information retrieval
from the first principles of object oriented analysis and design. Analysis
involved the study of the requirements of information retrieval test-bed sys-
tems from the perspective of the entities that make up the vocabulary of
the problem domain. Design, both static and dynamic, followed analysis
and encompassed a range of activities, i.e. the requirements are fleshed out
and extra design-level constraints added. The choice of actual programming
language and data storage facilities were postponed until quite late in the
software development lifecycle. The system was eventually implemented in
a modern (2-level instantiation) object oriented language, C++.

2 Domain Area: Information Retrieval

Automatic information retrieval (IR) dates from the early 1950s, and has
been receiving increased interest with the popularity of the Internet since
then [1][2][3]. The basic retrieval process is as follows. A user issues queries
to the information retrieval system, which has a collection of documents the
user wishes to search. The user query is a formulation of his/her information
need (IN). Query formulation can take many forms: pre-defined keywords,
Boolean expressions of index terms, free text or marked documents. The
system then produces output which consists of a subset of the document
collection. This subset is often ranked by document relevance. The measure
of document relevance is called the retrieval status value (RSV). The doc-
uments should in some sense be “relevant” to the query so that the user’s
information need is satisfied. Of course the process is often iterative, with the
user refining his/her query and re-submitting the request so as to produce
a more satisfactory output. Subsequent retrieval runs are usually termed
user feedback. Several iterations of query modification are often necessary
to achieve acceptable results.

We adopt a probabilistic representation of text, as well as for the other
essential entities that make up an IR system, documents and queries. Proba-
bilistic models have been investigated in IR research since the early 60s, but
have never become the major model in commercial systems. Research sys-
tems have shown the feasibility of the approach, but undoubtedly obstacles
still exist preventing its widespread adoption. Commercial systems continue
to be based primarily on well-understood Boolean and vector space models.
Thankfully, probabilistic models can simulate all the the other major models
quite easily, so they are general-purpose in that sense.

In the probabilistic model, the primary probability of interest is the rel-
evance judgement for a particular document given that the document is de-
scribed using a particular set of terms, i.e. P(d is R|d,.,) where d,., signifies
the representation of the particular document d and R indicates relevance [4].
The query is implicit in the model. Relevance assessments aren’t needed to
start, but what is required are estimates of the distribution of terms within
both the sets of relevant and non-relevant documents.

3 A Framework Approach

One definition of a framework, given by Cotter, is “an extensible library of co-
operating classes that makes up a reusable design solution for a given problem
domain” [5]. A simpler definition that we prefer is “a class hierarchy plus a

model of interaction among the objects instantiated from the framework” [6].
Frameworks can be viewed as miniature applications with dynamic as well as
static structure—programmers add the extra pieces unique to their require-
ments. Frameworks are built using OO technology, and their adaptability
and extensibility is a direct consequence of this. An application derived from
a framework can be seen to communicate with the framework in two different
ways. These are called the calling API and the subclassing API. When a user
or application programmer extends a framework by writing a concrete class
conforming to one of the framework’s abstract classes, he or she is commu-
nicating using the subclassing API. When a user calls an operation which is
part of the framework directly, he or she is communicating via the calling
API. The calling and subclassing APIs are utilised by users playing the client
role and ensemble role respectively.

Of course frameworks do have some disadvantages. Frameworks make
heavy use of inheritance. Subclassing is a form of tight coupling and thus
violates one of the tenets of software engineering. Mistakes or omissions from
the base classes trickle all the way down the class hierarchy. A full re-compile
may be necessary to remedy such a situation. Another problem relates to
our use of C++. The problem is that pointers to a base class can only call
operations defined in the base class. Therefore new operations declared in
derived classes cannot be called polymorphically via these base class pointers.
A good problem analysis minimized these problems though.

An unfortunate fact is that current IR systems utilise a large number of
different techniques. Obviously, then, an IR library/framework cannot cover
all aspects of an IR system. What is needed is a library/framework that
concentrates on the core tasks in IR, and provides support that is superior
to choosing from existing libraries which were not specifically written for
IR. Choosing the core tasks becomes the central, most important, part the
design.

With both SMART and INQUERY (see Section 5), the system design-
ers’ intentions have been to support a particular IR model (vector space and
Bayesian Networks respectively). The systems are extensible and reusable
by others only if they follow their basic approach to IR research. Investiga-
tors who adopt other approaches have to look elsewhere for library support.
Efforts at re-use of systems’ code/design by groups other that the developers
have been ad hoc. For example, Hemmje et al. have used INQUERY in
their LyberWorld system [7] and numerous others have utilised SMART as
a starting point for their work.

The basic requirements of our framework are as follows:

e support for the basic domain objects: documents, collections, queries,

Document

y
\
{Template Method

abstract class

[

,/ concrete class

AppDocument

TermDependency

concrete strategy

{_ Strategy

model

Index

/

[context 1

mm-t

1

Collection

1 *\ _aggregate

{_ Iterator

iterator, ~ \

Tterator

IterateByDocNumber

view

Doclnterpretation

1
1

7

TterateByRelevance

\
\ strategy

K 1 1

\ *

\I\

HTMLParser

Parser Annotation

FreeTextParser

Figure 1: UML Class Diagram for Document Modelling

etc. These hide the details of the source and format by providing
objects that are convenient for client applications.

e customisation of the initial text encodings and mapping of text fields
to index terms.

e generation (and removal) of indices in a general way that is independent
of the particular retrieval model in use.

e support for a very general model of retrieval that can be specialised by
developers.

e formatting and sorting of valued documents list.

e a relevance feedback mechanism and the associated update of relevant

objects.

A UML class diagram for the document modelling component is shown
in Figure 1.

4 Behaviour of the Framework

In the design and documentation of our framework we make use of many de-
sign patterns [8]. Specifically we employ iterator, observer, template method,
strategy and singleton. All of these, bar the last, are behavioural. Singleton
is a creational pattern.

A document collection is a static entity, in the sense that it represents
largely a set of data structures for storing documents. It is implemented
as a container class. But there is a need to view or process documents in
different orders. Hence we need methods for traversing container objects
and we want them to be de-coupled from the data structures themselves.
For example, you may want to iterate through the documents in order by
document number or by ranked relevance. The question arises as to whether
this flexibility should be built into a Collection class. But this would require
something like a switch statement (in C++4), which is undesirable from the
perspective of re-usability. Adding a new operation (a means of traversal)
then requires a recompilation. It is preferable if each new operation can
be added separately, and the Collection class itself is largely independent of
the traversals that apply to it. We adopt this approach by implementing
operations such as traverseByDocNumber as a new object called an iterator
(or generator). This is the iterator design pattern.

An iterator is a means of traversing a container class analogous to a
pointer traversal of a linked list. The iterator is passed as a parameter to the
now abstract Collection as required. All iterator classes are derived from a
(abstract) base class Iterator. The major requirement on Iterator is that it
declares operations for all the derived classes’ responsibilities.

Here we have described an external iterator, where the client is responsible
for controlling the traversal, i.e. advancement has to be requested explicitly
by the client. In contrast, there exist internal iterators, which control the
traversal order themselves. Two advantages of external iterators are that they
(1) keep the container class itself small and (2) allow multiple simultaneous
traversals. Benefits of this design pattern include the fact that adding new
traversals is now relatively easy and that more than one traversal can be
active at a time !

The Query and UserRequest objects possess a one-to-one correspondence.
When a UserRequest changes, we need some mechanism for updating the
associated Query object correspondingly. This requirement is a consequence
of our decision, in the first place, to partition the system into co-operating

'Here we are referring to the iterator as being the active entity; this is not to be
confused with Booch’s “active iterator”, which is the same as our external iterator. Booch
is referring to the client’s active role [9].

classes, in this case to split UserRequest and Query. We desire loose coupling
without a compromise in consistency. When a user issues a request, say in
the form of a Boolean expression, this needs to be translated into the form
of a Query object, replacing the previously active query.

We chose the observer pattern to implement this dependency. The key
roles are the subject (UserRequest) and the observer (Query). The mecha-
nism by which the observer pattern is implemented may seem confusing at
first. It is in fact the subject that first notifies the observer of any changes
in its state. When a user issues a new request, UserRequest notifies Query,
Query then calls UserRequest (the subject) in turn to synchronise state.

Consider the objects Document and AppDocument. What is the advan-
tage of partitioning the document abstraction into two classes? The answer
is that fundamentally documents in IR systems fulfill multiple roles. In our
design, the class Document takes care of low-level activities such as opening,
reading, saving and closing files. (Document files are assumed to be read-
only.) It also participates in a relationship with Collection. AppDocument,
in contrast, represents the internal documents of the system and instead
participates in relationships with Index and DoclInterpretation. We need to
define the relationship between Document and AppDocument in a technical
form that makes their roles clear. We make use of another design pattern
called template method.

Essentially template method involves the participation of two classes, one
of which is defined as a subclass of the other. In our case, AppDocument
is a subclass of Document. Certain algorithms are defined as skeletons in
the superclass, deferring some steps to subclasses. An example is the open
operation. The skeletal open() defined in Document handles file precessing,
which is assumed to be a static requirement, whereas the extended open() in
AppDocument handles the activities relating to the internal representation
of a document. In our implementation the indexer is invoked. Following
the terminology in Gamma et al., open() is a template method. This is
perhaps an unfortunate choice of term since template is used to describe
generic classes and functions in C++.

The main advantages of introducing this extra level of indirection is that
AppDocument can be changed without recompiling the Document class and
multiple AppDocument objects can co-exist facilitating radically different in-
ternal document representations and retrieval models. This is orthogonal to
the fact that AppDocuments can already have different indexing procedures
associated with them. It should be noted that with the template method
pattern, superclasses call the operations of their subclasses. In the more con-
ventional use of inheritance, child objects usually call their parents. We in-
stead have a type of programming sometimes called inheritance-by-extension.

The template method pattern exhibits the inversion of control that is charac-
teristic of the framework approach to software architecture. Unfortunately,
inheritance compromises encapsulation by exposing implementation details
to inherited classes [10]. Exposing superclass attributes (making them pub-
licly visible in C++) is the problem. The remedy we adopt is to make
attributes visible to subclasses but hidden otherwise. Protected visibility in
C++ enables this.

Associated with each AppDocument is a Doclnterpretation object. An
application document may have many different interpretations depending
on the type of retrieval being performed. Doclnterpretation is the bridge
between AppDocument, the internal representation of a document, and the
Parser class, the abstract class representing text parsing activities. Derived
classes of Parser will implement parsing algorithms for different document
formats. For example, the class HTML Parser and FreeTextParser implement
algorithms for parsing HT'ML and unformatted text respectively.

A general design pattern exists for the situation when you have many
related classes differing only in their behaviour. For example, when you
need different variants of an algorithm. The design pattern is called strategy
and the main roles involved are context and strategy. The role strategy is
played by an abstract class, Parser. Doclnterpretation fills the role of con-
text. Parser has an operation parse(), defined in all (leaf) subclasses, that
is invoked by Doclnterpretation, which passes the data needed by Parse as
parameters. The strategy pattern is a type of delegation [11]. Gamma et al.
identify the following benefits (eliminates conditional statements, gives choice
of implementations) and liabilities (communication overhead, increased num-
ber of objects) of the strategy pattern [8].

We employ one final design pattern called singleton. Singleton ensures
that a class has only a single instance, i.e. only a single instance can exist at
any point in time. We designed the retrieval engine so that RetrievalRun and
FeedbackRun are singleton classes for a number of reasons. The computation
involved in doing a retrieval run (whether ad-hoc or routing) is intensive,
so we made the requirement that only one process is active at any time.
We maintain strict control over how and when clients access this instance.
Singleton offers us more flexibility than class operations (static members in
C++). It is easy to remove the singleton restriction if needs be, say for
example we wanted to make use of a parallel processing environment or see
an advantage in having multiple retrieval runs executing concurrently.

5 Related Work

Two important existing IR systems which are available for reuse, SMART
and INQUERY, are briefly described below. An object-oriented class library
for IR is also outlined, as is a proposed software framework for IR.

SMART embodies the vector space model of IR [2]. SMART includes
a complete set of programs for indexing and document matching, including
natural language pre-processing code. SMART has continued to be used, de-
veloped and extended by researchers at Cornell and by IR groups elsewhere.

INQUERY is an IR system developed at the University of Massachusetts
[12]. INQUERY models text and queries using Bayesian networks to help
identify relevant documents. Retrieval and routing are viewed as a prob-
abilistic inference process. Retrieval based on a combination of evidence is
emphasised. INQUERY has been extensively tested in TREC and is available
for others to use as a basis for their work.

ECLAIR (an Extensible Class Library for Information Retrieval) is an
object-oriented class library implemented in C++ which can be used to con-
struct information retrieval systems and applications [13]. It makes use of
an ODMS (object-oriented database management system) for persistent ob-
ject storage. The design is such that applications can exploit the features
of the ODMS which includes support for modeling complex objects, concur-
rent access to data, and reliable processing of data in the presence of system
failures.

FIRE (Framework for Information Retrieval Applications) is a reusable
framework for IR [14]. FIRE is being developed by Sonnenberger et al. at
UBILAB in co-operation with the IR group at the Robert Gordon Univer-
sity in Aberdeen. FIRE is designed to support the experimental evaluation
of both indexing and retrieval techniques. An object model was developed
to model the IR process and give support to retrieval system development.
Their design makes use of Rumbaugh’s object-oriented design method. The
implementation of FIRE is based on ET++, a portable, homogeneous class
library and application framework. The persistent storage of objects in han-

dled by ObjectStore.

6 Summary

Software frameworks and design patterns have a lot to offer IR system devel-
opers. The existence of better class libraries, database systems and CASE
tools, though helpful to development, will not cope with all the complex-
ity involved in building modern retrieval applications and supporting the

extensive empirical testing of research systems that has become the norm.
A framework specially designed for the retrieval domain offers constraints
that can bring increased re-usability. We believe IR is homogenous and well-
understood enough for a framework to be extremely useful.

References

1]

2]

3]

[4]

[5]

[10]

[11]

C.J. van Rijsbergen. Information Retrieval. Butterworths London, 2nd
edition, 1979.

G.A. Salton and M.J. McGill. Introduction to Modern Information Re-
trieval. McGraw Hill International, 1983.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

S.E. Robertson and K. Sparck Jones. Relevance weighting of search
terms. Journal of the American Assoc. for Info. Sci., 27:129-146, 1976.

S. Cotter and M. Potel. Inside Taligent Technology. Addison-Wesley,
1995.

T. Lewis, editor. Object-Oriented Application Frameworks. Manning
Publications Co., 1995.

M. Hemmje, C. Kunkel, and A. Willett. Lyberworld — a visualization
user interface supporting fulltext retrieval. In Proc. of the 17th ACM
SIGIR, 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

G. Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1994.

A. Snyder. Inheritance and the development of encapsulated software
systems. In B. Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming. MIT, 1987.

R. Johnson and J. Zweig. Delegation in c++4. Journal of Object-Oriented
Programming, 4(11):22-35, 1991.

[12] J. Broglio, J.P. Callan, W.B. Croft, and D.W. Nachbar. Document
retrieval and routing using the inquery system. In D.K. Harman, editor,
Proc. of the 3rd Internl. Text REtrieval Conference (TREC-3). NIST
Special Publication 500-225, 1995.

[13] D.J. Harper and A.D.M. Walker. Eclair: an extensible class library for
information retrieval. The Computer Journal, 35(3):256-267, June 1992.

[14] G. Sonnenberger and Hans-Peter Frei. Design of a reusable ir framework.
In Proc. of the 18th ACM SIGIR, 1995.

