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Abstract

We present a sufficient condition for approximate controllability of the bilinear
discrete-spectrum Schrödinger equation in the multi-input case. The controlla-
bility result extends to simultaneous controllability, approximate controllability
in Hs, and tracking in modulus. The sufficient condition is more general than
those present in the literature even in the single-input case and allows the spec-
trum of the uncontrolled operator to be very degenerate (e.g. to have multiple
eigenvalues or equal gaps among different pairs of eigenvalues). We apply the
general result to a rotating polar linear molecule, driven by three orthogonal
external fields. A remarkable property of this model is the presence of infinitely
many degeneracies and resonances in the spectrum.

Keywords: Quantum control, bilinear Schrödinger equation, Galerkin
approximations, quantum angular momentum.

1. Introduction

In this paper we study the controllability and the tracking problem for the
multi-input bilinear Schrödinger equation

i
dψ

dt
(t) = (H0 + u1(t)H1 + . . .+ up(t)Hp)ψ(t) (1)
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where H0, . . . ,Hp are self-adjoint operators on a Hilbert space H and the drift
Schrödinger operator H0 (the internal Hamiltonian) has discrete spectrum. The
control functions u1(·), . . . , up(·), representing external fields, are real-valued
and ψ(·) takes values in the unit sphere of H.

The controllability of system (1) is a well-established topic when the state
space H is finite-dimensional (see for instance [D’A08] and reference therein),
thanks to general controllability methods for left-invariant control systems on
compact Lie groups ([Bro72, JS72, JK81, GB82, EAGK96]).

When H is infinite-dimensional and the operators H1, . . . ,Hp are bounded,
it is known that the bilinear Schrödinger equation is not exactly controllable
(see [BMS82, Tur00]). Nevertheless, weaker controllability properties, such as
approximate controllability or controllability between eigenstates of the internal
Hamiltonian H0 (which are the most relevant physical states), may hold. In
certain cases, when H is a function space on a subset of R, a description of
reachable sets has been provided (see [BC06, BL10]). In Rd, d > 1, or for more
general situations, the exact description of the reachable set seems a difficult task
and at the moment only approximate controllability results are available. Most
of them have been proved in the single-input case (see, in particular, [CMSB09,
Mir09, Ner09, Ner10, BN10, BCCS12, NN12]). They are based on sufficient
conditions for controllability that are generic [PS10, MS10, Ner10] even in the
case p = 1. Nevertheless, in many examples these conditions cannot be directly
applied or controllability fails to hold, as a consequence of the symmetries of
the system. Symmetries can induce degeneracies in the spectrum (e.g. multiple
eigenvalues or presence of identical spectral gaps) and reduce the coupling of
eigenstates via the control. This happens, for instance, for a planar rotating
molecule controlled by one external field only [BCCS12, Section 8], which is not
(approximately) controllable.

Using more than one input opens new possibility for control.
Multi-input controllability results have been obtained for specific systems

[EP09, BBR10] and some general approximate controllability results between
eigenfunctions have been proved via adiabatic methods [AB05, BCMS12]. The
first multi-input result via Lie-algebraic methods is given in [BCCS12, Section 8],
where the spectral degeneracies of the planar rotating molecule have been tack-
led by associating with every 1-dimensional slice of the set of admissible controls
an invariant subspace of the state space H on which the single-input controlla-
bility result applies. However, such a technique does not apply in more general
cases. In the case of a rotating rigid symmetric 3D molecule, the application
of this method is obstructed by the fact that eigenspaces may have arbitrarily
large dimension.

In this paper, we present a sufficient condition for controllability of the
discrete-spectrum bilinear Schrödinger equation which applies even when the
spectrum of the internal Hamiltonian H0 is very degenerate. The results fully
exploit the presence of more than one control and extend to simultaneous con-
trollability, approximate controllability in Hs, and tracking in modulus (or m-
tracking ; for precise definitions see Section 2). Proving that a system is an
m-tracker is a crucial issue when dealing with dissipative levels. A common
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strategy is to neglect the dissipativity of the level in the mathematical model
and to keep its population as low as possible during the transition (see for
instance the STIRAP model [CH90, VHBB01, BCG+02]).

The result presented in this paper is more general than those in the lit-
erature even in the single-input case. Consider, for instance, the Laplace–
Dirichlet operator on a compact interval Ω of R with a control term of the
type (H1ψ)(x) = xψ(x), x ∈ Ω (see [BC06]): in [BCCS12], approximate simul-
taneous controllability of this model has been proved by breaking the degenera-
cies between spectral gaps through perturbation techniques. Here we prove the
approximate simultaneous controllability and m-tracking without perturbation
arguments. The advantage is that the constructive proof of the main result
translates into an explicit motion-planning algorithm [CBCS11].

1.1. Brief description of the general results
The main result of the paper is a sufficient condition for approximate simul-

taneous controllability which we call the Lie–Galerkin Control Condition (see
Definition 2.5).

Roughly speaking, both the sufficient condition proposed in [BCCS12] and
the one presented here are based on the idea of driving the system with con-
trol laws that are in resonance with spectral gaps of the internal Hamiltonian
H0. However, while in [BCCS12] the only actions on the system obtained by
resonance that are exploited for the controllability are those corresponding to
elementary transitions between two eigenstates, no such a restriction is imposed
in the Lie–Galerkin Control Condition (see Section 2.5).

The Lie–Galerkin Control Condition ensures strong controllability properties
for the Galerkin approximations: it provides controllability for a fixed Galerkin
approximation while avoiding the transfer of population to higher energy levels
for higher-order Galerkin approximations. This yields estimates on the differ-
ence between the dynamics of the finite-dimensional Galerkin approximation
and the original infinite-dimensional system. The Lie–Galerkin Control Condi-
tion also ensures a bound on the L1 norm of the control achieving controllability
between finite combinations of eigenstates, which is uniform with respect to the
prescribed tolerance.

Under the Lie–Galerkin Tracking Condition, a slight modification of the Lie–
Galerkin Control Condition, we can prove that any trajectory can be tracked in
modulus (see Theorem 2.8).

Following [BCC13], the Lie–Galerkin Control Condition, under the addi-
tional assumption that the system is s-weakly coupled (see Definition 2.11), im-
plies that the system is approximately controllable in Hs/2 (see Theorem 2.12).

1.2. Application to the quantum angular momentum
Rotational molecular dynamics constitute one of the most important ex-

amples of quantum systems on an infinite-dimensional Hilbert space and with
discrete spectrum. Molecular orientation and alignment are well-established
topics in the quantum control of molecular dynamics both from the experimen-
tal and the theoretical point of view (see [SS03, SKA+04, SH06] and references
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therein). For linear molecules driven by linearly polarized laser fields in gas
phase, alignment means an increased probability direction along the polariza-
tion axis whereas orientation requires in addition the same direction as the
polarization vector. A large amount of numerical simulations have been carried
on in this area but the mathematical part is not yet fully understood.

We focus in this paper on the control of the orientation of a rigid linear
molecule in R3 by external fields. The corresponding controlled Schrödinger
equation is defined on the unit sphere S2. We show that the system driven
by three fields along the three axes is approximately controllable for arbitrarily
small controls.

Up to normalization of physical quantities (in particular, in units such that
~ = 1), the dynamics are modeled by the equation

i
∂ψ(θ, ϕ, t)

∂t
=−∆ψ(θ, ϕ, t)+

+ (u1(t) sin θ cosϕ+ u2(t) sin θ sinϕ+ u3(t) cos θ)ψ(θ, ϕ, t), (2)

where θ, ϕ are the spherical coordinates, which are related to the Euclidean
coordinates through the identities

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

while ∆ is the Laplace–Beltrami operator on the sphere S2 (called in this context
the angular momentum operator), i.e.,

∆ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.

The wavefunction ψ evolves in the unit sphere S of H = L2(S2,C).
As a consequence of the general multi-input result presented in Section 2 we

have that (2) is approximately controllable with arbitrarily small controls. A
stronger statement, including simultaneous controllability in Hs and tracking
in modulus, is given in Section 3.

Theorem 1.1. For every ψ0, ψ1 belonging to S and every ε, δ > 0, there exist
T > 0 and u ∈ L∞([0, T ], [0, δ]3), such that the solution ψ(·) of equation (2),
corresponding to the control u and with initial condition ψ0, satisfies ‖ψ1 −
ψ(T )‖ < ε.

There are two main difficulties preventing the application of previous re-
sults in the literature to this system. Firstly, we deal here with several control
parameters, while those general results were specific to the single-input case.
Notice that, because of symmetry obstructions, equation (2) is not controllable
with only two of the three controls u1, u2, u3. Secondly, the general theory
developed in [CMSB09, Ner10, BCCS12] is based on nonresonance conditions
on the spectrum of the internal Hamiltonian. The Laplace–Beltrami operator
on S2, however, has a severely degenerate spectrum, since the `-th eigenvalue
−i`(`+ 1) has multiplicity 2`+ 1. A perturbation technique has been proposed
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in [CMSB09], in order to overcome resonance relations in the spectrum of the
drift. The technique was applied in [BCM+09] to the case of the orientation of
a molecule confined in a plane driven by one control. The planar case is already
technically challenging and a generalization of the same technique to the case
of three controls in 3D seems hard to achieve.

1.3. Structure of the paper
The paper is organized as follows: in the next section we present the general

multi-input abstract framework and the main abstract results (Theorems 2.6,
2.8, and2.12). In Section 3 we apply them to system (2). The proofs of Theorems
2.6, 2.8, and 2.12 are contained, respectively, in Sections 4, 5, and 6.

2. Framework and main results

Let p ∈ N, δ > 0, and U = U1×· · ·×Up with either Uj = [0, δ] or Uj = [−δ, δ].

Definition 2.1. Let H be an infinite-dimensional Hilbert space with scalar
product 〈·, ·〉 and A,B1, . . . , Bp be (possibly unbounded) skew-adjoint operators
on H, with domains D(A), D(B1), . . . , D(Bp). Let us introduce the controlled
equation

dψ

dt
(t) = (A+ u1(t)B1 + · · ·+ up(t)Bp)ψ(t), u(t) ∈ U. (3)

We say that A satisfies (A1) if the following assumption is true:

(A1) A has discrete spectrum with infinitely many distinct eigenvalues (possibly
degenerate).

Denote by Φ a Hilbert basis (φk)k∈N of H made of eigenvectors of A associ-
ated with the family of eigenvalues (iλk)k∈N and let L be the set of finite linear
combinations of eigenstates, that is,

L =
⋃
k∈N

span{φ1, . . . , φk}.

We say that (A,B1, . . . , Bp, U,Φ) satisfies (A) if A satisfies (A1) and the
following assumptions hold:

(A2) φk ∈ D(Bj) for every k ∈ N, j = 1, . . . , p;

(A3) A+u1B1+ · · ·+upBp : L → H is essentially skew-adjoint for every u ∈ U .

If (A,B1, . . . , Bp, U,Φ) satisfies (A) then, for every (u1, . . . , up) ∈ U , A +
u1B1 + · · · + upBp generates a subgroup et(A+u1B1+···+upBp) of the group of
unitary operators U(H). It is therefore possible to define the propagator Υu

T

at time T of system (2) associated with a p-uple of piecewise constant controls
u(·) = (u1(·), . . . , up(·)) by composition of flows of the type et(A+u1B1+···+upBp).
If, moreover, B1, . . . , Bp are bounded operators then the definition can be ex-
tended by continuity to every L∞ control law (see [BMS82, Theorem 2.5]).
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Definition 2.2. Let (A,B1, . . . , Bp, U,Φ) satisfy (A). We say that (3) is ap-
proximately controllable if for every ψ0, ψ1 in the unit sphere of H and every
ε > 0 there exists a piecewise constant control function u : [0, T ]→ U such that
‖ψ1 −Υu

T (ψ0)‖ < ε.

Definition 2.3. Let (A,B1, . . . , Bp, U,Φ) satisfy (A). We say that (3) is ap-
proximately simultaneously controllable if for every r in N, ψ1, . . . , ψr in H, Υ̂
in U(H), and ε > 0 there exists a piecewise constant control u : [0, T ]→ U such
that ∥∥∥Υ̂ψk −Υu

Tψk

∥∥∥ < ε, k = 1, . . . , r.

If, moreover, for every ψ1, . . . , ψr ∈ L and Υ̂ ∈ U(H) such that Υ̂ψ1, . . . , Υ̂ψr ∈
L, there exists K > 0 (not depending on ε) such that u can be chosen to
satisfy, in addition, ‖u‖L1 ≤ K, we say that (3) is L1-bounded approximately
simultaneously controllable.

This last definition of controllability with a priori bound on the L1-norm
of the control achieving controllability has been observed in preceding works
[BCCS12, Cha12]. It implies a stronger controllability property as discussed in
Section 2.4.

Because of the presence of a drift (the internal Hamiltonian) and of the
boundedness of the controls, it is not possible in general to track, with arbitrar-
ily precision, an unfeasible curve in S. We introduce the notion of an m-tracker,
that is, a system for which any given curve can be tracked up to phases (both
for a single initial condition and in the spirit of simultaneous control). This def-
inition makes sense from the physical point of view, since tracking up to phases
means imposing the population of all energy levels of H0 along the evolution.

The identification up to phases of elements of H in the basis Φ = (φk)k∈N
can be accomplished by the projection

M : ψ 7→
∑
k∈N
|〈φk, ψ〉|φk.

Definition 2.4. Let (A,B1, . . . , Bp, U,Φ) satisfy (A). We say that (3) is a m-
tracker if, for every r in N, ψ1, . . . , ψr in H, Υ̂ : [0, T ]→ U(H) continuous with
Υ̂0 = IdH, and ε > 0, there exist an invertible increasing continuous function
τ : [0, T ]→ [0, Tτ ] and a piecewise constant control u : [0, Tτ ]→ U such that∥∥∥M(Υ̂tψk)−M(Υu

τ(t)ψk)
∥∥∥ < ε, k = 1, . . . , r,

for every t ∈ [0, Tτ ].

2.1. Notation
For every n in N, define the orthogonal projection

πn : H 3 ψ 7→
n∑
k=1

〈φk, ψ〉φk ∈ H.
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Given a linear operator Q onH we identify the linear operator πnQπn preserving
span{φ1, . . . , φn} with its n× n complex matrix representation with respect to
the basis (φ1, . . . , φn). We define

A(n) = πnAπn and B
(n)
j = πnBjπn,

for every j = 1, . . . , p.
Let us introduce the set Σn of spectral gaps associated with the n-dimensional

Galerkin approximation as

Σn = {|λl − λk| | l, k = 1, . . . , n}.

For every σ ≥ 0, every m ∈ N, and every m×m matrix M , let

Eσ(M) = (Ml,kδσ,|λl−λk|)
m
l,k=1,

where δj,k = 1 if and only if j = k and δj,k = 0 otherwise. The n × n matrix
Eσ(B

(n)
j ), j = 1, . . . , p, corresponds to the “activation” in B

(n)
j of the spectral

gap σ: every element is 0 except the (l, k)-elements such that |λl − λk| = σ.
(It reflects the action of the convexification procedure detailed in Section 4.4,
which sets to zero all the matrix elements (B

(n)
j )l,k for which |λl − λk| 6= σ.)

Define

Ξn =
{

(σ, j) ∈ Σn × {1, . . . , p} |

∃M ∈ u(n) s.t. Eσ(B
(N)
j ) =

(
M 0
0 ∗

)
for every N > n

}
. (4)

The matrices Eσ(B
(n)
j ) for (σ, j) ∈ Ξn correspond to “compatible dynamics”

for the n-dimensional Galerkin approximation (compatible, that is, with higher-
dimensional Galerkin approximations).

2.2. Controllability results
Let

V0
n =

{
A(n)

}
∪
{
Eσ(B

(n)
j ) | (σ, j) ∈ Ξn and j is such that (0, j) ∈ Ξn

}
∪
{
Eσ(B

(n)
j ) | (σ, j) ∈ Ξn, σ 6= 0, Uj = [−δ, δ]

}
.

The family V0
n is obtained by collecting compatible dynamics coming from the

convexification procedure mentioned in the previous section. It also contains
matrix A(n) obtained by the truncation of the drift A, which is itself the drift
of the Galerkin approximation of order n. The collections of the “compatible
dynamics” Eσ(B

(n)
j ) is restricted to the indices j such that (0, j) ∈ Ξn or such

that Uj = [−δ, δ]. These conditions allow to decouple the contribution of the
drift in the convexification procedure, as detailed in Section 4.6.
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Definition 2.5. Let (A,B1, . . . , Bp, U,Φ) satisfy (A). We say that the Lie–
Galerkin Control Condition holds if for every n0 ∈ N there exists n > n0 such
that

LieV0
n ⊇ su(n). (5)

Theorem 2.6 (Abstract multi-input controllability result). Assume that (A)
holds true. If the Lie–Galerkin Control Condition holds then the system

ẋ = (A+ u1B1 + · · ·+ upBp)x, u ∈ U,

is L1-bounded approximately simultaneously controllable.

2.3. Tracking results
For every ξ ∈ S1 ⊂ C, consider the matrix operator Jξ such that

(Jξ(M))j,k =


ξMj,k if λj < λk,

0 if λj = λk,

ξ̄Mj,k if λj > λk.

Let
Vn =

{
Jξ(Eσ(B

(n)
j )) | (σ, j) ∈ Ξn, σ 6= 0, ξ ∈ S1

}
. (6)

Notice that Vn ⊂ su(n).

Definition 2.7. Let (A,B1, . . . , Bp, U,Φ) satisfy (A). We say that the Lie–
Galerkin Tracking Condition holds if for every n0 ∈ N there exists n > n0 such
that

LieVn = su(n). (7)

Theorem 2.8 (Abstract multi-input tracking result). Let Uj = [−δ, δ] for some
δ > 0 and every j = 1, . . . , p. Assume that (A) holds true. If the Lie–Galerkin
Tracking Condition holds then the system

ẋ = (A+ u1B1 + · · ·+ upBp)x, u ∈ U,

is a m-tracker.

Remark 2.9. If Uj = [−δ, δ] for every j = 1, . . . , p, then the Lie–Galerkin
Tracking Condition implies the Lie–Galerkin Control Condition, as it follows
from the relations[

A(n), Eσ(B
(n)
j )

]
= σJi(Eσ(B

(n)
j )) and J1(Eσ(B

(n)
j )) = Eσ(B

(n)
j ),

for σ 6= 0.
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2.4. Controllability in higher norms
We define for s > 0,

|A|sψ =
∑
n∈N
|λn|s〈φn, ψ〉φn,

for every ψ belonging to

D(|A|s) =

{
ψ ∈ H |

∑
n∈N
|λn|2s|〈φn, ψ〉|2 < +∞

}
.

For every ψ ∈ D(|A|s) we can define the |A|s-norm (or simply s-norm) of ψ
by ‖ψ‖s = ‖|A|sψ‖. If A is the Laplace–Dirichlet operator on some bounded
domain of Rn then the s-norm is equivalent to the H2s-norm on D(|A|s).

Definition 2.10. Let (A,B1, . . . , Bp, U,Φ) satisfy Assumption (A) and let s >
0. System (3) is approximately simultaneously controllable (respectively ap-
proximately controllable) for the s-norm if, for every ε > 0, r ∈ N (respectively
r = 1), ψ1, . . . , ψr in D(|A|s), and Υ̂ ∈ U(H) such that Υ̂ψ1, . . . , Υ̂ψr ∈ D(|A|s)
there exists a piecewise constant function uε : [0, Tε]→ R such that

‖Υ̂ψj −Υuε
Tε
ψj‖s < ε,

for every j = 1, . . . , r.

We say that (A,B1, . . . , Bp, U,Φ) satisfies (A′) if it satisfies (A) and the
following additional assumptions hold:

(A4) the operator i(A + u1B1 + · · · + upBp) is bounded from below for every
u ∈ Rp;

(A5) the sequence (λk)k∈N is non-increasing and unbounded.

Definition 2.11. Let (A,B1, . . . , Bp, U,Φ) satisfy Assumption (A′) and let s >
0. Then (A,B1, . . . , Bp) is s-weakly-coupled if D(|A+ u1B1 + · · ·+ upBp|s/2) =
D(|A|s/2) for every u ∈ Rp and there exists C such that

|<〈|A|sψ,Bjψ〉| ≤ C|〈|A|sψ,ψ〉|,

for every j = 1, . . . , p, ψ ∈ D(|A|s).

The following result is a consequence of [BCC13, Proposition 2] and can be
obtained by adapting the arguments of [BCC13, Proposition 5]. We provide a
proof in Section 6.

Theorem 2.12. Let (A,B1, . . . , Bp, U,Φ) satisfy Assumption (A′) and (A,B1,
. . . , Bp) be s-weakly coupled for some s > 0. If (3) is L1-bounded approximately
simultaneously controllable then it is approximately simultaneously controllable
for the s/2-norm.
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As a direct consequence we have the following result generalizing [BCC13,
Proposition 5].

Corollary 2.13. Let (A,B1, . . . , Bp, U,Φ) satisfy Assumption (A′) and (A,B1,
. . . , Bp) be s-weakly coupled for some s > 0. If the Lie–Galerkin Control Condi-
tion holds then system (3) is approximately simultaneously controllable for the
s/2-norm.

2.5. Example: the infinite potential well
We present the case of a particle confined in the interval (−π/2, π/2) as a

toy model to compare the results in [BCCS12] and Theorem 2.8 in the case of
a single-input system. The model was extensively studied by several authors in
the last decade and it has been the first quantum system for which a positive
controllability result was obtained (see [BC06]). In [BCCS12] an approximate si-
multaneous controllability result was obtained via geometric methods and using
perturbations techniques.

The Schrödinger equation reads

i
∂ψ

∂t
= −∂

2ψ

∂x2
− u(t)xψ(x, t), (8)

with the boundary conditions ψ(−π/2, t) = ψ(π/2, t) = 0 for every t ∈ R. The
controls u(·) are piecewise constant with values in U = [−δ, δ] for some δ > 0.

In this case H is the space L2 ((−π/2, π/2),C) endowed with the Hermitian
product 〈ψ1, ψ2〉 =

∫ π/2
−π/2 ψ1(x)ψ2(x)dx. The operators A and B = B1 are

defined by Aψ = i∂
2ψ
∂x2 for every ψ in D(A) = (H2 ∩ H1

0 ) ((−π/2, π/2),C) and
Bψ = ixψ. A complete set of eigenfunctions of A associated with the eigenvalues
iλk = −ik2, k ∈ N is given by

φk(x) =


√

2
π cos(kx) when k is odd,√
2
π sin(kx) when k is even,

k ∈ N.

Notice that
〈φj , Bφk〉 6= 0,

if and only if j + k is odd. In particular Jξ(Eσ(B(n))) = Eσ(B(n)) for every
ξ ∈ S1, n ∈ N, and σ ∈ Σn.

We prove by induction on n ≥ 2 that LieVn = su(n), and hence that the
Lie–Galerkin Tracking Condition is fulfilled. Notice that, for every k = 2, . . . , n,
the spectral gap |λk−λk−1| = 2k−1 belongs to Σn and that the (j, l)-th element
of the matrix E2k−1(B(n)) is zero for j ≤ n and l ≥ n+ 1, since

l2 − j2 ≥ (n+ 1)2 − n2 = 2n+ 1 > 2k − 1.

Hence E2k−1(B(n)) ∈ Vn for k = 2, . . . , n. We prove the claim by showing that

Lie
(
{E2k−1(B(n)) | k = 1, . . . , n}

)
= su(n). (9)
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For n = 2, the matrices E3(B(2)) =

(
0 b12
−b̄12 0

)
and Ji(E3(B(2))) generate

su(2) because b12 6= 0.
Now assume that

Lie
(
Jξ({E2k−1(B(n−1))) | ξ ∈ S1, k = 2, . . . , n− 1}

)
= su(n− 1),

and let us prove (9). The matrices Jξ(E2k−1(B(n))), ξ ∈ S1, k = 2, . . . , n − 1,
generate the subalgebra of matrices in su(n) with zero elements in the n-th row
and n-th column. In particular, there exists

M ∈ Lie
(
{Jξ(E2k−1(B(n))) | ξ ∈ S1, k = 2, . . . , n− 1}

)
such that M + E2n−1(B(n)) has the only two nonzero elements in the positions
(n− 1, n) and (n, n− 1). So

Lie({Jξ(E2k−1(B(n))) | ξ ∈ S1, k = 2, . . . , n})

⊃ Lie
(
{Jξ(E2k−1(B(n))) | ξ ∈ S1, k = 2, . . . , n− 1} ∪ {M + E2n−1(B(n))}

)
= su(n).

Therefore, thanks to Theorems 2.6 and 2.8, system (8) is approximately simul-
taneously controllable and an m-tracker.

3. The 3D molecule

Let us go back to the system for the orientation of a linear molecule presented
in the introduction, that is,

i~ψ̇ = −∆ψ + (u1 cos θ + u2 cosϕ sin θ + u3 sinϕ sin θ)ψ, (10)

where ψ(t) ∈ H = L2(S2,C).
A basis of eigenvectors of the Laplace–Beltrami operator ∆ is given by the

spherical harmonics Y m` (θ, ϕ), which satisfy

∆Y m` (θ, ϕ) = −`(`+ 1)Y m` (θ, ϕ).

The spectrum of A = i∆ is {−i`(`+ 1) | ` ∈ N}. Each eigenvalue −i`(`+ 1) is
of finite multiplicity 2` + 1. Therefore A satisfies Assumptions (A1) and (A5).
Using the notations of the preceding sections, we set B1, B2, B3 to be the
multiplication operators by −i cosϕ sin θ, −i sinϕ sin θ, −i cos θ, respectively.
Since B1, B2, B3 are bounded, conditions (A2), (A3), and (A4) hold. Hence
(A′) is satisfied. Moreover, as proved in [BCC13, Proposition 8], (10) is s-
weakly coupled for every s > 0. The main goal of this section is to prove that
system (10) satisfies the Lie–Galerkin Tracking Condition. As a consequence,
we obtain the following result, whose corollary is Theorem 1.1.
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Theorem 3.1. System (10) is:

(i) L1-bounded approximately simultaneously controllable,
(ii) approximately simultaneously controllable in Hs for every s > 0,

(iii) a m-tracker.

Using classical identities for Legendre polynomials and trigonometric rela-
tions, one can prove that

〈Y m` , BjY
m′

` 〉 = 0

for every j = 1, 2, 3, and m,m′ ∈ {−`− 1, . . . , `+ 1}.
Moreover,

〈Y m` , BjY
m′

`′ 〉 = 0

with |` − `′| ≥ 2 for every m ∈ {−` − 1, . . . , ` + 1}, m′ ∈ {−`′ − 1, . . . , `′ + 1},
j = 1, 2, 3. In order to prove that the Lie–Galerkin Tracking Condition is
satisfied, we choose a reordering (φk)k∈N of the spherical harmonics in such a
way that

{φk | k = 1, . . . , 4`+ 4} = {Y −`` , . . . , Y `` , Y
−`−1
`+1 , . . . , Y `+1

`+1 },

and it remains to prove that

LieV4`+4 = su(4`+ 4). (11)

The characteristic spectral gap of the space

H` = span{Y −`` , . . . , Y `` , Y
−`−1
`+1 , . . . , Y `+1

`+1 }

is (` + 1)(` + 2) − `(` + 1) = 2(` + 1). In particular, (2(` + 1), 1), (2(` + 1), 2),
and (2(`+ 1), 3) are in Ξ4`+4.

The rest of Section 3 is devoted to showing that Jξ(E2`+1(B
(4`+4)
j ), for ξ ∈ S1

and j = 1, 2, 3, generate su(4`+ 4), proving (11).

3.1. Matrix representations
Denote by J` the set of integer pairs {(r,m) | r = `, `+ 1, m = −r, . . . , r}.

Consider the lexicographic ordering % : {1, . . . , 4` + 4} → J`. For j, k =
1, . . . , 4` + 4, let ej,k be the (4` + 4)-square matrix whose entries are all zero,
except the one at row j and column k, which is equal to 1. Define

Ej,k = ej,k − ek,j , Fj,k = iej,k + iek,j , Dj,k = iej,j − iek,k.

By a slight abuse of notation, also set e%(j),%(k) = ej,k. The analogous
identification can be used to define E%(j),%(k), F%(j),%(k), D%(j),%(k). Note that

Ji(E(`,m),(`+1,n)) = −F(`,m),(`+1,n) and Ji(F(`,m),(`+1,n)) = E(`,m),(`+1,n).

Thanks to this notation, we can conveniently represent the matrices correspond-
ing to the controlled vector field (projected ontoH`). A computation shows that

12



the control potentials in the x and y directions, B1 and B2 respectively, pro-
jected onto H`, have the matrix representations

B
(4`+4)
1 =

∑̀
m=−`

(−q`,mF(`,m),(`+1,m−1) + q`,−mF(`,m),(`+1,m+1)),

B
(4`+4)
2 =

∑̀
m=−`

(q`,mE(`,m),(`+1,m−1) + q`,−mE(`,m),(`+1,m+1)),

where

q`,m =

√
(`−m+ 2)(`−m+ 1)

4(2`+ 1)(2`+ 3)
.

Similarly, we associate with the control potential B3 in the z direction the
matrix representation

B
(4`+4)
3 =

∑̀
m=−`

p`,mF(`,m),(`+1,m),

with

p`,m = −

√
(`+ 1)2 −m2

(2`+ 1)(2`+ 3)
.

3.2. Useful bracket relations
From the identity

[ej,k, en,m] = δknej,m − δjmen,k

we get the relations

[Ej,k, Ek,n] = Ej,n, [Fj,k, Fk,n] = −Ej,n, [Ej,k, Fk,n] = Fj,n, (12)

and
[Ej,k, Fj,k] = 2Dj,k, [Fj,k, Dj,k] = 2Ej,k. (13)

The relations above can be interpreted following a “triangle rule”: the bracket
between an operator coupling the states j and k and an operator coupling the
states k and n couples the states j and n. On the other hand, the bracket is
zero if two operators couple no common states, that is,

[Yj,k, Zj′,k′ ] = 0 if {j, k} ∩ {j′, k′} = ∅, (14)

with Y,Z ∈ {E,F,D}.
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3.3. Controllability in su(4`+ 4)

Lemma 3.2. The Lie algebra L generated by B(4`+4)
1 , B

(4`+4)
2 , B

(4`+4)
3 , Ji(B

(4`+4)
1 ),

Ji(B
(4`+4)
2 ), Ji(B

(4`+4)
3 ) is equal to su(4`+ 4).

Proof. The first step of the proof consists in showing that the Lie algebra L
contains the elementary matrices

E(`,k),(`+1,k+j) for k = −`, . . . , `, j = −1, 0, 1. (15)

With a slight abuse of notation and for the sake of readability, let us write
Bj = B

(4`+4)
j , j = 1, 2, 3. Let us also write adα β for [α, β] and adj+1

α β for
[α, adjα β].

Notice that

Ji(B3) =

m∑
`=−m

p`,mJi(F(`,m),(`+1,m)) =

m∑
`=−m

p`,mE(`,m),(`+1,m).

By induction on j ≥ 0 and using the bracket relations (13), we have

ad2j
B3
Ji(B3) = [B3, [B3, ad2j−2

B3
Ji(B3)]]

= (−1)j22j
∑̀
m=−`

p2j+1
`,m E(`,m),(`+1,m).

By invertibility of the Vandermonde matrix and since p`,m 6= p`,n for every
n 6= m,−m, it follows that

E(`,−m),(`+1,−m) + E(`,m),(`+1,m) ∈ L, for m = 0, . . . , `. (16)

In particular, E(`,0),(`+1,0) ∈ L. The double bracket of

B2 − Ji(B1)

2
=
∑̀
m=−`

q`,mE(`,m),(`+1,m−1) ∈ L (17)

with E(`,0),(`+1,0) is easily computed using (12) and (14) and gives

[[ ∑̀
m=−`

q`,mE(`,m),(`+1,m−1), E(`,0),(`+1,0)

]
, E(`,0),(`+1,0)

]
=

= −q`,1[E(`,0),(`,1), E(`,0),(`+1,0)]− q`,0[E(`+1,−1),(`+1,0), E(`,0),(`+1,0)]

= q`,0E(`,0),(`+1,−1) + q`,1E(`,1),(`+1,0) ∈ L.

Define

Qm =


q`,0E(`,0),(`+1,−1) + q`,1E(`,1),(`+1,0) for m = 0,

q`,−mE(`,−m),(`+1,−m−1) + q`,m+1E(`,m+1),(`+1,m) for 0 < m < `,

q`,−`E(`,−`),(`+1,−`−1) for m = `.
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In particular, B2 − Ji(B1) = 2
∑`
m=0Qm. Using again (12) and (14), we have

[[ ∑̀
m=k

Qm, E(`,−k),(`+1,−k) + E(`,k),(`+1,k)

]
, E(`,−k),(`+1,−k) + E(`,k),(`+1,k)

]
= Qk,

for k = 1, . . . , `. By interation on k and because of (16), it follows that Qk ∈ L
for k = 0, . . . , `.

Now, since Q`/q`,−` = E(`,−`),(`+1,−`−1) is in L, then

ad2
E(`,−`),(`+1,−`−1)

(E(`,−`),(`+1,−`) + E(`,`),(`+1,`)) = −E(`,−`),(`+1,−`) ∈ L,

which, in turns, implies that

ad2
E(`,−`),(`+1,−`)

(Q`−1) = −q`,−`E(`,−`+1),(`+1,−`) ∈ L.

Iterating the argument, E(`,m),(`+1,m) and E(`,m),(`+1,m−1) are in L for every
m = −`, . . . , `.

By the same argument as above with (17) replaced by

B2 + Ji(B1)

2
=
∑̀
m=−`

q`,−mE(`,m),(`+1,m+1) ∈ L,

we also have that E(`,m),(`+1,m+1) is in L for every m = −`, . . . , `, proving (15).
It then follows from (12) that each Ej,k is in L.

If we now replace (17) with

B1 + Ji(B2)

2
= −

∑̀
m=−`

q`,mF(`,m),(`+1,m−1) ∈ L,

or
B1 − Ji(B2)

2
=
∑̀
m=−`

q`,−mF(`,m),(`+1,m+1) ∈ L,

the arguments above prove that F(`,m),(`+1,m−1) and F(`,m),(`+1,m+1) are in L
for every m = −`, . . . , `. The relations (12) and (13) then imply that L =
su(4`+ 4).

4. Proof of Theorem 2.6

The outline of the proof is the following:

Step 1. Thanks to a change of coordinates in time and withinH, we restate the
control problem in the so-called interaction framework, to handle the drift
term in the Schrödinger operator. This is also useful to study, in Step 2,
the controllability properties of the system via convexification techniques.
(See Sections 4.1 and 4.2.)
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Step 2. We develop the convexification procedure. We design the control law
in order to excite a given spectral gap and set to zero all the elements
of the control Hamiltonian corresponding to other spectral gaps. (See
Sections 4.4 and 4.6.)

Step 3. The Lie–Galerkin Control Condition is used to prove that the dynamics
obtained in Step 2 generate every unitary transformation of the finite
dimensional Galerkin approximation. (See Section 4.5.)

Step 4. The sparsity structure of the dynamics obtained by convexification
guarantees that the flows of the infinite-dimensional system and of the
Galerkin approximations are as close as desired. (See Section 4.7.)

4.1. Time-reparametrization
Up to replacing each Bj with δBj , we can assume that δ = 1.
For every piecewise constant function z such that z(t) ≥ 1 for every t, we

consider the time-reparametrization

dψ

dt
(t) = (z(t)A+ u1(t)z(t)B1 + · · ·+ up(t)z(t)Bp)ψ(t) (18)

of system (3). Each uj(t)z(t) belongs to the time-varying set z(t)Uj .
If u1, . . . , up are control laws in (18) then the corresponding controls in (3)

are their time-reparametrizations ũj(s) = uj(t(s)) with t(s) =
∫ s
0
z(τ)dτ , j =

1, . . . , p. By restricting the range of available controls and setting vj(t) =
uj(t)z(t), we can focus our attention on trajectories of

dψ

dt
(t) = (z(t)A+ v1(t)B1 + · · ·+ vp(t)Bp)ψ(t), (19)

with z(t) ≥ 1 and v(t) = (v1(t), . . . , vp(t)) ∈ U . Each solution of (19) with z
and v piecewise constant is the time-reparametrization of a solution of (3) with
piecewise constant controls (but the converse is not necessarily true, since we
restricted the set of admissible controls). Hence, the approximate simultaneous
controllability of (19) implies the approximate simultaneous controllability of
(3). Moreover

‖ũj‖L1 =

∫ t−1(T )

0

|ũj(τ)|dτ =

∫ T

0

|uj(t)|z(t)dt =

∫ T

0

|vj(t)|dt ≤ T,

for j = 1, . . . , p. The last inequality holds since either Uj = [0, 1] or Uj = [−1, 1].
The L1-bounded approximate simultaneous controllability of (3) is proved

in the next sections by showing the approximate simultaneous controllability in
L of (19) with a bound on the controllability time which is uniform with respect
to the tolerance.
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4.2. Interaction framework
Given a solution ψ(·) of (19) with controls z(·), v1(·), . . . , vp(·) and a piece-

wise constant function α(·) with values in {0, 1}, let us define

ω(t) =

∫ t

0

(z(s)− α(s))ds

and
y(t) = e−ω(t)Aψ(t).

In particular
|〈φk, y(t)〉| = |〈φk, ψ(t)〉|, k ∈ N, (20)

for every t. For ω, v1, . . . , vp ∈ R set Θ(ω, v1, . . . , vp) = e−ωA(v1B1 + · · · +
vpBp)e

ωA. Note that

Θ(ω, v1, . . . , vp)jk = 〈φk,Θ(ω, v1, . . . , vp)φj〉
= ei(λk−λj)ω (v1(B1)jk + · · ·+ vp(Bp)jk) , (21)

and that y(·) satisfies

ẏ(t) = (α(t)A+ Θ(ω(t), v1(t), . . . , vp(t)))y(t), α ∈ {0, 1}, v ∈ U, ω̇ + α ≥ 1.
(22)

Conversely, each solution of (22) with α ∈ {0, 1} and v ∈ U piecewise constant
and ω continuous and piecewise affine, with ω̇ + α = z ≥ 1 almost everywhere,
is, up to a time-dependent change of coordinates preserving the modulus of
each component with respect to the basis Φ, a solution of (19) with u piecewise
constant. In particular, each solution of

ẏ(t) = (α(t)A+ Θ(ω(t), v1(t), . . . , vp(t)))y(t), α ∈ {0, 1}, v ∈ U, ω̇ ≥ 1, (23)

with α, v piecewise constant and ω continuous and piecewise affine is, up to
a time-dependent change of coordinates preserving the modulus of each com-
ponent, a solution of (19) with u piecewise constant (but the converse is not
necessarily true).

Proposition 4.1. Approximate simultaneous controllability of (23) implies ap-
proximate simultaneous controllability of (3). If, moreover, approximate simul-
taneous controllability in L =

⋃
k∈N span{φ1, . . . , φk} of (23) is achieved with

a uniform bound on time then (3) is L1-bounded approximately simultaneous
controllable.

Proof. The strategy of the proof follows [BCCS12, Proposition 6.1].
Approximate simultaneous controllability of (23) implies approximate simul-

taneous controllability of (19) in modulus thanks to (20).
Moreover, because of the unitarity of the evolution, the approximate simul-

taneous controllability of (23) is equivalent to the approximate simultaneous
controllability of the system

ẏ(t) = −(α(t)A+ Θ(ω(t), v1(t), . . . , vp(t)))y(t), α ∈ {0, 1}, v ∈ U, ω̇ ≥ 1,
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which implies approximate simultaneous controllability in modulus of the time-
reversed version of (19).

Take r orthonormal initial conditions ψ1
0 , . . . , ψ

r
0 and r orthonormal final con-

ditions ψ1
1 , . . . , ψ

r
1. Since the the spectrum of A is infinite by Assumption (A1)

we can apply [BCCS12, Lemma 6.3] so that for every tolerance η > 0 there exist
k1, . . . , kr ∈ N pairwise distinct such that

C = {etAφk1 + · · ·+ etAφkr | t ∈ R}.

is η-dense in the torus

T = {eθ1Aφk1 + · · ·+ eθrAφkr | θ1, . . . , θr ∈ R}.

By approximate simultaneous controllability in modulus of (19), it follows
that there exists an admissible control (z, v) steering simultaneously each ψj0,
for j = 1, . . . , r, η-close to eθjAφkj for some θ1, . . . , θr ∈ R.

Similarly, by approximate simultaneous controllability in modulus of the
time-reversed equation of (19) there exists an admissible control (z̃, ṽ) steering
system (19) simultaneously, for some θ̃1, . . . , θ̃r ∈ R, from eθ̃1Aφk1 , . . . , e

θ̃rAφkr
to an η-neighborhood of ψ1

1 , . . . , ψ
r
1.

The concatenation of the control (z, v), of a control constantly equal to
(1, 0) on a time interval of suitable length, and of (z̃, ṽ) steers system (19)
simultaneously from ψ1

0 , . . . , ψ
r
0 to a 3η-neighborhood of ψ1

1 , . . . , ψ
r
1.

Finally, according to the conclusion of Section 4.1, the approximate simul-
taneous controllability of (19) implies approximate simultaneous controllability
of (3).

4.3. Galerkin approximation
Definition 4.2. Let N ∈ N. The Galerkin approximation of (23) of order N is
the system

ẋ = (αA(N) + Θ(N)(ω, v1, . . . , vp))x, x ∈ H, (24)

where Θ(N)(ω, v1, . . . , vp) = πNΘ(ω, v1, . . . , vp)πN . Recall that the elements of
Θ(N)(ω, v1, . . . , vp) are as in (21). The controls v are piecewise constant with
values in U , while ω is continuous and piecewise affine, with ω̇ ≥ 1 almost
everywhere.

In the following section we recall a convexification result whose role it is to
identify the matrices that can be obtained by convexification of matrices of the
form Θ(N)(ω, v1, . . . , vp).

4.4. Convexification
The following technical result has been proved in [BCCS12, Lemma 4.3].

Lemma 4.3. Let κ be a positive integer and γ1, . . . , γκ ∈ R \ {0} be such that
|γ1| 6= |γj | for j = 2, . . . , κ. Let

ϕ(t) = (eitγ1 , . . . , eitγκ).
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Then, for every τ0 ∈ R, we have

convϕ([τ0,∞)) ⊇ $S1 × {(0, . . . , 0)} ,

where

$ =

∞∏
k=2

cos
( π

2k

)
> 0. (25)

Moreover, for every R > 0 and ξ ∈ S1 there exists a sequence (τk)∞k=1 such that
τ1 ≥ τ0, τk+1 − τk > R, and

lim
K→∞

1

K

K∑
k=1

ϕ(τk) = ($ξ, 0, . . . , 0) .

4.5. Control in SU(n)

Let n be such that hypothesis (5) holds true. Define the set of matrices

Wn =
{
A(n)

}
∪
{
E0(B

(n)
j ) | (0, j) ∈ Ξn

}
∪
{
E0(B

(n)
j ) + $Eσ(B

(n)
j ) | (σ, j) ∈ Ξn

and σ, j are such that (0, j) ∈ Ξn, σ 6= 0
}

∪
{
$Eσ(B

(n)
j ) | (σ, j) ∈ Ξn, σ 6= 0, and Uj = [−1, 1]

}
,

where Ξn and $ are defined as in (4) and (25), respectively. (Recall that by
rescaling we are assuming δ = 1.)

Notice that Lie(Wn) = Lie(V0
n).

Consider the auxiliary control system

ẋ = M(t)x, M(t) ∈ Wn, (26)

where M plays the role of control. It follows from (5) and standard controlla-
bility results on compact Lie groups (see [JS72]) that for every g ∈ SU(n) there
exists a piecewise constant function M : [0, T ]→Wn such that

−→
exp

∫ T

0

M(s) ds = g,

where the chronological notation
−→
exp

∫ t
0
Vs ds is used for the flow from time 0

to time t of the time-varying equation q̇ = Vs(q), q ∈ Cn (see [AS04]).
We stress that T can be bounded from above by a constant depending on n

and Wn but not on g.
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4.6. System reduction by convexification
Let n be fixed as in the previous section. For every N ≥ n let

Wn,N =
{
A(N)

}
∪
{
E0(B

(N)
j ) | (0, j) ∈ Ξn

}
∪
{
E0(B

(N)
j ) + $Eσ(B

(N)
j ) | (σ, j) ∈ Ξn

and σ, j are such that (0, j) ∈ Ξn, σ 6= 0
}

∪
{
$Eσ(B

(N)
j ) | (σ, j) ∈ Ξn, σ 6= 0, and Uj = [−1, 1]

}
.

Lemma 4.4. For every N ≥ n and for every piecewise constant M : [0, T ] →
Wn,N there exist α : [0, T ] → {0, 1}, v : [0, T ] → U piecewise constant and a
sequence (ωh(·))h∈N of continuous and piecewise affine functions from [0, T ] to
[0,∞) with ω̇h ≥ 1 almost everywhere, such that∥∥∥∥∫ t

0

(α(s)A(N) + Θ(N)(ωh(s), v1(s), . . . , vp(s)))ds −
∫ t

0

M(s)ds

∥∥∥∥→ 0

uniformly with respect to t ∈ [0, T ] as h tends to infinity.

Proof. Let N ≥ n. Define α(t) and v1(t), . . . , vp(t) at each t ∈ [0, T ] as follows:
if M(t) = A(N) then α(t) = 1 and v1(t) = · · · = vp(t) = 0; otherwise, if
M(t) = E0(B

(N)
j ), M(t) = E0(B

(N)
j ) + $Eσ(B

(N)
j ), or M(t) = $Eσ(B

(N)
j ) for

some j, then take such a j minimal and set vj(t) = 1 and α(t) = vk(t) = 0 for
k 6= j.

We are going to apply Lemma 4.3 for every interval on which M(·) is con-
stant. Fix ωh(0) = 0 for every h. Take an interval (t0, t1) on which M(·) is
constant and assume that ωh(t0) has been computed. We next extend ωh on
(t0, t1).

If α = 1 on (t0, t1) then take ωh(τ) = ωh(t0) + τ − t0 for every τ ∈ (t0, t1).
Otherwise, let vj = 1 on (t0, t1) and assume for now thatM(t) = E0(B

(N)
j )+

$Eσ(B
(N)
j ). Apply Lemma 4.3 with γ1 = σ, {γ2, . . . , γκ} = ΣN \ {σ}, ξ = 1,

R = T , and τ0 = ωh(t0). Then there exists a sequence (τk)∞k=1 such that
τ1 ≥ ωh(t0), τk+1 − τk > T , and

lim
K→∞

1

K

K∑
k=1

(eiτkγ1 , . . . , eiτkγκ) = ($, 0, . . . , 0).

In particular there exists K = K(h) such that∣∣∣∣∣ 1

K

K∑
k=1

ei(λl−λm)τkb
(j)
ml −

(
E0(B

(N)
j ) + $Eσ(B

(N)
j )

)
m,l

∣∣∣∣∣ < 1

h
,

for every 1 ≤ l,m ≤ N .

20



Consider the piecewise constant function Y : (t0, t1)→ R defined as follows:
set

sα = t1 + (t1 − t0)
α

K
, α = 0, . . . ,K,

and let

Y (t) = ωh(t0) +

K∑
α=1

ταχ[sα−1,sα)(t), t ∈ (t0, t1).

By a simple smoothing procedure (see for instance [BCCS12, Proposition 5.5])
one can construct a continuous piecewise affine approximation ωh : [t0, t1]→ R
of Y with ω̇h ≥ 1 almost everywhere such that∥∥∥∥∫ t

t0

(Θ(N)(ωh(s), v1(s), . . . , vp(s)))ds−
∫ t

t0

M(s)ds

∥∥∥∥→ 0 (27)

uniformly with respect to t ∈ [t0, t1] as h tends to infinity.
The same argument can be carried out in the case in whichM(t) = E0(B

(N)
j )

by applying Lemma 4.3 with γ1 in (0,∞)\ΣN , {γ2, . . . , γκ} = ΣN , ξ = 1, R = T ,
and τ0 = ωh(t0).

The final case to be considered is when M(t) = $Eσ(B
(N)
j ) with σ 6= 0,

(σ, j) ∈ Ξn, and Uj = [−1, 1]. Notice that

$Eσ(B
(N)
j ) =

(E0(B
(N)
j ) + $Eσ(B

(N)
j ))− (E0(B

(N)
j ) + $J−1(Eσ(B

(N)
j )))

2
.

(28)
The argument above can be easily adapted to matrices M(t) of the type

vj(E0(B
(N)
j ) +$Jξ(Eσ(B

(N)
j ))), with vj ∈ Uj , ξ ∈ S1 (not assuming ξ = 1 when

applying Lemma 4.3), and in particular to −(E0(B
(N)
j ) + $J−1(Eσ(B

(N)
j ))).

It suffices then to introduce a sequence (Mh)h∈N of piecewise constant func-
tions with values in

{vj(E0(B
(N)
j ) + $Jξ(Eσ(B

(N)
j ))) | vj ∈ Uj , ξ ∈ S1}

such that
∫ t
t0
Mh(s)ds converges uniformly for t ∈ [t0, t1] to

∫ t
t0
M(s)ds as h

tends to infinity and to apply a diagonal procedure based on the approximation
introduced above.

As a consequence of the lemma above and thanks to [AS04, Lemma 8.2], we
have∥∥∥∥ −→exp

∫ t

0

(
α(s)A(N) + Θ(N)(ωh(s), v1(s), . . . , vp(s))

)
ds− −→

exp

∫ t

0

M(s) ds

∥∥∥∥→ 0

(29)

uniformly with respect to t ∈ [0, T ] as h tends to infinity.
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4.7. Control of the infinite-dimensional system
Proposition 4.5 below states that we can pass to the limit in (29) as N tends

to infinity. Its proof is based on the sparsity structure of the matrices in Wn,N ,
guaranteeing that the dynamics of the infinite-dimensional system and the one
of the Galerkin approximations are as close as desired.

We introduce the following notation: given n ∈ N and a bounded linear
transformation L of H, let Cropn(L) be the n× n matrix (〈φj , Lφk〉)nj,k=1. We
use the same symbol Cropn also to denote the similar cropping operation acting
on the space of N ×N matrices, with N ≥ n.

Proposition 4.5. Let n ∈ N andM : [0, T ]→Wn be piecewise constant. Then,
for every ε > 0, there exist piecewise constant controls z : [0, T ] → [1,∞) and
v : [0, T ] → U , and a continuous piecewise affine function ω with ω̇ ≥ 1 such
that the propagator Ψ of (23) satisfies∥∥∥∥ −→exp

∫ t

0

M(s) ds− Cropn(Ψt)

∥∥∥∥ < ε,

for every t ∈ [0, T ].

Proof. Consider µ > 0 to be fixed later. For every j ∈ N the hypothesis that
φj belongs to D(Bl) implies that the sequence ((Bl)jk)k∈N is in `2 for every
l = 1, . . . , p. It is therefore possible to choose N ≥ n in such a way that
‖((Bl)jk)k>N‖`2 < µ for every j = 1, . . . , n and l = 1, . . . , p.

Let M̂ be a piecewise constant function from [0, T ] to Wn,N such that
Cropn M̂(t) = M(t) for every t in [0, T ]. Because of the definition of Ξn and of
the classes Wn,N and Wn we have

−→
exp

∫ t

s

M̂(τ) dτ =

 −→
exp

∫ t

s

M(τ) dτ 0

0 ∗

 .

By Lemma 4.4, for every η > 0, there exist piecewise constant controls
α : [0, T ] → {0, 1}, v : [0, T ] → U and a continuous piecewise affine function ω
with ω̇ ≥ 1 such that∥∥∥∥ −→exp

∫ t

s

(
α(τ)A(N) + Θ(N)(ω(τ), v1(τ), . . . , vp(τ))

)
dτ− −→

exp

∫ t

s

M̂(τ) dτ

∥∥∥∥ < η,

for every s, t in [0, T ].
Consider the solution Ψ of (23) associated with α, ω and v. Set, for k ∈ N,

Q
(k)
t = Cropk Ψt.

Now
Q̇

(N)
t =

(
αA(N) + Θ(N)(ω, v1, . . . , vp)

)
Q

(N)
t +R

(N)
t ,
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and the choice of N is such that

|(R(N)
t )j,k| ≤ µ, (30)

for every j = 1, . . . , n and k = 1, . . . , N . Notice, moreover, that the norm
of R(N)

t can be uniformly bounded by a positive constant C independent of η
(possibly depending on N and hence on µ).

By the variation formula and since Q(n)
t = Cropn(Q

(N)
t ) we have

Q
(n)
t = Cropn

[
−→
exp

∫ t

0

(
α(τ)A(N) + Θ(N)(ω(τ), v1(τ), . . . , vp(τ))

)
dτ +∫ t

0

(
−→
exp

∫ t

s

(
α(τ)A(N) + Θ(N)(ω(τ), v1(τ), . . . , vp(τ))

)
dτ

)
R(N)
s ds

]
,

so that∥∥∥Cropn

(
Ψt−

−→
exp

∫ t

0

(
α(τ)A(N) + Θ(N)(ω(τ), v1(τ), . . . , vp(τ))

)
dτ

)∥∥∥
≤ tηC +

∥∥∥∥∫ t

0

(
−→
exp

∫ t

s

M(τ) dτ

)
Cropn

(
R(N)
s

)
ds

∥∥∥∥ .
The norm of the matrix product(

−→
exp

∫ t

s

M(τ) dτ

)
Cropn

(
R(N)
s

)
is equal to

‖CropnR
(N)
s ‖.

The max norm of CropnR
(N)
s is smaller than µ by (30). Hence∥∥∥Cropn

(
Ψt−

−→
exp

∫ t

0

(
α(τ)A(N) + Θ(N)(ω(τ), v1(τ), . . . , vp(τ))

)
dτ

)∥∥∥
≤ T (ηC +

√
nµ).

The constant T (ηC +
√
nµ) can be made arbitrarily small by choosing µ small

with respect to n and T and then η small with respect to C = C(µ) and T .

Based on the previous results, we can now easily complete the proof of
Theorem 2.6.

Proof of Theorem 2.6. Let r in N, ψ1, . . . , ψr in H, Υ̂ in U(H), and ε > 0. Let
n0 be large enough so that there exists g ∈ SU(n0) for which

|〈φj , Υ̂ψk〉 − 〈πn0
φj , gπn0

ψk〉| < ε,

for every 1 ≤ k ≤ r and j ∈ N.

23



Let n ≥ n0 be such that hypothesis (5) is satisfied. Notice that if ψ1, . . . , ψr
and Υ̂(ψ1), . . . , Υ̂(ψr) are in L then n can be taken independently of ε.

From Section 4.5, there exists M : [0, T ]→Wn such that

−→
exp

∫ T

0

M(s) ds = g,

where g is seen as an element of SU(n).
Proposition 4.5 ensures the existence of two piecewise constant functions

z and v and of a continuous piecewise affine function ω with ω̇ ≥ 1 almost
everywhere such that the associated propagator Ψ of (23) satisfies∥∥∥∥∥ −→exp

∫ T

0

M(s) ds− Cropn(ΨT )

∥∥∥∥∥ < ε.

If ψ1, . . . , ψr, Υ̂(ψ1), . . . , Υ̂(ψr) are in L then T is independent of ε. By Propo-
sition 4.1 system (3) is L1-bounded approximately simultaneously controllable.

5. Proof of Theorem 2.8

The proof of Theorem 2.8 follows the same scheme as the one of Theorem 2.6.
The key new argument is the following: it has been proved in Proposition 4.5
that system (19) can track every trajectory of (26). The idea is to replace
(26) with a system which can track with arbitrary precision every trajectory
in SU(n). The crucial property, beyond the Lie bracket generating condition,
that the new version of (26) should satisfy in order to achieve this goal is to be
driftless (i.e., the time-reversal of each admissible trajectory is itself admissible).

The same time-reparameterization and time-dependent change of coordi-
nates as in Section 4.1 allows one to consider the tracking problem for system
(23) instead of system (3). As in the previous section we consider δ to be
renormalized to 1.

We can then base our argument on the following analogue of Proposition 4.1.

Proposition 5.1. If (23) is a m-tracker then (3) is a m-tracker as well.

The following proposition allows one to reduce a tracking problem in the
space of unitary operators of H to a tracking problem in SU(n) for n large
enough. Its proof can be found in [BCCS12, Proposition 5.7].

Proposition 5.2. Let Υ̂ : [0, T ] → U(H) be a continuous curve. Take ε > 0
and m ∈ N. Then for n ≥ m sufficiently large there exists a continuous curve
g : [0, T ]→ SU(n) such that |〈φj , Υ̂(t)φk〉−〈ej , g(t)ek〉| < ε for every t in [0, T ],
1 ≤ k ≤ m, and j = 1, . . . , n, where (e1, . . . , en) denotes the canonical basis of
Rn.
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Let n be chosen as in Proposition 5.2. According to the Lie–Galerkin Track-
ing Condition, we can assume, without loss of generality, that Lie(Vn) = su(n).

The roles played in Sections 4.5 and 4.6 by Wn and Wn,N are now played
by $Vn and $Vn,N , where Vn is defined as in (6) and

Vn,N =
{
Jξ(Eσ(B

(N)
j )) | (σ, j) ∈ Ξn, σ 6= 0, ξ ∈ S1

}
.

In particular, we consider the auxiliary control system

ẋ = M(t)x, M(t) ∈ $Vn, (31)

with M being the matrix-valued control parameter. It follows from the equality
Lie(Vn) = su(n) and Rashevski–Chow’s theorem that every trajectory on SU(n)
can be tracked with arbitrary precision (up to time-reparameterization) by a
trajectory of (31).

The relation between the trajectories of (24) and those of (31) (or, more
precisely, ẋ = M(t)x, M(t) ∈ $Vn,N ), is described by the following lemma.

Lemma 5.3. For every N ≥ n and for every piecewise constant M : [0, T ] →
$Vn,N there exist α : [0, T ] → {0, 1}, v : [0, T ] → U piecewise constant, and a
sequence (ωh(·))h∈N of continuous and piecewise affine functions from [0, T ] to
[0,∞) with ω̇h ≥ 1 almost everywhere such that∥∥∥∫ t

0

(
α(s)A(N) + Θ(N) (ωh(s), v1(s), . . . , vp(s))

)
ds−

∫ t

0

M(s)ds
∥∥∥→ 0

uniformly with respect to t ∈ [0, T ] as h tends to infinity.

Proof. The proof is almost identical to that of Lemma 4.4 in the case M(t) =

$Eσ(B
(N)
j ). The only difference is in replacing (28) with

$Jξ(Eσ(B
(N)
j )) =

(E0(B
(N)
j ) + $Jξ(Eσ(B

(N)
j )))− (E0(B

(N)
j ) + $J−ξ(Eσ(B

(N)
j )))

2
.

We then apply the same convexification argument.

As in the previous section, the lemma above and [AS04, Lemma 8.2] imply
that ∥∥∥ −→exp

∫ t

0

(
α(s)A(N) + Θ(N)(ωh(s), v1(s), . . . , vp(s))

)
ds

− −→
exp

∫ t

0

M(s) ds
∥∥∥→ 0 (32)

uniformly with respect to t ∈ [0, T ] as h tends to infinity.
In analogy with Section 4.7 we can conclude the proof of Theorem 2.8 thanks

to the proposition below, which states that we can pass to the limit in (32) as
N tends to infinity. Its proof is basically the same as the one of Proposition 4.5.
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Proposition 5.4. Let n ∈ N and M : [0, T ] → $Vn be piecewise constant.
Then, for every ε > 0, there exist piecewise constant controls z : [0, T ]→ [1,∞)
and v : [0, T ] → U , and a continuous piecewise affine function ω with ω̇ ≥ 1
almost everywhere such that the propagator Ψ of (23) satisfies∥∥∥∥ −→exp

∫ t

0

M(s) ds− Cropn(Ψt)

∥∥∥∥ < ε,

for every t ∈ [0, T ].

Remark 5.5. The hypothesis that each Uj contains 0 in its interior can be
relaxed. Indeed, up to reordering, let p′ be such that Uj = [0, δ] if j = 1, . . . , p′

and Uj = [−δ, δ] for j > p′. Assume that, for every j ∈ {1, . . . , p′}, if l 6= k
are such that λl = λk, then 〈φl, Bjφk〉 = 0. Assume, moreover, that the Lie–
Galerkin Control Condition is satisfied with Vn replaced by the set of all matrices
Jξ(Eσ(B

(n)
j )) with (σ, j) ∈ Ξn, ξ ∈ S1, σ 6= 0, and either j > p′ or the following

holds: if l, k, l′, k′ ∈ {1, . . . , n} satisfy λl − λk = λl′ − λk′ = σ and

〈φl, Bjφk〉 6= 0 6= 〈φl′ , Bjφk′〉,

then
〈φl, Bjφl〉 − 〈φk, Bjφk〉 = 〈φl′ , Bjφl′〉 − 〈φk′ , Bjφk′〉.

In this case the proof of Lemma 5.3 becomes more technically involved. The
point is that, even if E0(B

(N)
j ) cannot be eliminated by convexification, it is a

diagonal matrix by hypothesis. Hence, it can be used to define a new interaction
framework. The sequence (ωh(·))h can then be constructed following [BCCS12,
Proposition 5.5].

6. Proof of Theorem 2.12

First, let us prove L1-bounded approximate simultaneous controllability for
system (3) in s/2-norm for initial and final data in L. Namely, we want to
prove that, for r ∈ N, ψ1, . . . , ψr ∈ L, and Υ̂ ∈ U(H) with Υ̂ψ1, . . . , Υ̂ψr ∈ L,
there exists K > 0 such that the following holds: For every ε > 0 there exists a
control u, with ‖u‖L1 ≤ K, such that

‖ψj −Υu
Tψj‖s/2 < ε, j = 1, . . . , r. (33)

Let N be such that ψ1, . . . , ψr and Υ̂ψ1, . . . , Υ̂ψr are in span{φ1, . . . , φN}.
Note that on span{φ1, . . . , φN} we have

‖ψ‖s/2 =

(
N∑
k=1

|λk|s|〈φk, ψ〉|2
)1/2

≤ (max{|λ1|, |λN |})s/2‖ψ‖. (34)

Since system (3) is L1-bounded approximately simultaneously controllable, there
exists K > 0 such that for every ε > 0 there exists a piecewise constant control
u with ‖u‖L1 ≤ K and

‖ψj −Υu
Tψj‖ < ε, j = 1, . . . , r.
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Hence (34) implies L1-bounded approximate simultaneous controllability in s/2-
norm in L.

Now let ψ1, . . . , ψr ∈ D(|A|s/2) and Υ̂ ∈ U(H) be such that Υ̂ψ1, . . . , Υ̂ψr ∈
D(|A|s/2). Let ε > 0 and consider ψ0

1 , . . . , ψ
0
r and ψ1

1 , . . . , ψ
1
r in L such that

‖ψ0
j − ψj‖s/2 < ε and ‖ψ1

j − Υ̂ψj‖s/2 < ε,

for j = 1, . . . , r. As proved above (see (33)), there exist K, independent on ε,
and a piecewise constant control u with ‖u‖L1 ≤ K such that

‖ψ1
j −Υu

Tψ
0
j ‖s/2 < ε, j = 1, . . . , r.

By [BCC13, Proposition 2] and since system (3) is s-weakly coupled, there exists
a constant C depending only on s and A,B1, . . . , Bp such that

‖Υu
Tψ‖s/2 ≤ CK‖ψ‖s/2,

for every ψ ∈ D(|A|s/2). Therefore

‖Υu
T (ψj)− Υ̂(ψj)‖s/2 ≤ ‖Υu

T (ψj − ψ0
j )‖s/2 + ‖Υu

Tψ
0
j − ψ1

j ‖s/2 + ‖ψ1
j − Υ̂ψj‖s/2

≤ (CK + 2)ε,

for j = 1, . . . , r. �

Remark 6.1. Using arguments similar to those of the proof of Theorems 2.6
and 2.12, it is possible to prove a finer statement than Corollary 2.13. Indeed
it is possible to prove that a system that satisfies Assumptions (A′), the Lie–
Galerkin Tracking Condition, and is s-weakly coupled is an m-tracker for the
s/2-norm. This is due to the fact that the Lie–Galerkin Tracking Condition
actually implies m-tracking in L with a uniform bound on the L1 norm of the
control.
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