Riemannian L p Averaging on Lie Group of Nonzero Quaternions

Abstract : This paper discusses quaternion $L^p$ geometric weighting averaging working on the multiplicative Lie group of nonzero quaternions $\mathbb{H}^{*}$, endowed with its natural bi-invariant Riemannian metric. Algorithms for computing the Riemannian $L^p$ center of mass of a set of points, with $1 \leq p \leq \infty$ (i.e., median, mean, $L^p$ barycenter and minimax center), are particularized to the case of $\mathbb{H}^{*}$. Two different approaches are considered. The first formulation is based on computing the logarithm of quaternions which maps them to the Euclidean tangent space at the identity $\mathbf{1}$, associated to the Lie algebra of $\mathbb{H}^{*}$. In the tangent space, Euclidean algorithms for $L^p$ center of mass can be naturally applied. The second formulation is a family of methods based on gradient descent algorithms aiming at minimizing the sum of quaternion geodesic distances raised to power $p$. These algorithms converges to the quaternion Fr\'{e}chet-Karcher barycenter ($p=2$), the quaternion Fermat-Weber point ($p=1$) and the quaternion Riemannian 1-center ($p=+\infty$). Besides giving explicit forms of these algorithms, their application for quaternion image processing is shown by introducing the notion of quaternion bilateral filtering.
Type de document :
Article dans une revue
Advances in Applied Clifford Algebras, Springer Verlag, 2014, 24 (2), pp.355-382. 〈10.1007/s00006-013-0432-2〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00789164
Contributeur : Jesus Angulo <>
Soumis le : mercredi 21 janvier 2015 - 16:25:37
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 08:16:22

Fichier

LpAveragingQuaternions_angulo_...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jesus Angulo. Riemannian L p Averaging on Lie Group of Nonzero Quaternions. Advances in Applied Clifford Algebras, Springer Verlag, 2014, 24 (2), pp.355-382. 〈10.1007/s00006-013-0432-2〉. 〈hal-00789164v3〉

Partager

Métriques

Consultations de la notice

237

Téléchargements de fichiers

166