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MORPHOLOGICAL BILATERAL FILTERING

JESÚS ANGULO∗

Abstract. A current challenging topic in mathematical morphology is the construction of lo-
cally adaptive operators; i.e., structuring functions that are dependent on the input image itself at
each position. Development of spatially-variant filtering is well established in the theory and prac-
tice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these
convolution-based approaches in order to introduce adaptive nonlinear filters that asymptotically
correspond to spatially-variant morphological dilation and erosion. In particular, starting from the
bilateral filtering framework and using the notion of counter-harmonic mean, our goal is to propose
a new low complexity approach to define spatially-variant bilateral structuring functions. Then, in
the second part of the paper, an original formulation of spatially-variant flat morphological filters is
proposed, where the adaptive structuring elements are obtained by thresholding the bilateral struc-
turing functions. The methodological results of the paper are illustrated with various comparative
examples.

Key words. bilateral filtering, counter-harmonic mean, adaptive mathematical morphology,
spatially variant structuring functions

AMS subject classifications.

1. Introduction. Mathematical morphology is a well-known nonlinear image
processing methodology based on the application of lattice theory to spatial struc-
tures [47] [26]. Let E be the Euclidean Rd or discrete space Zd (support space) and let
T be a set of grey-levels (space of values). It is assumed that T = R = R∪{−∞,+∞}.
A grey-level image is represented by a function f : E → T , f ∈ F(E, T ), i.e., f maps
each pixel x ∈ E into a grey-level value t ∈ T : t = f(x). Given a grey-level image,
the two basic morphological mappings F(E, T ) → F(E, T ) are the dilation and the
erosion given respectively by

δb(f)(x) = sup
y∈E

(f(x− y) + b(y)) = sup
y∈E

(f(y) + b(y − x)) (1.1)

and

εb(f)(x) = inf
y∈E

(f(x+ y)− b(y)) = inf
y∈E

(f(y)− b(y + x)) (1.2)

where b ∈ F(E, T ) is referred to as the structuring function, and determines the
effect of the operator. If the support space of function b is supp(b) ⊂ E, i.e., a
“window” smaller than the image domain, the two forms of equations (1.1) and (1.2)
are valid if b is extended to domain E by putting −∞ outside its bounded support.
Other well-known morphological operators, such as the opening and the closing, are
obtained as products of dilation/erosion. The most commonly studied framework,
which additionally presents better properties of invariance, is based on flat structuring
functions, called structuring elements. More precisely, let B be a Boolean set defined
at the origin, i.e., B ⊆ E or B ∈ P(E), which defines the “shape” of the structuring
element, the associated structuring function is given by b(x) = 0 if x ∈ B and b(x) =
−∞ if x ∈ Bc (where Bc is the complement set of B). Hence, the flat dilation and
flat erosion can be computed respectively by the moving local maxima and minima
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filters, i.e., δB(f)(x) = supy∈B (f(x− y)) and εB(f)(x) = infy∈B (f(x+ y)), where
the shape of the structuring element B determines the effect of the operator.

The original formulation of dilation and erosion for grey-level images [46, 52], as
well as the other morphological operators, was translation invariant in the space and
the intensity. Later, mathematical morphology was formulated in the framework of
complete lattices [47, 26], which leads to a general case of dilation and adjoint erosion
compatible with spatially-variant operators. Nevertheless, most of current implemen-
tations and classical applications studied in the literature are based on morphological
operators which are translation invariant in the space and in the intensity [51], i.e.,
the same structuring function b(x) (or structuring element B) is considered for each
point x of the image. A current challenging topic in mathematical morphology is the
construction of appropriate adaptive operators; i.e., structuring functions become de-
pendent on the position or on the input image itself. In previous works, the adaptive
operators are based on two main approaches. On the one hand, a variability on E:
spatially variable shape of structuring functions according to i) the position in the im-
age [5, 17], ii) the local regularity [37, 24], iii) the local orientation [56]. On the other
hand, a variability on T : variable size of structuring functions according to the local
intensity or contrast [55, 40]. The case of a structural adaptivity based on the prod-
uct space E × T has been also considered in [4], by working on nonlinear scale-space
decompositions. For an overview on the state-the-art on adaptive morphology, the
interested reader is invited to the paper [41]. Another recent study [44] is very inter-
esting for understanding the theoretical limitations of input-adaptive morphological
operators.

Aim of the paper. Development of locally adaptive filtering is well established
in the theory and practice of Gaussian filtering. The aim of this paper is to study
how to generalize these convolution based approaches in order to introduce adaptive
nonlinear filters which asymptotically correspond to spatially-variant morphological
dilation and erosion. In particular, starting from the bilateral filtering and using
the notion of counter-harmonic mean, our goal is to propose a new, low complex-
ity approach to generate spatially-variant structuring functions. After thresholding,
adaptive structuring elements are obtained, which can be used to compute spatially-
variant dilation, erosion, opening and closing.

Related work. Bilateral filtering [53] is a locally adaptive Gaussian convolution
technique to smooth images while preserving edges, where the Gaussian coefficients
at a point are weighted by the intensity distance between its neighbors. Its formula-
tion is quite simple and requires only two easily tunable parameters: the size and the
contrast of the image features to preserve. A recent systematic study on the theory
and applications of bilateral filtering can be found in [43]. As it was shown in [19, 20],
bilateral filtering is strongly related to weighted least squares filtering [34], robust
estimation filtering [63, 6] and anisotropic diffusion [57, 7] and Beltrami flow-based
geometric diffusion [48, 31, 49]. In particular, bilateral filtering is a discrete filter re-
lated asymptotically to Perona and Malik PDE equation [42, 16], see [43] for a proof
of this connection. Another generalization of bilateral filtering is the spatial-tonal
normalized convolution proposed in [9], which showed also the equivalence with local
mode filtering. The idea of locally structure-adaptive convolution was also studied
in [62] where an anisotropic Gaussian kernel (i.e., ellipsoid kernel) was defined by com-
puting locally the structure orientation and an anisotropy parameter (i.e., Gaussian
curvature). An optimized algorithm was later proposed for a fast implementation [22].
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Bilateral filters are also related to the Lee’s σ-filter [36], which only considers
averaging in neighborhoods of pixels having similar intensities to the central pixel,
but without including a spatial distance term. Another approach proposed also by
Lee [35] to avoid the blurring effect of the spatial filtering consists in using a statistical
(optimal) correction. Theoretical and empirical comparison of bilateral filtering and
σ-filter was considered in [12], and they conclude that the bilateral filter performs
a better denoising than Lee’s filters. Non-local means (NL-means) [12], recently in-
troduced in the continuity of the bilateral filter, is an image denoising process based
on non-local averaging of all the pixels in an image. More precisely, the amount of
weighting for a pixel in NL-means is based on the degree of similarity between a small
patch centered around that pixel and the small patch centered around the pixel being
denoised.

The construction of locally adaptive edge-preserving structuring elements has
been previously considered in the literature of mathematical morphology. The notion
of generalized geodesy [50] was proposed to introduce locally adaptive geodesic neigh-
borhoods. Morphological amoebas [37] were proposed as a flexible discrete approach
to compute locally adaptive structuring elements. Morphological amoebas have been
basically considered for median filtering. In a recent study [60], it has been estab-
lished an interesting correspondence between the iterated amoeba median filtering
and the PDE of self-snakes. More recently, it has been introduced in [24] a framework
to compute adaptive kernels using geodesic distances which generalizes the metric of
morphological amoebas and adaptive geodesy. But it is exclusively used for averag-
ing edge-preserving smoothing. We should remark that the adaptive neighborhoods
associated to distance propagation in amoebas, or in generalized geodesy, involve a
relatively high computational complexity.

We propose in this study an original formulation of adaptive morphological filters,
with both volumetric and flat structuring functions, based on a nonlinearization of
the bilateral filtering. The associated algorithms takes advantage of the low compu-
tational complexity of bilateral filtering. The starting point of the adopted approach
is the notion of counter-harmonic mean [13]. In fact, the idea of using the counter-
harmonic mean to construct robust morphological-like operators, without the notions
of supremum and infimum, was proposed in [54]. We have recently used in [2] the
counter-harmonic framework to generalize image diffusion in order to introduce iter-
ative nonlinear filters which effects mimic morphological dilation and erosion.

Paper organization. This paper is an extended and improved version of a
conference contribution [3]. In particular, in the present manuscript, a complete
proof of the main result is given as well as more details on the implementation of
present operators. In addition, a better analysis of the behavior of the operators and
more illustrative examples are included.

The outline of the paper is as follows. In next Section is reviewed, on the one
hand, the notion of counter-harmonic mean filter and its appropriateness to approxi-
mate flat dilation/erosion. On the other hand, the principles of bilateral filtering are
also reminded in Section 2. Section 3 introduces the proposed counter-harmonic gener-
alization of bilateral filtering, including the limit relationships with various families of
locally adaptive structuring functions. Generalization of these results to NL-means is
also initiated. Section 4 discusses the construction of flat spatially variant morphology
using thresholded adaptive structuring functions in the framework of morphological
operators formulated by upper level sets decomposition. This section includes also
some examples on the application of such filters. The paper is concluded with a
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summary and perspectives in Section 5.

2. Background. The aim of this section is to provide the background material
necessary for our contribution. More specifically, the notion of counter-harmonic mean
filter and its appropriateness to approximate flat dilation/erosion are reviewed, and
the principles of bilateral filtering are reminded.

2.1. Counter-Harmonic filter. The counter-harmonic mean (CHM) belongs
to the family of the power means, which are studied in detail in [13]. The CHM has
been considered in the image processing literature as a suitable filter to deal with salt
and pepper noise [23]. For the simplicity of subsequent analysis, let us consider a
non-negative valued grey-level image, f ∈ F(E, [0,+∞]).

Definition 2.1. The CHM filter is obtained as

κP
B(f)(x) =





∑
z∈B(x) f(z)

P+1

∑
z∈B(x) f(z)

P if P ∈ R

maxz∈B(x) (f(z)) = δB(f)(x) if P = +∞
minz∈B(x) (f(z)) = εB(f)(x) if P = −∞

(2.1)

where f(z)P is the pixel image value f(z) to the power of P and B(x) is the window of
the filter centered at point x, i.e., the structuring element in the case of morphological
operators.

This filter is well suited for reducing the effect of pepper noise for P > 0 and of
salt noise for P < 0. It is easy to see that for P ≫ 0 (P ≪ 0) the pixels with largest
(smallest) values in the local neighborhood B will dominate the result of the weighted
sum. Of course, in practice, the range of P is limited due to the precision in the
computation of the floating point operations. In the pioneering paper [54], starting
from the natural observation that morphological dilation and erosion are the limit
cases of the CHM, it was proposed to use the CHM to calculate robust nonlinear
operators which approach the morphological ones but without using max and min
operators. In addition, these operators are more robust to outliers (i.e., to noise)
and consequently they can be considered as an alternative to rank-based filters in the
implementation of pseudo-morphological operators.

In our recent study [2] we have also considered empirically how CHM converges to
the supremum (resp. infimum) when positive P increases (negative P decreases), in
comparison with the P -norm based mean. Let us examine also two properties which
are useful to understand the practical interest of the CHM filter.

Proposition 2.2. If 0 ≤ P ≤ +∞ then κP
B(f) ≥ M

P
B(f); and if −∞ ≤ P ≤

0 then the following stronger results holds: κP
B(f) ≤ M

P−1
B (f); where M

P
B(f) =(∑

z∈B(x) f(z)
P
)1/P

is the P−th power-mean filter, or Minkowski mean of order P ,

defined for P ∈ R∗. Inequalities are strict unless P = 0, +∞, −∞ or if f(x) is
constant.

Proposition 2.3. If −∞ ≤ P < Q ≤ +∞ then κP
B(f) ≤ κ

Q
B(f), with equality if

and only if f(x) is constant.

Proofs of Propositions 2.2 and 2.3 as well as other properties can be found in [13].
Proposition 2.2 justifies theoretically the suitability of CHM with respect to the al-
ternative approach by high-order Minkowski mean, as considered by Welk [59], in
order to propose a nonlinearization of averaging-based filters. We note that according
to Proposition 2.2, the convergence to the erosion with P ≪ 0 is faster than to the
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dilation with equivalent P ≫ 0, i.e., for P > 0

|κP
B(f)(x, y)− δB(f)(x, y)| ≥ |κ−P

B (f)(x, y)− εB(f)(x, y)|, ∀(x, y) ∈ Ω

This asymmetry indicates that κP
B(f) and κ−P

B (f) are not dual operators with respect
to the complement, i.e., for P > 0

κP
B(f) 6= ∁κ−P

B (∁f)

with ∁f = 1 − f . As it was already pointed out in [54], the fundamental drawback
of κP

B(f) (resp. κ−P
B (f)) is the fact that f(x) � κP

B(f)(x) with P > 0 (resp. f(x) �
κ−P
B (f)(x) with P < 0). Or in other words, the extensitivity (resp. anti-extensitivity)

for P > 0 (resp. P < 0) is not guaranteed. However, according to proposition 2.3,
the following ordering relationship holds for P > 0:

κ−P
B (f)(x, y) ≤ κP

B(f)(x, y).

2.2. Bilateral filter: spatially-variant convolution kernels. Canonic multi-
scale image analysis involves obtaining the various scales by linear convolutions (i.e.,
low-pass filtering) of the original image. Hence, each output image pixel value is a
weighted sum of its neighbors in the input images, where the weights decrease with
the spatial distance to the center position. These weights are usually given by a Gaus-
sian kernel, which is also related to linear diffusion. As a result, all neighborhoods
are uniformly blurred, including edges and discontinuities.

The rationale behind the bilateral filtering is to apply a weighted average of nearby
pixels which depends on the distance but also on the difference in value with respect
to the center.

Definition 2.4. The bilateral filter of image f(x) with spatially-variant bivariate

kernel k̃ηs,ηi
(ξ) is defined by the following normalized convolution:

BL(f)(x; k̃ηs,ηi
) =

∫
E
f(y)k̃ηs,ηi

(x− y)dy
∫
E
k̃ηs,ηi

(x− y)dy
=

∫
E
f(y)kηs

(‖x− y‖)kηi
(|fρ(x)− fρ(y)|)dy∫

E
kηs

(‖x− y‖)kηi
(|fρ(x)− fρ(y)|)dy

(2.2)
where the pair of width parameters defines the scales (ηs, ηi), with ηs being the spatial
(or size) scale and ηi the intensity (or tonal or range) scale; and where kη(ξ) denotes
the function kernel which imposes the smoothing weights of both spatial and contrast
effects.

Thus, in the bilateral filter, each neighbor is weighted by a spatial component
that penalizes distant pixels and an intensity component that penalizes pixels with a
different intensity. The combination by product of both components ensures in BL(f)
that only nearby similar pixels contribute to the final results. In this work, it will
be considered for simplicity that the spatial and intensity kernels are the same. The
intensity distances are computed from fρ(x), a median-filtered version of the initial
image f(x) using a window of size ρ × ρ pixels. The computation of the intensity
penalization from fρ(x), a regularized version of the image, leads to robustness against
noise. This approach is well known in nonlinear diffusion [16] and in the computation
of morphological amoebas (i.e., the “pilot” image [37]). For all the examples given in
this paper, we have fixed ρ = 3 pixels. As in spatially-invariant filtering, increasing the
spatial parameter ηs smoothes large features. As the intensity parameter ηi increases,
the bilateral filter gradually approximates spatially-invariant filtering, and if the value
is too small, no smoothing occurs.
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Figure 2.1. Original Owl image f(x) which will be used as illustrative example in the pa-
per. It includes two zoomed-in patches as well as the corresponding local intensity difference terms
kηi (fρ(x)− fρ(y)), using a Gaussian kernel.

Fig. 2.1 depicts an image that is used as an illustrative example throughout the
paper. Figure includes two zoomed-in patches as well as the corresponding local
intensity difference terms kηi

(fρ(x)−fρ(y)), using a Gaussian kernel. In the standard
formulation of bilateral filtering, the kernel is a Gaussian function: it is well known
that the Gaussian convolution yields a least squares zero-order estimate of image
structure and the Gaussian-based bilateral convolution leads to a robust estimate
of local image structure [19, 9]. However, for the nonlinearization case studied in
this paper, we propose to consider in detail three alternative kernels kη(ξ), which
correspond in fact to three of the most useful continuous probability distributions [32]:

• Gaussian kernel: kσ(ξ) = e
−ξ2

2σ2

• Laplace kernel: kβ(ξ) = e
−|ξ|
β

• Cauchy-Lorentz kernel: kα(ξ) =
1

1+ ξ2

α2

where σ, β and α are the scale parameter which specifies the width of the distri-
bution. Let us just justify the choice of these three kernels. Besides the Gaussian
kernel, which involves the optimal weights for denoising Gaussian-like noise according
to the MAP criterion, the Laplace kernel can be considered as the L1 counterpart and
consequently is more robust for the estimation of adaptive kernels in case of impulse
noise. Both are exponential kernels, and as we will show later, their “morphologiza-
tion” implies to compute their logarithm to obtain respectively a parabolic and a
conic structuring function. The Cauchy-Lorentz kernel is an intermediate function
between the Gaussian and Laplace kernels, it is sharper than the Gaussian kernel; its
main property is its heavy-tailed shape distribution.

It is easy to see that the three kernels are bounded positive functions, i.e.,
0 ≤ kη(ξ) ≤ 1, ξ ∈ R. Note also that as the convolution is normalized in the
bilateral filtering, the corresponding kernels do not require any additional normal-
ization. Fig. 2.2 provides an example of the 2D spatial kernel kηs

(‖x − y‖) for the
three considered cases, where the width parameter is ηs = 2 in the three cases. Then,
the corresponding bilateral kernels, locally adaptive, for Patch 01 of “Owl” image
(see Fig. 2.1), after weighting the shape function with the intensity distance kernel
kηi

(|fρ(x) − fρ(y)|), with ηi = 0.1. For an easier visual comparison, a 1D section of
the spatial and bilateral kernels is also provided. We note that for a convenient inter-
pretation of the intensity and bilateral kernels, the image values have been normalized
to the interval [0, 1]. As previously pointed out, we observe that the Cauchy-Lorentz
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kernel is an intermediate function between the Gaussian and Laplace kernels, and
consequently it is sharper than the Gaussian kernel.
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Figure 2.2. First row: 2D Gaussian kernel (a), Laplacian kernel (b) and Cauchy-Lorentz
kernel (c). Second row: 2D adaptive bilateral Gaussian kernel (d), Laplacian (e) and Cauchy-
Lorentz (f), for Patch 01 from Owl image (see Fig. 2.1). Third row: 1D section of the spatial
kernels (g) and of the bilateral kernels for the patch 01 (h). The scale parameters are ηs = 2 and
ηi = 0.1.

3. Counter-Harmonic Bilateral filter. This section introduces the proposed
counter-harmonic generalization of bilateral filtering, including a study on the limit
relationships with locally adaptive non-linear morphological operators that behave like
morphological filters. We introduce also the notion of bilateral parabolic structuring
function.

3.1. Counter-Harmonic generalization. Utilizing the counter-harmonic paradigm
reviewed in previous Section, the following generalized bilateral filter is proposed.
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Definition 3.1. The counter-harmonic bilateral filter of order P using bilateral
kernel k̃ηs,ηi

is defined as

Ψ(f)(x; k̃ηs,ηi
;P ) =

∫
E
f(y)P+1kηs

(‖x− y‖)kηi
(|fρ(x)− fρ(y)|)dy∫

E
f(y)P kηs

(‖x− y‖)kηi
(|fρ(x)− fρ(y)|)dy

. (3.1)

By choosing P > 0 (resp. P < 0), Ψ(f)(x; k̃ηs,ηi
;P ) leads to a parameterized

family of max-activity (resp. min-activity) operators, which filtering effects for a
given pair of spatial/distance scales (ηs, ηi) depend on the “nonlinearity order” of P .
According to the value of P , this filter skews the bilateral weighted values towards
the supremum or infimum value.

Fig. 3.1 depicts a comparative example of filtering the image “Owl” using the
counter-harmonic bilateral filter Ψ(f)(x; k̃ηs,ηi

;P ), for a Gaussian kernel and a fixed
spatial scale σs = 3 (windowed in a spatial support of 11× 11 pixels), three intensity
scales σi = 0.9, 0.1, 0.01 and three values of P > 0; besides the standard bilateral
filtering (P = 0) and the flat dilation (P = +∞) of size 11 × 11. The behavior of
bilateral filtering with respect to the value of σi is here well illustrated: with high
values, e.g., σi = 0.9, the result is similar to the spatially-invariant Gaussian filter;
with low values, e.g., σi = 0.01, the filtering effect is reduced, independently of the
size of the spatial kernel; σi = 0.1 is here a good trade-off to achieve the adaptive
effect of bilateral kernels.

We observe also the effect of adaptive max-activity filter when P > 0, for in-
stance with P = 5: the spatially-variant dilation results in a weighting moving win-
dow max. on regular regions, but without distorting the main edges. We note that
when P ↑↑, the bilateral max-activity filter converges to the spatially-invariant flat
dilation, losing the properties of local adaptability. In Fig. 3.2 is provides another
comparison of max-activity filtering of image f(x) “Owl”, for a fixed nonlinear order
P = 10 and an intensity scale σi = 0.1. In this case, the results for four differ-
ent spatial scales are depicted; the standard size-equivalent flat dilations are also
included. We observe that the adaptivity property in max-activity filter yields stable
image results with respect to changes in the spatial scale. It should be remarked that
a series of bilateral filters does not produce a scale-space since the standard semi-
group law (recursivity principle) associated to Gaussian convolution does not hold,

i.e., Ψ
(
Ψ(f)(x; k̃t1,ηi

;P )
)
(x; k̃t2,ηi

;P ) 6= Ψ(f)(x; k̃t1+t2,ηi
;P ).

Due to the fact that the nonlinear filter (3.1) for P > 0 (resp. P < 0) is not exten-

sive, i.e., Ψ(f)(x; k̃ηs,ηi
;P > 0) � f(x), ∀x ∈ E (resp. anti-extensive) and does not

commute with the supremum, i.e., Ψ(
∨

n(fn)(x; k̃ηs,ηi
;P ) 6= ∨

n Ψ(fn)(x; k̃ηs,ηi
;P ),

∀x ∈ E (resp. with the infimum), it cannot be considered stricto sensu as a dilation
(resp. erosion). This is the reason why the terminology of max-activity and min-
activity filters has been adopted. But let us contemplate in detail the asymptotic
behavior of the bilateral max/min-activity filters with respect to P .

3.2. Limit statements and spatially-variant structuring functions. We
know from the definition of CHM that

Ψ(f)(x; k̃ηs,ηi
;P = +∞) = sup

y∈E
(f(x− y)) = δB(f)(x), (3.2)

and

Ψ(f)(x; k̃ηs,ηi
;P = −∞) = inf

y∈E
(f(x− y)) = εB(f)(x), (3.3)
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(a) Original (b) Dilation: P = +∞

(c1) σs = 3, σi = 0.9 (c2) σs = 3, σi = 0.9 (c3) σs = 3, σi = 0.9 (c4) σs = 3, σi = 0.9

P = 0 P = 5 P = 10 P = 20

(c1) σs = 3, σi = 0.1 (c2) σs = 3, σi = 0.1 (c3) σs = 3, σi = 0.1 (c4) σs = 3, σi = 0.1

P = 0 P = 5 P = 10 P = 20

(c1) σs = 3, σi = 0.01 (c2) σs = 3, σi = 0.01 (c3) σs = 3, σi = 0.01 (c4) σs = 3, σi = 0.01

P = 0 P = 5 P = 10 P = 20

Figure 3.1. Comparison of max-activity filtering of image f(x) “Owl” using the counter-

harmonic bilateral filter Ψ(f)(x; k̃ηs,ηi ;P ), for a Gaussian kernel and a fixed spatial scale σs = 3
(windowed in a spatial support of 11× 11 pixels), three intensity scales σi = 0.9, 0.1, 0.01 and three
values of P > 0; besides the standard bilateral filtering (P = 0) and the flat dilation (P = +∞) of
size 11× 11.

i.e., flat dilation and flat erosion, where B is the spatial square support of the bilateral
kernel. We can study also the limit cases for P ≫ 0 and P ≪ 0.

Proposition 3.2. For a given pair of scale parameters (ηs, ηi), the first order

approximation of operator Ψ(f)(x; k̃ηs,ηi
;P ) with respect to P , before the limit cases

have following behavior:

Ψ(f)(x; k̃ηs,ηi
;P >> 0) ≈

supy∈E

{
f(y) + 1

P [log (kηs
(‖x− y‖)) + log (kηi

(|fρ(x)− fρ(y)|))]
} (3.4)

Ψ(f)(x; k̃ηs,ηi
;P << 0) ≈

infy∈E

{
f(y)− 1

P [log (kηs
(‖x− y‖)) + log (kηi

(|fρ(x)− fρ(y)|))]
} (3.5)
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(a1) σs = 1.5, σi = 0.1 (a2) σs = 2, σi = 0.1 (a3) σs = 7, σi = 0.1 (a4) σs = 10, σi = 0.1

P = 10 P = 10 P = 10 P = 10

(b1) σs = 1.5, σi = 0.1 (b2) σs = 2, σi = 0.1 (b3) σs = 7, σi = 0.1 (b4) σs = 10, σi = 0.1

P = +∞ P = +∞ P = +∞ P = +∞

Figure 3.2. Comparison of max-activity filtering of image f(x) “Owl” using the counter-

harmonic bilateral filter Ψ(f)(x; k̃ηs,ηi ;P ) with P = 10, for a Gaussian kernel and a fixed intensity
scale σi = 0.1 and four spatial scales σs = 1.5 (windowed in a spatial support of 5×5 pixels), σs = 2
(7×7 pixels), σs = 5.5 (15×15 pixels) and σs = 2 (21×21 pixels). The corresponding flat dilations
(P = +∞) are also included.

which can be interpreted respectively as the supremal convolution (epigraphic addi-
tion) and infimal convolution (notions from convex analysis [45, 28]) of f(x) with a
spatially-variant structuring function:

b̃(x; ηs, ηi;P ) =
1

P
[log (kηs

(‖x− y‖)) + log (kηi
(|fρ(x)− fρ(y)|))] =

1

P
bηs,ηi

(x),

(3.6)
where

bηs,ηi
(x) = [bηs

(‖x− y‖) + bηi
(|fρ(x)− fρ(y)|)] . (3.7)

Proof. We give only the proof for the case P → +∞ since the case P → −∞ is
rather similar. By rewriting fP = exp(P log(f)), taking first order Taylor expansion
log(f) ≈ f − 1 and first order Taylor expansion of exponential function such that

N

D
= exp

(
log

(
N

D

))
≈ 1 + log(N)− log(D),

we have:

limP→+∞ Ψ(f)(x; k̃ηs,ηi ;P ) =

1 + log
∫
E
exp

(
(P + 1)[f(y) + 1

P+1
log(kηs(‖x− y‖)) + 1

P+1
log(kηi(|fρ(x)− fρ(y)|))− 1]

)
dy

+ log
∫
E
exp

(
P [f(y) + 1

P
log(kηs(‖x− y‖)) + 1

P
log(kηi(|fρ(x)− fρ(y)|))− 1]

)
dy,

(3.8)
which can be rewritten as

1 + (P + 1) log

(∫
E

(
exp

(
f(y) + 1

P+1
log(kηs(‖x− y‖)) + 1

P+1
log(kηi(|fρ(x)− fρ(y)|))− 1

))(P+1)

dy

) 1
(P+1)

+P log
(∫

E

(
exp

(
f(y) + 1

P
log(kηs(‖x− y‖)) + 1

P
log(kηi(|fρ(x)− fρ(y)|))− 1

))P
dy

) 1
P
,

(3.9)
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kη(ξ) bη(ξ) ηb(ξ) dη(τ)

Gaussian e−
ξ2

2σ2 − ξ2

2σ2

√
− ξ2

2bσ
(2
√
−2τ)σ

Laplacian e−
|ξ|
β − |ξ|

β − |ξ|
bβ

(−2τ)β

Cauchy-Lorentz 1

1+ ξ2

α2

− log
(
1 + ξ2

α2

) √
ξ2

e−bα−1
(2
√
e−τ − 1)α

Table 3.1

Standard kernel functions kη(ξ), associated morphological counterparts bη(ξ) and derived pa-
rameters: kernel width η as function of the morphological kernel value and diameter of the disk d

obtained by thresholding the morphological kernel function at value τ , with τ ≤ 0.

Using now the standard result

lim
P→+∞

{∫

E

g
P (x)dx

}1/P

= sup
x∈E

g(x),

which holds for positive and bounded function g with support space E, and consid-
ering continuity and monotonicity of the logarithm, we obtain:

limP→+∞ Ψ(f)(x; k̃ηs,ηi ;P ) =

1 + (P + 1) sup
y∈E

(
f(y) + 1

P+1
log(kηs(‖x− y‖)) + 1

P+1
log(kηi(|fρ(x)− fρ(y)|))− 1

)

+P sup
y∈E

(
f(y) + 1

P
log(kηs(‖x− y‖)) + 1

P
log(kηi(|fρ(x)− fρ(y)|))− 1

)
.

(3.10)

By considering that both supremum operations gives closer values, and assuming that
we have P >> 0 but that the limit is not reached, we finally obtain the corresponding
result. We note that the case P = +∞, which corresponds to the flat dilation, is
naturally obtained from the the last expression.

First of all, we observe that the supremal convolution of Rel. (3.4) has exactly the
same formulation that the second form of the translation-invariant dilation δb(f)(x)
as defined in (1.1). We note also that in the case of the erosion, the structuring

function should been transposed b(x) = b̃∗(x; ηs, ηi;P ), i.e., b̃∗(x; ·; ·) = b̃(−x; ·; ·).
This logarithmic connection, which appears here between the linear and the mor-

phological system theory, has been previously considered in the literature [14], by
studying the relationship between the Legendre transform, the Cramer transform and
the logarithmic Laplace transform. We note also that, in these limiting cases, the
counter-harmonic bilateral framework involves a “normalization” by P of the original
spatial and intensity kernel scale parameters during unlinearization, i.e., taking for
instance the case of the bilateral Gaussian kernel, the nonlinear asymptotic scale pa-
rameters are σ̂s =

√
Pσs and σ̂i =

√
Pσi. This result is perfectly coherent with those

obtained from totally different paradigms [59, 21]. Empirically, we have observed that
a typical order of magnitude of 5 ≤ |P | < 10 yields this limit behavior. We note again
that for P = +∞ ⇒ σ̂s = +∞, i.e., the structuring function becomes flat, and hence
we obtain the flat dilation in a windowed spatial support.

The corresponding logarithmic kernels bη(ξ) for the Gaussian, Laplacian and
Cauchy-Lorentz are summarized in Table 3.1, which are respectively a parabolic func-
tion, a conic function and a logarithmic Cauchy-Lorentz function. The three kernels,
which we will call “morphological kernels”, are upper bounded negative bη(ξ) ≤ 0,
ξ ∈ R and convex functions. Fig. 3.3 provides a comparison of the three families
of kernels, spatial and bilateral for a particular image patch, using the same scale
parameters ηs = 2 and ηi = 0.1.
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As we have already stated, the “normalization” introduced by P in the counter-
harmonic bilateral filtering involves a flattening of the structuring function b̃(x; ηs, ηi;P )
when |P | increases and consequently, the values of max-activity and min-activity fil-
ter for P ≫ 0 and P ≪ 0 tends respectively asymptotically to a flat dilation and
a flat erosion, which lose the properties of adaptavility. The examples provided in
Fig. 3.4 allow one to visualize the asymptotic behaviour of morphological structuring
functions with respect to P : we observe that for P > 5 the kernels are already quite
flat, independently of the contribution of the intensity distance-based term. This ef-
fect can be observed in the comparison of min-activity filtering of Fig. 3.5, where the
results for P = 10 are roughly similar to the flat erosion. From the comparison of the
three kernels at P = 5, we observe that, as expected, for the same values of spatial
and intensity scales, the Log. Cauchy-Lorentz produces intermediate effects between
the parabolic and conic structuring functions.

3.3. Bilateral parabolic structuring function. The classical case of the
parabolic structuring function as the morphological equivalent of the Gaussian kernel
is particularly known in the state-of-the art of mathematical morphology. On the
one hand, the parabolic (or more generally, quadratic) structuring functions contain
the unique rotationally symmetric structuring functions that can be dimensionally
decomposed with respect to the dilation [8] and they lead to the canonic morpho-
logical scale-spaces [29, 30]. On the other hand, parabolic structuring functions are
the eigenfunctions, which preserve their shape, of the slope transform [18, 38]. Slope
transform is the equivalent of Fourier transform in the framework of mathematical
morphology. However, to our knowledge, this is the first time that the bilateral
parabolic structuring function, i.e.,

bσs,σi
(x) = −‖x− y‖2

2σ2
s

− |fρ(x)− fρ(y)|2
2σ2

i

(3.11)

appears in the literature.

3.4. Towards non-local parabolic structuring functions. The previous
counter-harmonic framework can be easily extended to other convolution-based fil-
tering techniques, such as NL-Means. We remind that whereas bilateral filtering
builds an estimate of the noise-free image value at a given pixel x by averaging image
values of pixels y that are located spatially near x and having similar intensities to
f(x), the NL-means algorithm uses pixels y, which can be far in the image from x,
but that are “structurally similar” to x. This similarity involves a distance between
images patches Nf (x) and Nf (x), where N is a fixed patch shape of size N×N pixels
centered at the indexed pixel. More precisely, NL-means discrete filter of image f(x)
is defined as

NL(f)(x;N, σ) =

∑
y∈E ωN,σ(x;y)f(y)∑

y∈E ωN,σ(x;y)
, (3.12)

where each weight value ωN,σ(x;y) is given by the Gaussian kernelized Euclidean
distance between the patches:

ωN,σ(x;y) = exp

(
−d (Nf (x),Nf (y))

2

2σ2

)
;
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Figure 3.3. First row: 2D parabolic kernel (a), conic kernel (b) and Log. Cauchy-Lorentz
kernel (c). Second row: 2D adaptive bilateral parabolic kernel (d), conic (e) and Log. Cauchy-
Lorentz (f), for the patch 01 of Owl image (see Fig. 2.1). Third row: 1D section of the spatial
morphological kernels (g) and of the bilateral morphological kernels for the patch 01 (h). The scale
parameters are ηs = 2 and ηi = 0.1.

with

d (Nf (x),Nf (y)) =

√∑

h∈N

(f(x+ h)− f(y + h))2.

The corresponding counter-harmonic non-local filter of order P is defined in a similar
way as (3.1), namely its expression is given by

ΨNL(f ;N, σ;P ) =

∑
y∈E ωN,σ(x;y)f(y)

P+1

∑
y∈E ωN,σ(x;y)f(y)P

. (3.13)



14 J. ANGULO

−3 −2 −1 0 1 2 3
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

S
σ 

, P
(x

)

1D Asymptotic Parabolic kernels, σ = 2

P = 0
P = 5
P = 10
P = 20

−3 −2 −1 0 1 2 3
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

S
α 

, P
(x

)

1D Asymptotic Log Cauchy−Lorentz kernels, α = 2

P = 0
P = 5
P = 10
P = 20

(a) (b)

−3 −2 −1 0 1 2 3
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

x , y = 0

B
σ s=

2,
 σ

i=
0.

1 
;(

x 0=
11

0,
y 0=

18
9)

; P
(x

,y
)

Owl Patch 01 − Asymptotic Local Bilateral Parabolic kernels

P = 0
P = 5
P = 10
P = 20

−3 −2 −1 0 1 2 3
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x , y = 0

B
α s=

2,
 α

i=
0.

1 
;(

x 0=
11

0,
y 0=

18
9)

; P
(x

,y
)

Owl Patch 01 − Asymptotic Local Log Cauchy−Lorentz kernels

P = 0
P = 5
P = 10
P = 20

(c) (d)

Figure 3.4. Asymptotic behaviour of morphological structuring functions with respect to P :
(a) 1D section of spatial parabolic kernel, (b) 1D section of spatial Log. Cauchy-Lorentz kernel, (c)
1D section of adaptive bilateral parabolic kernel for the patch 01 of Owl image, (d) 1D section of
adaptive Log. Cauchy-Lorentz parabolic kernel for the patch 01 of Owl image. The scale parameters
are ηs = 2 and ηi = 0.1.

Fig. 3.6 gives an example of non-local max-activity filtering of image “Owl” using
the filter ΨNL(f ;N, σ;P ) with three values of P > 0, σ = 0.1 and a patch N of
11 × 11 pixels. Using the non-local approach we observe that, in comparison with
the bilateral counterpart (see Fig. 3.1 for σi = 0.1), the areas of the image which are
similar (e.g., bright zones around the eyes) are dilated similarly. Finally, we can also
naturally introduce the non-local parabolic structuring function as

bNL
N,σ(x) = −d (Nf (x),Nf (y))

2

2σ2
= −

∑
h∈N (f(x+ h)− f(y + h))2

2σ2
. (3.14)

Properties and efficient computation of such non-local parabolic structuring functions
will be explored in detail in ongoing research.
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(a) Original (b) Erosion: P = −∞ (c) σs = 3, σi = 0.1

P = 0

(d1) σs = 3, σi = 0.1 (d2) βs = 3, βi = 0.1 (d3) αs = 3, αi = 0.1

P = −5 P = −5 P = −5

(e1) σs = 3, σi = 0.1 (e2) βs = 3, βi = 0.1 (e3) αs = 3, αi = 0.1

P = −10 P = −10 P = −10

Figure 3.5. Comparison of min-activity filtering of image f(x) “Einstein” using the counter-

harmonic bilateral filter Ψ(f)(x; k̃ηs,ηi ;P ), using the three kernels (parabolic, conic and Log.
Cauchy-Lorentz), for a fixed spatial ηs = 3 (windowed in a spatial support of 11 × 11 pixels) and
intensity ηi = 0.1 scales; two values of P < 0; besides the standard bilateral filtering (P = 0) and
the flat erosion (P = −∞) of size 11× 11.
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(a) Original (b) Dilation: P = +∞ (c) NL-Means: P = 0

(d) P = 2 (e) P = 5 (f) P = 10

Figure 3.6. Comparison of max-activity filtering of image f(x) “Owl”, given in (a), using
the counter-harmonic non-local filter ΨNL(f ;N, σ;P ), where σ = 0.1 and the patch N has a size of
11× 11 pixels. Three values of P > 0 are given in (d)-(f); besides the standard NL-means filtering
(P = 0) and the flat dilation (P = +∞) of size 11× 11.
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4. Bilateral flat morphological operators. At this point, we have the in-
gredients to carry out the study on bilateral morphology by considering directly the
dilation and erosion using spatially-variant morphological structuring functions [47,
26, 10], without the use of the counter-harmonic framework, i.e.,

δbηs,ηi
(f)(x) = sup

y∈E
(f(y) + bx; ηs,ηi

(y − x)) (4.1)

εbηs,ηi
(f)(x) = inf

y∈E
(f(y)− bx; ηs,ηi

(y + x)) , (4.2)

where the bilateral structuring function bx; ηs,ηi
is given in Rel.(3.7). The formulation

of spatially-variant bilateral opening γbηs,ηi
(f) requires the use of the notion of pulse

function [27] ix,t of level t at point x given by

ix,t(z) =

{
t z = x

−∞ z 6= x
, (4.3)

such that any image g ∈ F(E, T ) can be decomposed into the supremum of its pulses,
i.e., g = ∨{ix,g(x),x ∈ E}. Hence, the bilateral opening is then formulated as

γbηs,ηi
(f) =

∨{
C(x,t) (bx; ηs,ηi

) : (x, t) ∈ E × T , C(x,t) (bx; ηs,ηi
) ≤ f

}
(4.4)

where the adaptive bilateral cylinder C(x,t) (bηs,ηi
(x)) the translation of bηs,ηi

(x) by
(y, t) is given by

C(p,t)(bx; ηs,ηi
)(z) = bx; ηs,ηi

(z− p) + t

Considering f as a surface in a 3D space, the subgraph of the opening γbηs,ηi
(f) is

generated by the zone swept by all cylinders C(x,t)(bx; ηs,ηi
) smaller than f . The

bilateral closing ϕbηs,ηi
(f) is defined by duality of the opening.

By its easier geometrical interpretation and its interest for practical applications,
the case of flat mathematical morphology deserves a deeper analysis. The purpose
of this section is just to introduce the construction of flat spatially-variant morphol-
ogy using thresholded adaptive structuring functions and a theoretically appropriate
formulation of morphological operators.

4.1. Thresholding adaptive structuring function. As we have discussed
above, bilateral structuring functions bηs,ηi

(x) reflect at each point x of the image
f(x) the neighborhood additive weights for the infimal/supremal convolutions. By
thresholding bηs,ηi

at a fixed value τ , a neighborhood shape is then obtained for each
point x. The binary setB(x), defining an adaptive structuring element, corresponds to
a truncated disk. Let us consider in detail a way to define this mapping f(x) 7→ B(x)
parameterized with geometrical features more meaningful than ηs and ηi.

Fig. 4.1 shows the shape obtained by thresholding, at three different threshold
values τ , the spatial structuring function bηs=2(x) and the bilateral structuring func-
tion bηs=2,ηi=0.1(x) (the latter for the depicted patch). We observe that, for a given
threshold value τ , the size of the spatial shape (i.e., diameter of the disk) is different
between the parabolic and Log. Cauchy-Lorentz. In Table 3.1 are given, for the three
families of morphological kernels, the expressions for the diameter of the disk d as
function of the threshold value and width parameter ηs. Instead of using ηs as the
input parameter to define the spatial scale of the structuring element, we can fix a
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σs = 2 σs = 2 σs = 2 αs = 2 αs = 2 αs = 2

τ = −1 τ = −1.5 τ = −2 τ = −1 τ = −1.5 τ = −2

patch 01 σs = 2 σs = 2 σs = 2 αs = 2 αs = 2 αs = 2

σi = 0.1 σi = 0.1 σi = 0.1 αi = 0.1 αi = 0.1 αi = 0.1

τ = −1 τ = −1.5 τ = −2 τ = −1 τ = −1.5 τ = −2

Figure 4.1. Upper part, shapes obtained by thresholding, at three different threshold values
τ , the spatial structuring function bηs=2(x) for two families of kernels: parabolic (middle column)
vs. Log. Cauchy-Lorentz (right column). Lower part, given the depicted patch, shape obtained by
thresholding, at three different threshold values τ , the bilateral structuring function bηs=2,ηi=0.1(x)
for two families of kernels: parabolic (middle column) vs. Log. Cauchy-Lorentz (right column).

constant threshold, for instance τ = −1, and then calculate ηs for a desired diame-
ter of the disk d. Hence, the disk is obtained by bηs

(‖x− z‖) ≥ τ = −1, with ηs
computed as function of d. But this is only the spatial distance contribution, if we
keep the same value for thresholding in the sum of both terms of the bilateral contri-
bution, i.e., bηs

(‖x− z‖)+ bηi
(|fρ(x)− fρ(z)|) ≥ −1, the correspond disk will have

the nominal diameter for a strictly flat zone, otherwise, some part of the disk will
be truncated. To interpret the penalization term, we can use the relation between ηi
and the intensity distance which produces bηi

(x) = −1; that is, the value of bηi
(x)

such that even the closer points to center x (i.e., ‖x − z‖ → 0) are excluded of the
thresholded structuring element. We can introduce indeed a new parameter called
critical contrast percentage ∆ (%). This parameter is the value of |fρ(x) − fρ(z)|
producing bηi

(x) = −1 for a certain ηi, which can be therefore calculated.
In summary, the spatially-variant neighborhood shape can be obtained as follows.
Definition 4.1. Given an image f(x), the adaptive isotropic structuring element

at pixel x of diameter d and critical contrast percentage ∆ is defined by

Bd,∆(x) = {z ∈ E | bηs
(‖x− z‖) + bηi

(|fρ(x)− fρ(z)|) ≥ −1} , (4.5)

where the corresponding spatial and intensity scale parameters for the morphological
Gaussian, Laplace and Cauchy-Lorentz kernels are respectively given by

σs =
d

2
√
2
; βs =

d

2
; αs =

d

2
√
1.718

;

and

σi =
1√
2

∆

100
; βi =

∆

100
; αi =

1√
1.718

∆

100
.

The adaptive isotropic structuring elements can be straightforwardly applied to
calculate for instance a (spatially variant) bilateral flat median filter as follows:

Md,∆(f)(x) = {f(y) | f(y) = median [f(z)] , z ∈ Bd,∆(x)} (4.6)
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Fig. 4.2 gives the comparison of bilateral flat median filtering Md,∆(f)(x) for image
f(x) “Owl” with respect to different values of d and ∆, and using the morphological
Gaussian kernel (i.e., parabolic kernel). The quality of the results is comparable to
those obtained by the standard bilateral filtering (i.e., adaptive weighting mean) with
the advantage that median filter preserves the original set of values. As we show in
the example of Fig. 4.5, this assertion is not true for very noisy images, where the
standard bilateral filtering outperforms the bilateral flat median filtering.

(a) Original

(b) d = 7; ∆ = 5 (c) d = 7; ∆ = 15 (d) d = 7; ∆ = 45

(e) d = 11; ∆ = 5 (f) d = 11; ∆ = 15 (g) d = 11; ∆ = 45

Figure 4.2. Comparison of bilateral flat median filtering Md,∆(f)(x) for image f(x) “Owl”
(given in (a)) with respect to three different values of d (rows) and three different values of ∆
(columns), and using the morphological Gaussian kernel (i.e., parabolic) as structuring element
Bd,∆(x).

4.2. Practical implementation of bilateral flat morphology. Let us detail
a simple approach to implement the bilateral flat operators using the stack principle.
In practice, it can be assumed that image intensities of f(x) ∈ F(T , E) are numerical
values which ranges in a closed subset of L discrete values: T = {t1, t2, · · · , tL}, with
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(tl+1 − tl) = ∆t. The thresholded set of f at each tl ∈ T , defined by Xtl = ̟tl(f), is
called the cross-section or level-set at tl where ̟t(f) is a mapping from F(E, T ) to
P(E) given by

̟t(f) = {x ∈ E| f({x) ≥ t} . (4.7)

The set of cross-sections constitutes a family of decreasing sets: tλ ≥ tµ ⇒ Xtλ ⊆ Xtµ

and Xtλ = ∩{Xtµ , µ < λ}. Any image f can be viewed as an unique stack of its
cross-sections, which leads to the following supremal-based reconstruction property:

f(x) = sup{tl| x ∈ Xtl}, tl ∈ T . (4.8)

Or, alternatively [61] using a addition-based reconstruction formula:

f(x) = ∆t

L∑

l=1

ξXtl
(x), (4.9)

where the characteristic function of set X, denoted ξX : E → {0, 1}, is defined by

∀X ∈ P(E), ∀x ∈ E, ξX(x) =

{
1 if x ∈ X

0 if x ∈ Xc (4.10)

It is well known in mathematical morphology that any binary increasing oper-
ator, such as the dilation and erosion, can be generalized to grey-level images by
applying the binary operator to each cross-section, and then by reconstructing the
corresponding grey-level image [47, 51]. Consequently, for the bilateral flat dilation
we can write

δBd,∆
(x)(f)(x) = ∆t

L∑

l=1

ξδBd,∆(x)(Xtl)
(x) (4.11)

where δBd,∆(x) (Xtl) is the binary bilateral dilation defined by

δB(x)(X) = ∪{B(x)|x ∈ X} . (4.12)

Similarly, the bilateral flat erosion εBd,∆
(x)(f), opening γBd,∆

(x)(f) and closing
ϕBd,∆

(x)(f) can be implemented using the respective binary definition [47, 27].

Fig. 4.3 provides a comparison of bilateral flat dilation δBd,∆(x)(f)(x) and bilateral
flat closing ϕBd,∆(x)(f)(x), with d = 11, of image f(x) “Owl” with respect to different
values of ∆, and using the morphological Gaussian kernel (i.e., parabolic) for the
spatially-variant structuring element. One can observe in both cases the excellent
adaptive behavior of bilateral spatially-variant operators with respect to the standard
spatially-invariant flat dilation δB(f)(x) and flat closing ϕB(f)(x). For ∆ = 5, the
main structural edges are preserved but an effect of dilation or closing is produced
in the regular zones. In the case of ∆ = 15, a stronger morphological filtering is
observed, but the basic structures are still preserved. For high values of critical
contrast percentage, e.g., ∆ = 45, the results obtained are already quite similar to
those of the spatially-invariant operators.

Another comparison is given in Fig. 4.4, this time with bilateral flat erosion
εBd,∆(x)(f)(x) and opening γBd,∆(x)(f)(x), using the same scale values of d = 11 and
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∆ = 5, but considering the three cases of parabolic, conic and Log. Cauchy-Lorentz
kernels in the thresholded structuring elements Bd,δ(x). The results for the three
families of morphological kernels are roughly similar. But, once again, the logarithmic
Cauchy-Lorentz is a good compromise between the kernels of first (conical) and second
order (parabolic).

The last comparative example given in Fig. 4.5 deals with the problem of image
denoising by means of bilateral approaches, using the (Log.) Cauchy-Lorentz ker-

nel. We observe that the standard bilateral filtering Υ(f)(x; k̃αs,αi
) produces a nice

restoration, much better than the one obtained with bilateral flat median Md,∆(f)(x).
In the framework of mathematical morphology, the two products of an opening and
a closing yield an interesting operator, the averaged alternate filter, i.e.,

ϕBd,∆(x)

(
γBd,∆(x)(f)

)
(x) + γBd,∆(x)

(
ϕBd,∆(x)(f)

)
(x)

2
,

which presents skilful properties for denoising, since it combines a parallel simplifica-
tion of bright and dark noisy structures. We remark in the example that the averaged
alternate filter of diameter d = 7 (Fig. 4.5-(f1)-bottom row, using bilateral flat open-
ing/closing, produces a filtered image which is also quite satisfactory. In particular,
the restored edges with the latter filter are better enhanced than with the standard
bilateral filtering of equivalent size. This property of enhancement of structural edges
is fundamentally intrinsic to the flat morphological operators (based on max/min
operations) with respect to the convolution-based operators (based on averaging op-
eration). Nevertheless, it is well known that for Gaussian noise, like in the current
example, convolution-based operators yields a better estimate than any combination
of morphological ones. In the case of impulse noise or multiplicative noise, we can
expect that bilateral morphological filters will lead to better denoising.

4.3. Applications. To complete the examples of this paper and more precisely,
to motivate the interest of morphological bilateral filters for typical applications of
mathematical morphology, we consider two applications. We discuss in both cases the
effect of morphological bilateral flat operators in comparison with the standard ones.

The first application deals with the problem of contrast image enhancement using
exclusively dilation and erosion. In fact, we propose to use the Kramer and Bruckner
filter [33], which is known in the literature of mathematical morphology as toggle
mapping [47, 51]. Basically, this nonlinear enhancement method consists in iterating
a discrete operator that replaces every pixel intensity value by the dilation value or
erosion value in the considered pixel neighborhood; the choice being determined by
the closest one to the original pixel value, i.e.,

κ1-iter
Bd,∆

(f)(x) =





δBd,∆
(f)(x) if |δBd,∆

(f)(x)− f(x)| < |f(x)− εBd,∆
(f)(x)|

εBd,∆
(f)(x) if |δBd,∆

(f)(x)− f(x)| > |f(x)− εBd,∆
(f)(x)|

f(x) if |δBd,∆
(f)(x)− f(x)| = |f(x)− εBd,∆

(f)(x)|
(4.13)

Fig. 4.6 gives a comparison of toggle mapping-based contrast enhancement between
the standard spatially-invariant dilation/erosion and the bilateral counterparts. The
(logarithmic) Cauchy-Lorentz kernel has been used for the bilateral cases. In the
figure are given the first step and the results after three iterations. As we observe,
the standard case using flat spatially-invariant dilation/erosion produces a strong
enhancement which in some situations can lead to visual artefacts. Using bilateral
flat dilation/erosion the enhancement is more gradual and involves less discretization-
effects.
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The second application considers the problem of image structure selection accord-
ing to its morphology, which can be typically tackled using openings and closings.
A first example is depicted in Fig. 4.7, which corresponds to the part of a radio-
graphy image of coronary vessels. By means of an opening, the bright structures
of support size smaller than the structuring element are removed. Then, by com-
puting the image difference between the original image and the opening image, the
removed structures are enhanced. In the current example, the aim is to extract the
vessel smaller than a given diameter which corresponds to Fig. 4.7(c) for the standard
spatially-invariant opening and to Fig. 4.7(e) for the bilateral counterparts, using the
(logarithmic) Cauchy-Lorentz kernel. As we can observe, for a comparable scale (size
d of structuring element), bilateral openings follows better the image structures and
consequently, their residues lead to better extracted vessels. In the last example of
texture image given in Fig. 4.8, the purpose is to filter out the image in order to
keep only the black structures of a diameter larger than a certain value. The example
gives the results comparing the standard spatially-invariant opening/closing Fig. 4.8
(b)-(c) and the bilateral counterparts Fig. 4.8 (d)-(e), using again the (logarithmic)
Cauchy-Lorentz kernel for the bilateral cases. The first opening is used to remove the
bright lines smaller than the structuring element; the subsequent closing is applied to
preserve only the black defect having a diameter larger than the structuring element,
and the residue image gives the removed black defects. As we observe, the interest
in the bilateral case here is twofold: on the one hand, the structures that are not
removed preserve their contours; on the other hand, besides the “shape” of the target
structure, its contrast is also considered to preserve it or not. Hence, only the well
contrasted black spots of larger size are kept in the example.

4.4. Complexity. The complexity of a direct implementation for the computa-
tion of the bilateral structuring functions is O(W ·N) where W is the effective size of
the spatial kernel and N is the total number of pixels of the image. Typically, for the
studied kernels, one can consider only the pixels in a square window of size 2ηs× 2ηs,
and hence W ∝ (2ηs)

2. The complexity can be reduced to O(logW ·N) using a local
histogram based algorithm [58]. In the case of flat morphology formulation using
the stack implementation, the complexity should include the factor associated to the
number of grey level, i.e., O(W ·N · L).

In order to compare with previous approaches, and according to the recent pa-
per [24], the complexity of the morphological amoebas is O(N · nω2 · logω2) and for
the geodesic time-based neighbors is O(N ·ω2 · logω2), where n is the number of pixel
graph connectivity and ω is the value of distance which defines the geodesic size. In
both case, the implementation of the morphological operator using stack decomposi-
tion leads to complexities of O(N · L · nω2 · logω2) and O(N · L · ω2 · logω2). The
computational advantage of bilateral structuring functions is natural since they are
based on the Euclidean distance whereas the amoebas are founded in geodesic dis-
tances. In addition, the complexity can still be reduced by using optimized algorithms
for morphological filters [25].
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(a) Original

(b) Bilateral σs = 3, σi = 0.1 (c) Flat dil. 11× 11 (d) Flat clos. 11× 11

PSNR = 24.4 PSNR = 11.3 PSNR = 15.4

(c1) Bil. flat parab. dil. (c2) Bil. flat parab. dil. (c3) Bil. flat parab. dil.

d = 11; ∆ = 5 d = 11; ∆ = 15 d = 11; ∆ = 45

PSNR = 16.0 PSNR = 14.0 PSNR = 12.3

(d1) Bil. flat parab. clos. (d2) Bil. flat parab. clos. (d3) Bil. flat parab. clos.

d = 11; ∆ = 5 d = 11; ∆ = 15 d = 11; ∆ = 45

PSNR = 19.2 PSNR = 18.1 PSNR = 16.7

Figure 4.3. Comparison of bilateral flat dilation δBd,∆(x)(f)(x) and bilateral flat closing

ϕBd,∆(x)(f)(x), with d = 11, of image f(x) “Owl” with respect to different values of ∆, and using

the morphological Gaussian kernel (i.e., parabolic) for the spatially variant structuring element. The
results can also be compared with the standard spatially invariant flat dilation δB(f)(x), flat closing
ϕB(f)(x) and bilateral filtering.
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(a) Original

(b) Bilateral σs = 3, σi = 0.1 (c) Flat eros. 11× 11 (d) Flat open. 11× 11

PSNR = 30.0 PSNR = 14.8 PSNR = 20.6

(c1) Bil. flat parab. eros. (c2) Bil. flat conic. eros. (c3) Bil. flat parab. Log-Cauc.-Lor. eros.

d = 11; ∆ = 5 d = 11; ∆ = 5 d = 11; ∆ = 5

PSNR = 20.9 PSNR = 22.3 PSNR = 21.4

(d1) Bil. flat parab. open. (d2) Bil. flat conic. open. (d3) Bil. flat parab. Log-Cauc.-Lor. open.

d = 11; ∆ = 5 d = 11; ∆ = 5 d = 11; ∆ = 5

PSNR = 25.9 PSNR = 26.8 PSNR = 26.2

Figure 4.4. Comparison of bilateral flat erosion εBd,∆(x)(f)(x) and bilateral flat opening

γBd,∆(x)(f)(x), with d = 11 and ∆ = 5, of image f(x) “Einstein” with respect to the three mor-

phological kernels: (1) parabolic, (2) conic and (3) logarithmic Cauchy-Lorentz, used for for the
spatially variant structuring element. The results can also be compared with the standard spatially
invariant flat erosion εB(f)(x), flat opening ϕB(f)(x) and bilateral filtering using Gaussian kernel.
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(a) Original (b) Bilateral filt. (c) Bil. flat median

αs = 3; αi = 0.1 d = 7; ∆ = 5

PSNR = 18.3 PSNR = 27.5 PSNR = 24.9

(d1) Bil. flat parab. open. clos. (e1) Bil. flat parab. clos. open. (f1) Averaged (d1) and (e1)

d = 4; ∆ = 5 d = 4; ∆ = 5 d = 4; ∆ = 5

PSNR = 20.0 PSNR = 19.8 PSNR = 25.1

(d2) Bil. flat parab. open. clos. (e2) Bil. flat parab. clos. open. (f1) Averaged (d2) and (e2)

d = 7; ∆ = 5 d = 7; ∆ = 5 d = 7; ∆ = 5

PSNR = 17.4 PSNR = 17.3 PSNR = 26.4

Figure 4.5. Comparison of image denoising using bilateral approaches: (a) original

noisy image f(x), (b) bilateral filtering Υ(f)(x; k̃αs,αi ), (c) bilateral flat median Md,∆(f)(x),

(d) bilateral flat opening-closing ϕBd,∆(x)

(
γBd,∆(x)(f)

)
(x), (e) bilateral flat closing-opening

γBd,∆(x)

(
ϕBd,∆(x)(f)

)
(x), (f) averaged image of opening-closing and closing-opening. The (loga-

rithmic) Cauchy-Lorentz kernel has been used for all the examples.
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(a) Original

(b1) Flat Toggle-Mapping, 1 iter. (b2) Flat Toggle-Mapping, 3 iter.

(c1) Bil. flat Toggle-Mapping, 1 iter. (c2) Bil flat Toggle-Mapping, 3 iter.

d = 3; ∆ = 15 d = 3; ∆ = 15

Figure 4.6. Comparison of toggle mapping-based contrast enhancement κn-iter(f) between the
standard spatially-invariant dilation/erosion (b) and the bilateral counterparts (c). The (logarith-
mic) Cauchy-Lorentz kernel has been used for the bilateral cases.
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(a) Original f

(b) f1 = γd(f) (c) f2 = f − f1

(d) f3 = γBd,∆(x)(f) (e) f4 = f − f3

Figure 4.7. Comparison of image structure extraction between the standard spatially-invariant
openings (b)-(c) and the bilateral counterparts (d)-(e). The opening removes the bright structures
smaller than the structuring element; the residue image gives the removed parts, i.e., coronary
vessels. The (logarithmic) Cauchy-Lorentz kernel has been used for the bilateral operators.
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(a) Original f

(b) f1 = γd(f) (c) f2 = ϕd(f1)

(d) f3 = γBd,∆(x)(f) (e) f4 = ϕBd,∆(x)(f4)

Figure 4.8. Comparison of image structure filtering between the standard spatially-invariant
opening/closing (b)-(c) and the bilateral counterparts (d)-(e). The first opening removes the bright
lines smaller than the structuring element; the subsequent closing is used to preserve only the black
defect having a diameter larger than the structuring element. The (logarithmic) Cauchy-Lorentz
kernel has been used for the bilateral operators.
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5. Conclusions and perspectives. We have introduced in this paper the coun-
terpart of bilateral filtering in the framework of mathematical morphology. Our start-
ing point has been the notion of counter-harmonic filter, which provides a framework
to explore the nonlinearization of convolution-based filters.

The main contributions of the paper can be summarized as follows.

• We have rediscovered the logarithmic connection between linear filters and
the morphological ones, which allows us to propose the morphological equiva-
lent to (locally adaptive) bilateral weighting convolution kernel: the bilateral
structuring functions.

• We have considered, besides the Gaussian kernel, the use of Laplace and
Cauchy-Lorentz kernels for bilateral filtering and the corresponding logarith-
mic counterparts to define bilateral structuring functions.

• We have introduced a low-complexity framework for flat spatially-variant fil-
ters using thresholded adaptive structuring functions and a theoretical ap-
propriate formulation of operators.

The performance of the various nonlinear filters studied in the paper has been
illustrated using a number of comparative examples, which showed their potential
power in various image processing applications where morphology filters are success-
fully used.

As mentioned above, a key point of the methods discussed in the paper is their low-
complexity in comparison with other adaptive morphological frameworks. In general,
the optimized implementations require a fixed shape of the structuring element or, at
least, a limited number of possible shapes. A possible solution to be explored is to
define a limited library of possible spatially-variant structuring elements, describing
the most common configurations for a particular size, then each shape obtained by
thresholding the bilateral structuring functions can be approximated by one of the
possible optimized configurations.

The preliminary results on non-local structuring functions will be developed in
a future paper. The extension to multivariate images (such as multi/hyper-spectral
images) will be considered in ongoing work. This requires in particular an appropriate
formulation of vectorial morphology which is currently an active topic in mathematical
morphology.

From a theoretical viewpoint, the continuation of the present work can follow two
main directions. On the one hand, using the slope transform [18, 38] (closely related
to the Legendre transform and the Young-Fenchel conjugate in convex analysis), an
investigation about the properties of the logarithmic Cauchy-Lorentz functions, with
respect to the parabolic families which are better known, and in particular on the be-
havior of the iteration of dilations/erosions using these non-standard functions can be
achieved. On the other hand, the connection between the discrete operators proposed
here and the morphological PDEs [1, 11, 39] should be explored. In the literature
they are already some works of PDE formulations of adaptive morphological opera-
tors [40, 15]; however, a more deeper study is necessary to propose the morphological
PDE which mimics the effects of the bilateral dilation/erosion.

REFERENCES

[1] L. Alvarez, F. Guichard, P. -L. Lions, and J. -M. Morel, Axioms and fundamental equa-
tions of image processing, Arch. for Rational Mechanics, 123 (1993), pp. 199–257.



30 J. ANGULO

[2] J. Angulo, Pseudo-Morphological Image Diffusion using the Counter-Harmonic Paradigm, In
Proc. of 2010 Advanced Concepts for Intelligent Vision Systems (ACIVS’2010), LNCS Vol.
6474, Part I, pp. 426–437, Springer, 2010.

[3] J. Angulo, Morphological bilateral filtering and spatially-variant adaptive structuring
functions, In Proc. of 2011 International Symposium on Mathematical Morphology
(ISMM’2011), LNCS Vol. 6671, pp. 212–223, Springer, 2011.

[4] J. Angulo, and S. Velasco-Forero, Structurally Adaptive Mathematical Morphology Based
on Nonlinear Scale-Space Decompositions, Image Analysis and Stereology, 30 (2011),
pp. 111–122.

[5] S. Beucher, J.M. Blosseville, and F. Lenoir, Traffic Spatial Measurements Using Video
Image Processing, Proc. of SPIE 848, pp. 648–655, 1987.

[6] M. Black, and A. Rangarajan, On the unification of line processes, outlier rejection, and
robust statistics with applications in early vision, International Journal of Computer Vision,
19 (1996), pp. 57–92.

[7] M. Black, G. Sapiro, D. H. Marimont, and D. Heeger, Robust anisotropic diffusion, IEEE
Trans. on Image Processing, 7 (1998), pp. 421–432.

[8] R. van den Boomgaard, and L. Dorst, The morphological equivalent of Gaussian scale-space,
In Proc. of Gaussian Scale-Space Theory, pp. 203–220, Kluwer, 1997.

[9] R. van den Boomgaard, and J. van de Weijer, On the equivalence of local-mode finding,
robust estimation and mean-shift analysis as used in early vision tasks, In Proc. of the 16th
International Conference on Pattern Recognition (ICPR’02), Vol. 3, pp. 927–930, 2002.

[10] N. Bouaynaya, and D. Schonfeld, Theoretical foundations of spatially-variant mathematical
morphology part ii: Gray-level images, IEEE Trans. Pattern Anal. Mach. Intell., 30 (2008),
pp. 837–850.

[11] R. W. Brockett, and P. Maragos, Evolution equations for continuous-scale morphology,
IEEE Trans. on Signal Processing, 42 (1994), pp. 3377–3386.

[12] A. Buades, B. Coll, and J. M. Morel, A review of image denoising methods, with a new
one, Multiscale Modeling and Simulation, 4 (2006), pp. 490–530.

[13] P. S. Bullen, Handbook of Means and Their Inequalities, 2nd edition, Springer, 1987.
[14] B. Burgeth, and J. Weickert, An Explanation for the Logarithmic Connection between

Linear and Morphological System Theory, International Journal of Computer Vision, 64
(2005), pp. 157–169.

[15] B. Burgeth, M. Breuß, L. Pizarro, and J. Weickert, PDE-driven adaptive morphology
for matrix fields, In Proc. of Scale Space and Variational Methods in Computer Vision,
LNCS Vol. 5567, pp. 247-258, Springer, Berlin, 2009.

[16] F. Catte, P. -L. Lions, J. -M. Morel, and T. Coll, Image selective smoothing and edge
detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29 (1992), pp. 182–
193.

[17] O. Cuisenaire, Locally adaptable mathematical morphology using distance transformations,
Pattern Recognition, 39 (2006), pp. 405–416.

[18] L. Dorst, and R. van den Boomgaard, Morphological Signal Processing and the Slope Trans-
form, Signal Processing, 38 (1994), pp. 79–98.

[19] M. Elad, On the Origin of the Bilateral Filter and Ways to Improve It, IEEE Trans. on Image
Processing, 11 (2002), pp. 1141–1151.

[20] D. Barash, A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing and
the Nonlinear Diffusion Equation, IEEE Trans. on PAMI, 24 (2002), pp. 844–847.

[21] L. Florack, R. Maas, and W. Niessen, Pseudo-Linear Scale-Space Theory, International
Journal of Computer Vision, 31 (1999), pp. 1–13.

[22] J. M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, Fast anisotropic gauss
filtering, IEEE Trans. on Image Processing, 12 (2003), pp. 938–943.

[23] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, AAddison-Wesley, Boston,
MA, USA, 1992.

[24] J. Grazzini, and P. Soille, Edge-preserving smoothing using a similarity measure in adaptive
geodesic neighbourhoods, Pattern Recognition, 42 (2009), pp. 2306–2316.

[25] H. Hedberg, P. Dokladal, and V. Öwall, Binary Morphology with Spatially Variant Struc-
turing Elements: Algorithm and Architecture, IEEE Transactions on Image Processing, 18
(2009), pp. 562–572.

[26] H. Heijmans, and C. Ronse, The Algebraic Basis of Mathematical Morphology. Part I: Dila-
tions and Erosions, CVGIP: Image Understanding, 50 (1990), pp. 245–295.

[27] H.J.A.M. Heijmans, Morphological Image Operators. Academic Press, Boston, 1994.
[28] A. D. Ioffe, and V. M. Tihomirov, Theory of extremal problems. North-Holland Publishing

Company, 1979.



MORPHOLOGICAL BILATERAL FILTERING 31

[29] P. T. Jackway, On Dimensionality in Multiscale Morphological Scale-Space with Elliptic
Poweroid Structuring Functions, Journal of Visual Communication and Image Represen-
tation, 6(2) (1995), pp. 189–195.

[30] P. T. Jackway, and M. Deriche, Scale-Space Properties of the Multiscale Morphological
Dilation-Erosion, IEEE Trans. Pattern Anal. Mach. Intell., 18(1) (1996) pp. 38–51.

[31] R. Kimmel, R. Malladi, and N. Sochen, Images as Embedded Maps and Minimal Surfaces:
Movies, Color, Texture, and Volumetric Medical Images, International Journal of Com-
puter Vision, 39(2) (2000) pp. 111–129.

[32] G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Def-
initions, Theorems, and Formulas for Reference and Review, McGraw-Hill, New York,
1968.

[33] H. P. Kramer, and J. B. Bruckner, Iterations of a non-linear transformation for enhance-
ment of digital images, Pattern Recognition, 7 (1975) pp. 53–58.

[34] R. L. Lagendijk, J. Biemond, and D. E. Boekee, Regularized iterative image restoration with
ringing reduction, IEEE Trans. Acoust., Speech, Signal Processing, 36 (1988), pp. 1874–
1887.

[35] J. S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans.
PAMI, 2 (1980), pp. 165–168.

[36] J. S. Lee, Digital image smoothing and the sigma filter, Computer Vision, Graphics and Image
Processing, 24 (1983), pp. 255–269.

[37] R. Lerallut, E. Decenciere, and F. Meyer, Image Filtering Using Morphological Amoebas,
Image Vision and Computing, 25 (2007), pp. 395–404.

[38] P. Maragos, Slope Transforms: Theory and Application to Nonlinear Signal Processing, IEEE
Trans. on Signal Processing, 43 (1995), pp. 864–877.

[39] , Differential morphology and image processing, IEEE Transactions on Image Processing,
5 (1996), pp. 922–937.

[40] P. Maragos, and C. Vachier, A PDE Formulation for Viscous Morphological Operators with
Extensions to Intensity-Adaptive Operators, In Proc. of 15th IEEE international conference
on Image processing (ICIP’08), pp. 2200–2203, 2008.

[41] P. Maragos, and C. Vachier, Overview of adaptive morphology: trends and perspectives, In
Proc. of 16th IEEE international conference on Image processing (ICIP’09), pp. 2241–2244,
2009.

[42] P. Perona, and J. Malik, Scale-Space and Edge Detection Using Anisotropic Diffusion, IEEE
Trans. Pattern Anal. Mach. Intell., 12(1990), pp. 629–639.

[43] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, Bilateral Filtering: Theory and
Applications, Foundations and Trends in Computer Graphics and Vision, 4 (2008), pp. 1–
73.

[44] J. Roerdink, Adaptivity and group invariance in mathematical morphology, In Proc. of 16th
IEEE international conference on Image processing (ICIP’09), pp. 2253–2256, 2009.

[45] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[46] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.
[47] J. Serra, Image Analysis and Mathematical Morphology. Vol II: Theoretical Advances, Aca-

demic Press, London, 1988.
[48] N. Sochen, R. Kimmel, and R. Malladi, A general framework for low level vision, IEEE

Trans. on Image Processing, 7 (1998), pp. 310–318.
[49] N. Sochen, R. Kimmel, and A. M. Bruckstein, Diffusions and confusions in signal and

image processing, Journal of Mathematical Imaging and Vision, 14 (2001), pp. 195–209.
[50] P. Soille, Generalized geodesy via geodesic time, Pattern Recognition Letters, 15 (1994),

pp. 1235–1240.
[51] , Morphological Image Analysis, Springer-Verlag, Berlin, 1999.
[52] S.R. Sternberg, Grayscale morphology, Comput. Vision Graphics Image Process., 35(3)

(1986), pp. 333–355, .
[53] C. Tomasi, and R. Manduchi, Bilateral filtering for gray and color images, In Proc. of 6th

Int. Conf. Computer Vision (ICCV’98), pp. 839–846, 1998.
[54] L. J. van Vliet, Robust Local Max-Min Filters by Normalized Power-Weighted Filtering, In

Proc. of IEEE 17th International Conference of the Pattern Recognition (ICPR’04), Vol.
1, pp. 696–699, 2004.

[55] C. Vachier, and F. Meyer, News from Viscousland, Proc. of Inter. Symp. on Mathematical
Morphology (ISMM’07), pp. 189–200, 2007.
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