Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis

Abstract : When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model. In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov- Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model, that have to be consistent with a controlled rate of convergence. Some non parametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.
Type de document :
Article dans une revue
Journal of Mathematical Neuroscience, BioMed Central, 2014, pp.4:3. 〈10.1186/2190-8567-4-3〉
Liste complète des métadonnées

Littérature citée [64 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00789127
Contributeur : Patricia Reynaud-Bouret <>
Soumis le : vendredi 27 septembre 2013 - 10:37:17
Dernière modification le : mercredi 28 septembre 2016 - 16:06:02
Document(s) archivé(s) le : vendredi 7 avril 2017 - 03:52:38

Fichier

revision_PV.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Patricia Reynaud-Bouret, Vincent Rivoirard, Franck Grammont, Christine Tuleau-Malot. Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. Journal of Mathematical Neuroscience, BioMed Central, 2014, pp.4:3. 〈10.1186/2190-8567-4-3〉. 〈hal-00789127v2〉

Partager

Métriques

Consultations de
la notice

774

Téléchargements du document

357