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Abstract

At Crypto 2009 [1], Bernstein initiated an optimization of Karatsuba formula for binary polynomial multiplication by

reorganizing the computations in the reconstruction part of two recursions of the formula. This approach was generalized

in [10] to an arbitrary number of recursions resulting in the best known bit parallel multiplier based on Karatsuba formula.

In this paper we extend this approach to three-way split formula: we first reorganize two recursions and then extend

this re-organization to an arbitrary number s of recursions. We obtain a parallel multiplier with a space complexity of

4.68nlog3(6)+O(n) XOR gates and nlog3(6) AND gates and a delay of 3 log3(n)D⊕+D⊗. This improves the previous best

known results regarding space complexity of [2] and reaches the same time complexity as the the best known approach [4].

Keywords. Binary polynomial multiplication, three-way split formula, optimized recursive reconstruction.

1 INTRODUCTION

Finite field arithmetic are parts of many cryptographic applications like elliptic curve cryptography

(ECC) [6], [9], pairing cryptography [5] or even some block-encryption modes like GCM [11] or CWC [7].

Typically, the computations involved in such cryptographic protocols consist in several hundreds or

thousands of finite field additions and multiplications. It is thus crucial to have efficient implementation

of finite field operations. The two mainly used operations are the addition and the multiplication, but since

the addition is quite simple to implement, researchers have focus their effort on efficiently implementing

finite field multiplication.

In this paper, we focus on efficient hardware implementation of multiplication in extended binary field,

where the field size is supposed to be in the range [2160, 2600] as the ones used in cryptographic protocols.

A multiplication in this king of field consists in multiplying two binary polynomials and then reduce the

product modulo the irreducible polynomial defining the field. Two approaches are used to perform this

modular multiplication: the first one consists to perform separately the multiplication and the reduction,
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the second, initiated by Mastrovito [8], performs the multiplication and the reduction at the same time by

re-expressing the modular multiplication as a matrix-vector product. This latter approach was improved

by Fan and Hasan in [3]: they modified the matrix in order to have Toeplitz matrix, which enabled

them to use a subquadratic approach for Toeplitz matrix-vector product. They obtained the best known

binary field multiplier in terms of space and time complexities: in [3] the authors report a two-way split

multiplier with 5.5nlog2(3) +O(n) XOR gates, nlog2(3) AND gates and a delay of 2 log2(n)D⊕ +D⊗, they

also report a three-way split multiplier with 4.8nlog2(3)+O(n) XOR gates, nlog2(3) AND gates and a delay

of 3 log2(n)D⊕ +D⊗ where D⊕ (resp. D⊗) is the delay of an XOR (resp. AND) gate.

Until recently, the approach which separately performs multiplication and reduction were not competi-

tive compared to the approach based TMVP of [3] since the two-way and three-way subquadratic methods

for polynomial multiplication were not competitive compared to their TMVP counterparts. Recently, some

progresses have been done on subquadratic polynomial approaches: first, Bernstein in [1] proposed an

optimized four-way split approach which reduces the space requirement down to 5.46nlog2(3)+O(n) XOR

gates and nlog2(3) AND gates beating the space requirement of the two-way TMVP multiplier, but the

delay remained too large, i.e., 2.5 log2(n)D⊕ + D⊗. The approach of Bernstein [1] have been extended

in [10], leading to a multiplier with complexity 5.25nlog2(3)+O(n) XOR gates and nlog2(3) AND gates and

a delay 2 log2(n)D⊕ +D⊗ providing a better multiplier than the two-way split TMVP multiplier of [3].

Contributions. In this paper we extend the optimization presented in [10] to the case of three-way

split formula. We first review the best-known three-way split formula, we then present the proposed

optimization in the case of two recursions of the considered formulas. We then generalize the proposed

optimization to s recursions: we provide an algorithm and thoroughly prove its validity. We then also

provide detailed space and time complexities evaluation. The best three-way split multiplier we obtain has

a space complexity of 4.68nlog2(3)+O(n) XOR gates and nlog2(3) AND gates and a delay of 3 log3(n)D⊕+

D⊗.

Organization of the paper. In Section 2, we review the best know three-way split polynomial formula. In

Section 3, we present our optimization on two recursions of the considered three-way split formula. In

Section 4, we extend this approach to s recursions and establish the complexity results of the resulting

multiplier. Finally, in Section 5, we compare the complexity results with the best known approaches and

give some concluding remarks.

2 REVIEW OF THREE WAY SPLIT FORMULA

Three-way split formulas for polynomial multiplication are derived from multi-evaluation/interpolation

approach or more generally from Chinese remainder theorem. Let us briefly describe how the three-way

formulas are obtained. For a more detailed explanation the reader may refer to [12], [13]. Let A and B be

two binary polynomials of size n = 3`. We split A and B in three parts A = AL+AMX
n/3+AHX

2n/3 and

B = B0+B1X
n/3+B2X

2n/3 and then replace Xn/3 by Y . The two polynomials A(Y ) = AL+AMY +AHY
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and B(Y ) = BL + BMY + BHY
2 are considered as degree two polynomials in Y . The product C(Y ) =

A(Y ) × B(Y ) has degree 4, so if it is computed modulo M(Y ) = Y (Y + 1)(Y +∞)(Y 2 + Y + 1) the

result remains equal to A(Y ) × B(Y ): no reduction is performed since M(Y ) has a degree larger than

degY A(Y ) × B(Y ). The Chinese remainder theorem can then be used to split up the multiplication

A(Y ) × B(Y ) modulo M(Y ) in four independent modular multiplications: multiplications modulo Y ,

modulo Y + 1, modulo Y +∞ and modulo Y 2 + Y + 1.

C(0) = A(Y )B(Y ) mod Y = A(0)B(0) = ALBL,

C(1) = A(Y )B(Y ) mod (Y + 1) = A(1)B(1) = (AL +AM +AH)(BL +BM +BH),

C(∞) = = A(Y )B(Y ) mod (Y +∞) = A(∞)B(∞) = AHBH ,

C(Y ) mod (Y 2 + Y + 1) = (AL +AM + (AM +AH)Y )(BL +BH + (BM +BH)Y ) mod (Y 2 + Y + 1),

In the above operations, the multiplication modulo (Y 2 +Y +1) consists in a product of two degree one

polynomial in Y and this can be performed with the Karatsuba formula. The Chinese remainder theorem

provides also a method to reconstruct C from the four terms C(0), C(1), C(∞) and C(Y ) mod (Y 2+Y +1).

After a number of simplifications and optimizations we can obtain the three-way split formula with six

recursive multiplications of [2]:

• Component polynomial formation (CPF). The component polynomial formation applied to A consists

in splitting A in three parts A = AL +AMX
n/3 +AHX

2n/3 with AL, AM and AH of degree n/3− 1

and then in computing

A′0 = AL, A′1 = AM , A′2 = AH ,

A′3 = AL +AM , A′4 = AL +AH , A′5 = AM +AH .

The above operations require n bit additions. The same is done on B and this results in six polyno-

mials B′0, . . . , B′5 of degree n/3− 1.

• Recursive products. This consists in computing the six pairwise products C ′i, i = 0, 1, . . . , 5, as follows

C ′0 = A′0B
′
0 = ALBL, C ′1 = A′1B

′
1 = AMBM ,

C ′2 = A′2B
′
2 = AHBH , C ′3 = A′3B

′
3 = (AL +AM )(BL +BM ),

C ′4 = A′4B
′
4 = (AL +AH)(BL +BH), C ′5 = A′5B

′
5 = (AM +AH)(BM +BH).

(1)

• Reconstruction. The reconstruction of C is performed as:

C = C ′0(1 +Xn/3 +X2n/3) + C ′1X
n/3(1 +Xn/3 +X2n/3) + C ′2X

2n/3(1 +Xn/3 +X2n/3)

+C ′3X
n/3 + C ′4X

2n/3 + C ′5X
3n/3 (2)

= (C ′0 + C ′1X
n/3 + C ′2X

2n/3)︸ ︷︷ ︸
R

×(1 +Xn/3 +X2n/3) + C ′3X
n/3 + C ′4X

2n/3 + C ′5X
3n/3. (3)

This is done in three steps as stated in Algorithm 1: the first step initializes R, the second multiplies

R by (1 + Xn/3 + X2n/3) and the last step adds the three remaining terms C ′3Xn/3, C ′4X
2n/3 and
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C ′5X
3n/3. The only tricky part is the multiplication by (1+Xn/3+X2n/3). The authors in [2] provide

the following diagram:

Identical operations

Identical operations
4n
3 − 1

5n
3 − 1

6n
3 − 1

0
n
3

R1 R2 R3R0

2n
3

3n
3

R1 R2

R1

R3

R3

R0

R0 R2

4n
3

5n
3

The identical operations mentioned in the diagram are performed only once during the computation

of R× (1 +Xn/3 +X2n/3), this leads to the reconstruction formula described in Algorithm 1.

Algorithm 1 GBR1

Require: Six degree 2n/3− 2 polynomials C ′i, i = 0, . . . , 5 defined in (1)

Ensure: R satisfying R = A×B.

// Step 1: Initialization of R

R← C ′0 + C ′1X
n/3 + C ′2X

2n/3 // costs 2n/3− 2 bit additions

// Step 2: Computation of the product R× (1 +Xn/3 +X2n/3)

R = R0 +R1X
n/3 +R2X

2n/3 +R3X
3n/3 // Split, no cost

R′1 ← R0 +R1 // costs n/3 bit additions

R′4 ← R2 +R3 // costs n/3− 1 bit additions

R′2 ← R2 +R′1 // costs n/3 bit additions

R′3 ← R1 +R′4 // costs n/3 bit additions

R← R0 +R′1X
n/3 +R′2X

2n/3 +R′3X
3n/3 +R′4X

4n/3 +R3X
5n/3 // no cost

// Step 3: Final additions

R← R+ C ′3X
n/3 + C ′4X

2n/3 + C ′5X
3n/3 // costs 3(2n/3− 1) bit additions

return(R)

We derive the overall space complexity of the three-way split formula expressed in terms of the total

number of bit additions S⊕(n) and bit multiplication S⊗(n). We add the cost of the different steps of

the formula (component formation and reconstruction) and the cost of six recursive products. The delay

is obtained by finding the critical path delay of the formula. This results in the following recursive and

non-recursive forms of the complexity:
S⊕(n) = 6S⊕(n/3) + 6n− 6,

S⊗(n) = 6S⊕(n/3),

D(n) = D(n/3) + 4D⊕.


S⊕(n) = 24

5 n
log3(6) − 6n+ 6/5,

S⊗(n) = nlog3(6),

D(n) = 4 log3(n)D⊕ +D⊗.
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Fig. 1. Reconstruction tree of two recursions of the three-way split formula
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3 OPTIMIZATION OF TWO RECURSIONS OF THREE-WAY SPLIT FORMULA

In this section, we present an optimization of the reconstruction of two recursions of the three-way split

formula presented in Section 2. Two unrolled recursions of the three-way split formula consists in:

1) We first apply two recursions of the component formation to A and B, this produces 36 terms

A
(2)
0 , A

(2)
1 , . . . , A

(2)
35 , of degree n/9 for A and 36 terms B(2)

0 , B
(2)
1 , . . . , B

(2)
35 for B. These terms are then

multiplied two at a time as follows

C
(2)
i = A

(2)
i ×B

(2)
i for i = 0, 1, . . . , 35.

2) We then perform the reconstruction by applying the three-way split reconstruction formula (3) to

each group of six consecutive products C(2)
6i+j , j = 0, . . . , 5. We obtain six degree 2n/3−2 polynomials

C
(1)
i for i = 0, 1, . . . , 5. Again, we apply the reconstruction formula (3) to C

(1)
0 , C

(1)
1 , . . . , C

(1)
5 to get
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C = A×B.

In the remainder of this section, we focus only on the reconstruction part of the two recursions. We

first arrange the two recursions of the reconstruction formula (3) in a reconstruction tree of depth two:

• C = C
(0)
0 is the root of the tree and it is linked to six children C

(1)
0 , C

(1)
1 , C

(1)
2 , C

(1)
3 , C

(1)
4 and C

(1)
5 .

Each link is labeled with the factor of C(1)
i which appears in (3). Specifically, the link from C

(0)
0 to

C
(1)
0 is labeled by (1+Xn/3+X2n/3), the link from C

(0)
0 to C(1)

1 is labeled by Xn/3(1+Xn/3+X2n/3)

and the link from C
(0)
0 to C

(1)
2 is labeled by X2n/3(1 +Xn/3 +X2n/3). We also label the links from

C
(0)
0 to C

(1)
3 , C

(1)
4 and C

(1)
5 by Xn/3, X2n/3 and X3n/3, respectively.

• Each child C
(1)
i , i = 0, 1, . . . , 5 is also linked to six children C

(1)
6i+j , j = 0, . . . , 5. The links to C

(1)
6i+j for

j = 0, 1, 2 are labeled by Xjn/9(1+Xn/9+X2n/9) and the links to C(i)
6i+3, C

(i)
6i+4 and C

(i)
6i+5 are labeled

by Xn/9, X2n/9 and X3n/9.

The resulting reconstruction tree is depicted in Fig. 1. Now our goal is to modify this reconstruction

tree in order to save some computations when performing the multiplications by (1 + Xn/3 + X2n/3)

and by (1 +Xn/9 +X2n/9), i.e., by factorizing these multiplications. Following the idea used in [10], we

modify the reconstruction tree as follows:

• The term C
(1)
3 is directly computed from the six inputs C(2)

18+j , j = 0, . . . , 5 using the GBR1 algorithm.

We place a block GBR1 below C
(1)
3 which represents a reconstruction using Algorithm 1. The inputs

of this new block GBR1 are the six terms C(2)
18+j , j = 0, . . . , 5. We do the same modification for C(1)

4

and C
(1)
5 .

• We place a block GBR0 on each link between the leaves C(2)
i for i ∈ {3, 4, 5, 9, 10, 11, 15, 16, 17} and

their corresponding parent. The block GBR0 represents a function which satisfies GBR0(U) = U for

any U . These modifications are not necessary to derive the optimized reconstruction formula, but it

helps to visualize the repetitive pattern in the modified reconstruction tree.

• We finally move down the factor Xn/3 which appears on the link joining C
(0)
0 and C

(1)
1 to the six

links joining C
(1)
1 to his six children. Similarly, we move down the factor X2n/3 on the link joining

C
(0)
0 and C

(1)
2 to the six links from C

(1)
2 to his six children.

The resulting modified reconstruction tree is shown in Fig. 2. We now derive from this modified

reconstruction tree the generalized Bernstein reconstruction of depth 2.

• Initialization. We consider the terms C(2)
i such that neither GBR0, neither GBR1 are applied to them.

We accumulate these terms C(2)
i multiplied by their factor of the form Xαin/9 appearing in the link

joining C
(2)
i to their parent. This leads to the following expression:

R0 = C
(2)
0 + C

(2)
1 Xn/9 + C

(2)
2 X2n/9 + C

(2)
6 X3n/9 + C

(2)
7 X4n/9

+C
(2)
8 X5n/9 + C

(2)
12 X

6n/3 + C
(2)
13 X

7n/9 + C
(2)
14 X

8n/9.

The following diagram shows the overlaps involved in the expression of R0
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Fig. 2. Modified reconstruction tree of two recursions of three-way formula
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We deduce from this diagram that the cost of this step is equal to 8n/9 − 8 bit additions and the

resulting polynomial R0 has degree n+ n/9− 2.

• Multiplication of depth 2. We multiply by the common factor (1 +Xn/9 +X2n/9) appearing in all the

label of the accumulated terms C(2)
i , i ∈ {0, 1, 2, 6, 7, 8, 12, 13, 14} in the initialization step:

R1 = R0(1 +Xn/9 +X2n/9).

We apply the same optimization as in the GBR1 algorithm: we split up R1 into a number of blocks of

size n/9 and identify a set of identical additions in R0(1+Xn/9 +X2n/9). In the following diagram,

we show the splitting of R0(1 + Xn/9 + X2n/9) along with the identical additions which are filled

with the same pattern.
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n
90

R0,0 R0,2 R0,3 R0,7 R0,8 R0,9R0,5R0,1

8n
9

9n
9

10n
9 − 22n

9
3n
9

4n
9

5n
9

7n
9

6n
9

R0,0

R0,0

R0,1

R0,1

R0,2

R0,2

R0,3

R0,3

R0,4

R0,4

R0,5

R0,5

R0,6

R0,6

R0,7

R0,7

R0,8

R0,8

R0,9

R0,9

R0,4 R0,6

This computation of R1 necessitates 10n/9− 1 bit additions and R1 is of degree n+n/9− 2+2n/9 =

n+ n/3− 2.

• Accumulation of the reconstructed terms of depth 2. We add now to R1 the nine terms GBR0(C
(2)
i )

multiplied by their corresponding label

R2 = R1 +Xn/9
(

GBR0(C
(2)
3 ) + GBR0(C

(2)
4 )Xn/9 + GBR0(C

(2)
5 )X2n/9

+GBR0(C
(2)
9 )X3n/9 + GBR0(C

(2)
10 )X4n/9 + GBR0(C

(2)
11 )X5n/9

+GBR0(C
(2)
15 )X6n/3 + GBR0(C

(2)
16 )X7n/9 + GBR0(C

(2)
17 )X8n/9

)
.

The nine GBR0 do not involve any computation. Furthermore, each GBR0(C
(2)
i ) has degree 2n/9− 2

and their additions to R1 contributes to 2n/9− 2 bit additions each. This results in a cost of 2n− 9

bit additions while the degree of R2 remains equal to n+ n/3− 2.

• Multiplication of depth 1. We multiply R2 by the common factor (1 + Xn/3 + X2n/3) which appears

in the label of depth 1.

R3 = R2(1 +Xn/3 +X2n/3).

The computation of R3 is performed as specified in Step 2 of the GBR1 algorithm, this requires

4n/3− 1 bit additions. The degree of R3 is equal to 2n− 2.

• Reconstruction of the three right terms of depth 1. We use GBR1 as follows:

C
(1)
3 = GBR1(C

(2)
18 , C

(2)
19 , C

(2)
20 C

(2)
21 C

(2)
22 , C

(2)
23 ),

C
(1)
4 = GBR1(C

(2)
24 , C

(2)
25 , C

(2)
26 C

(2)
27 C

(2)
28 , C

(2)
29 ),

C
(1)
5 = GBR1(C

(2)
30 , C

(2)
31 , C

(2)
32 C

(2)
33 C

(2)
34 , C

(2)
35 ).

The complexity evaluation of Section 2 implies that each application of GBR1 requires 4n
3 − 6 bit

additions, so this step contributes to 4n− 18 bit additions.

• Accumulation of the reconstructed terms of depth 1. We add the reconstructed terms C(1)
3 , C

(1)
4 and C

(1)
5

multiplied by their corresponding coefficients Xn/3, X2n/3 and X3n/3 :

C = R3 +Xn/3
(
C

(1)
3 + C

(1)
4 Xn/3 + C

(1)
5 X2n/3

)
.

Since each C
(1)
i has degree 2n/3− 2 this contributes to 2n− 3 bit additions.

Complexity evaluation. We first evaluate the cost of the component formation. For the polynomial A,

the first recursion involves three additions of polynomials of size n/3. In the second recursion of the CPF

of A we have 6× 3 additions of polynomials of size n/9. This results in 3n bit additions for the CPF of

A and the same amount for B.

February 14, 2013 DRAFT



9

Algorithm 2 GBR2

Require: 36 polynomials C(2)
i = A

(2)
i ×B

(2)
i , i = 0, . . . , 35 of degree 2n/9− 2

Ensure: R satisfying R = A×B.

R← C
(2)
0 + C

(2)
1 Xn/9 + C

(2)
2 X2n/9 + C

(2)
6 X3n/9 + C

(2)
7 X4n/9 + C

(2)
8 X5n/9 + C

(2)
12 X

6n/3 + C
(2)
13 X

7n/9 + C
(2)
14 X

8n/9

R← R× (1 +Xn/9 +X2n/9)

R← R+Xn/9
(

GBR0(C
(2)
3 ) + GBR0(C

(2)
4 )Xn/9 + GBR0(C

(2)
5 )X2n/9 + GBR0(C

(2)
9 )X3n/9 + GBR0(C

(2)
10 )X4n/9

+GBR0(C
(2)
11 )X5n/9 + GBR0(C

(2)
15 )X6n/3 + GBR0(C

(2)
16 )X7n/9 + GBR0(C

(2)
17 X

8n/9
)

R← R× (1 +Xn/3 +X2n/3)

C
(1)
3 ← GBR1(C

(2)
18 , C

(2)
19 , C

(2)
20 , C

(2)
21 , C

(2)
22 , C

(2)
23 )

C
(1)
4 ← GBR1(C

(2)
24 , C

(2)
25 , C

(2)
26 , C

(2)
27 , C

(2)
28 , C

(2)
29 )

C
(1)
5 ← GBR1(C

(2)
30 , C

(2)
31 , C

(2)
32 , C

(2)
33 , C

(2)
34 , C

(2)
35 )

R← R+Xn/3
(
C

(1)
3 + C

(1)
4 Xn/3 + C

(1)
5 X2n/3

)
return(R)

We evaluate now the cost of the reconstruction. We just have to add the contribution of each steps of

the proposed GBR2 algorithm. This is done in Table 1.

TABLE 1

Summary of the costs of each step of GBR2

Step Cost

Initialization 8n/9− 8

Multiplication of depth 2 13n/9− 1

Accumulation of depth 2 18n/9− 9

Multiplication of depth 1 4n/3− 1

Three uses of GBR1 for C
(1)
3 , C

(1)
4 and C

(1)
5 12n/3− 18

Accumulation of depth 1 6n/3− 3

Total 35n
3

− 40

Finally the overall complexity of the two recursions of three-way split formula is as follows S⊕(n) = 53n
3 − 40 + 36S⊕(n/9),

S⊗(n) = 36S⊗(n/9).
(4)

When this method is applied recursively and n is an even power of 3 the above complexity can be

re-expressed in the following non-recursive form: S⊕(n) = 299
63 n

log3(6) − 53
9 n+ 8

7 ,

S⊗(n) = nlog3(6).
(5)

We now evaluate the delay of the proposed formula. We use the data-flow graph of the proposed

reconstruction shown in Fig. 3: the critical path is shown in bold line. Its delay is the sum of D(n/9) for the
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computation of C(2)
1 plus D⊕ for the initialization step, plus 2D⊕ for the multiplication by 1+Xn/9+X2n/9,

plus D⊕ for the accumulation of depth 2, plus 2D⊕ for the multiplication by 1 + Xn/3 + X2n/3, and

D⊕ for the accumulation of depth 1. This results in a D(n) = 7D⊕ + 9D(n/9) which gives a delay of

D(n) = 7
2 log3(n)D⊕ +D⊗ when the recursions are performed entirely.

Fig. 3. Data-flow graph of GBR2

Accumulation of depth 2

Initialization

C
(2)
14 C

(2)
4 C

(2)
5C

(2)
13C

(2)
12C

(2)
8C

(2)
7C

(2)
6C

(2)
2C

(2)
1C

(2)
0

C
(2)
6 C

(2)
9 C

(2)
10 C

(2)
11 C

(2)
15 C

(2)
16 C

(2)
17

Multiplication 1 +Xn/9 +X2n/9

C
(2)
18

Multiplication 1 +Xn/3 +X2n/3

C

C
(2)
23 C

(2)
24

C
(2)
29 C

(2)
30 C

(2)
35

GBR1 GBR1GBR1

Accumulation of depth 1

4 GENERALIZED BERNSTEIN RECONSTRUCTION OF DEPTH s FOR THE THREE-WAY FOR-

MULA

Now, we present the generalization of the optimization obtained on two recursions of the three-way

formulas. We first describe the different parts of the three-way split computations when unrolling s

recursions: component formations, pairwise products and reconstruction. We then focus on the recon-

struction part of the s recursions since it is the part of the computations which can be optimized.

4.1 Recursion of depth s of the three-way split formula

We split the recursion of depth s of the three-way formula into two main steps: a first step which performs

the component formations and pairwise products, a second step which performs the reconstruction.

Component formation and pairwise products. The component formation consists in recursively splitting

a polynomial in three parts and generate six polynomials with a size divided by three. Specifically, let

A
(h)
i be one of the terms generated after h recursions and we also assume that A(h)

i is of size n/3h. During

the (h+1)-th recursion we split A(h)
i in three parts A(h)

i = A
(h)
iL +A

(h)
i,MX

n/3+A
(h)
iHX

2n/3 and then generate

the following six polynomials of size n/3h+1:

A
(h+1)
6i = A

(h)
i,L, A

(h+1)
6i+1 = A

(h)
i,M , A

(h+1)
6i+2 = A

(h)
i,H ,

A
(h+1)
6i+3 = A

(h)
i,L +A

(h)
i,M , A

(h+1)
6i+4 = A

(h)
i,L +A

(h)
i,H , A

(h+1)
6i+5 = A

(h)
i,M +A

(h)
i,H .
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X
2n
/3

h (1
+
X

n
/3

h
+
1

+
X

2n
/3

h
+
1 )

C
(h+1)
6i C

(h+1)
6i+1 C

(h+1)
6h+2

C
(h+1)
6i+3

C
(h+1)
6i+4 C

(h+1)
6i+5

C
(h)
i

X
n
/3 h

+
1

X 2n/3 h+
1

X 3n/3 h+1

X
2n
/3
h (1

+
X
n/
3
h+

1 +
X
2n
/3
h+

1 )

(1 +
X
n/3

h+
1 +X

2n/
3
h+

1 )

After s recursions we obtain 6s terms A
(s)
i , i = 0, . . . , 6s − 1 of size n/3s. The same is done for the

polynomial B. Then the pairwise products are defined as C(s)
i = A

(s)
i × B

(s)
i , i = 0, . . . , 6s − 1 which

provide 6s polynomials of degree 2n/3s − 2.

Reconstruction tree. The reconstruction consists to apply the formula (3) to each group of six consecutive

C
(s)
i resulting in 6s−1 terms C(s−1)

i , i = 0, . . . , 6s−1 − 1 and then repeat this process recursively until we

get the term C
(0)
0 which is equal to the product C = A×B. This recursive reconstruction of depth s can

be arranged in a reconstruction tree of depth s satisfying the following properties:

• The root node is labeled as C(0)
0 and corresponds to reconstructed product C(0)

0 = C = A×B.

• The intermediate nodes of depth h are labeled as C(h)
i where 0 ≤ i < 6h. We measure the depth of a

node C(h)
i as the length of the upward path joining C

(h)
i to the root C(0)

0 of the reconstruction tree.

• Each node C(h)
i of depth h is linked down to six children C

(h+1)
6i , C

(h+1)
6i+1 , C

(h+1)
6i+2 , C

(h+1)
6i+3 , C

(h+1)
6i+4 , and

C
(h+1)
6i+5 of depth h + 1. The three left links are labeled by (1 + Xn/3h+1

+ X2n/3h+1

), Xn/3h+1

(1 +

Xn/3h+1

+ X2n/3h+1

), X2n/3h+1

(1 + Xn/3h+1

+ X2n/3h+1

) and the three right links are labeled with

Xn/3h+1

, X2n/3h+1

and X3n/3h+1

. In the sequel, a link joining C
(h)
i to C(h+1)

6i or C(h+1)
6i+1 or C(h+1)

6i+2 will

be called a left (L) link. We will also call any of the links joining C
(h)
6i to C

(h+1)
6i+3 or C(h+1)

6i+4 or C(h+1)
6i+5

a right (R) link.

There are some special nodes in the reconstruction tree which will play important role in the proposed

reconstruction algorithm:

Definition 1 (Special nodes). Let C(h)
i be a node of the reconstruction tree.

(i) We say that C(h)
i is an L node if the path joining C

(h)
i to the root node C

(0)
0 comprises only left

links. We also say that C(h)
i is an L leaf if C(h)

i is an L node and h = s.

(ii) We say that C(h)
i is an L-then-R node if the parent of C(h)

i is an L node and C
(h)
i is joined to his

parent by a right link.

For example in the reconstruction tree of depth 2 in Fig. 1 we have:

• The nodes C(1)
3 , C

(1)
4 and C

(1)
5 are L-then-R nodes of depth 1.
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• The nodes C(2)
3 , C

(2)
4 , C

(2)
5 and C

(2)
9 , C

(2)
10 , C

(2)
11 and C

(2)
15 , C

(2)
16 , C

(2)
17 are L-then-R nodes of depth 2.

• The nodes C(1)
0 , C

(1)
1 and C

(1)
2 are L nodes of depth 1.

• The nodes C(2)
0 , C

(2)
1 , C

(2)
2 and C

(2)
6 , C

(2)
7 , C

(2)
8 and C

(2)
12 , C

(2)
13 , C

(2)
14 are L leaves.

The following results concerning the labels of the L and L-then-R nodes of depth h will be useful in

sequel. We will use it to list the L nodes or L-then-R nodes of depth h.

Lemma 1. Let C(h)
j be an L node, then, there exists an integer i ∈ [0, 3h[ such that j = σ3(i) where σ3(i) =∑h−1

`=0 i`6
` if i = (ih−1, . . . , i0)3 is the representation of i in base 3.

We leave the proof to the leader (the proof is similar to the proof of Lemma 1 in [10]). Let us just check

its validity on few examples:

• The L nodes of depth 1 in the reconstruction tree of depth 2 (Fig. 1) are C(1)
0 , C

(1)
1 and C

(1)
2 . We see

that their subscripts 0, 1 and 2 satisfy 0 = σ3(0) and 1 = σ3(1) and 2 = σ3(2).

• We now consider the L nodes of depth 2. They are grouped into three sets of consecutive subscripts:

C
(2)
0 , C

(2)
1 , C

(2)
2 and C

(2)
6 , C

(2)
7 , C

(2)
8 and C

(2)
12 , C

(2)
13 , C

(2)
14 . For the first group C

(2)
0 , C

(2)
1 , C

(2)
2 we can

check again that 0 = σ3(0) and 1 = σ3(1) and 2 = σ3(2). For the second group C
(2)
6 , C

(2)
7 , C

(1)
8 we

have
6 = 0× 60 + 1× 61 = σ3(3),

7 = 1× 60 + 1× 61 = σ3(4),

8 = 2× 60 + 1× 61 = σ3(5).

Finally for the last group, the subscripts satisfy:

12 = 0× 60 + 2× 61 = σ3(6),

13 = 1× 60 + 2× 61 = σ3(7),

14 = 2× 60 + 2× 61 = σ3(8).

We conclude that all the subscripts of the L leaves are of the form σ3(i) for i ∈ {0, 1, 2, . . . , 8} = [0, 32[

as claimed in the lemma.

4.2 The GBRs algorithm

We now proceed to the generalization of the GBR1 and GBR2 algorithms. In we analyze thoroughly the

GBR2 algorithm we can distinguish a repetitive structure:

1) We first start by accumulating the L leaves of the reconstruction tree multiplied by their correspond-

ing factor of the form Xin/3s .

2) We then perform the following steps for the depth h = 2 and then h = 1 of the reconstruction tree:

a) We multiply R by the factor (1 +Xn/3h +X2n/3h).

b) We reconstruct all the L-then-R nodes of depth h by applying GBRs−h recursively.

c) We accumulate all the L-then-R nodes of depth h into R.
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We generalize GBR2 up to s recursions by expanding the above step 2) to h = s, s − 1, s − 2, . . . , 2, 1.

We use for this Lemma 1 to gets the subscripts of the L leaves and the L-then-R nodes for each depth

h. This leads us to Algorithm 3.

Algorithm 3 GBRs

Require: C(s)
0 , . . . , C

(s)
6s−1

Ensure: U = GBRs(C0, . . . , C6s−1)

U ← (
∑3s−1
i=0 C

(s)

σ3(i)
X

in
3s ) //Step 1: Initialization

for h = s to 1

U ← U × (1 +X
n
3h +X

2n
3h ) //Step 2: Multiplication of depth h

for i = 0 to 3h − 1


//Step 3 :Reconstruction of the L-then-R terms
j ← σ3(i) + 3

Vi ← GBRs−h(C
(s)

6s−hj
, . . . , C

(s)

6s−hj+6s−h−1
)

end for

U ← U +X
n
3h

(∑3h−1
i=0 ViX

in
3h

)
//Step 4: Accumulation in U of the L-then-R terms

end for

return(U )

Theorem 1 states the validity of Algorithm 3.

Theorem 1 (Validity of Algorithm 3). Let us consider two degree n polynomials A and B where n = 3sn′ and

let A(s)
0 , . . . , A

(s)
6s−1 and B(s)

0 , . . . , B
(s)
6s−1 be their respective component polynomial formation of depth s. Moreover,

if C(s)
i = A

(s)
i × B

(s)
i , i = 0, . . . , 6s − 1 are their pairwise products, then the application of Algorithm 3 to the

inputs C(s)
0 , . . . , C

(s)
6s−1 returns a polynomial U which satisfies U = A×B.

Proof: We prove the theorem by induction on s. First, since for s = 1 and s = 2 Algorithm 3

corresponds to the reconstruction of depth 1 and 2 depicted in Algorithms 1 and 2 respectively, the

induction hypothesis is satisfied for these two cases.

We now assume that Algorithm 3 is valid up to s and we prove its validity for s+1. We have to show

that if we run Algorithm 3 with inputs C(s+1)
0 , C

(s+1)
1 , . . . , C

(s+1)
6s+1−1 where C

(s+)
i = A

(s+1)
i × B(s+1)

i , i =

0, . . . , 6s+1 − 1, it correctly computes C = A×B. By definition we have

C(0) =
(
1 +Xn/3 +X2n/3

) (
C

(1)
0 +Xn/3C

(1)
1 +X2n/3C

(1)
2

)
+Xn/3C

(1)
3 +X2n/3C

(1)
4 +X3n/3C

(1)
5 .

(6)

Now, by induction hypothesis, Algorithm 3 correctly reconstructs

• C
(1)
0 = A

(1)
0 ×B

(1)
0 for n′ = n/3 and inputs C(s+1)

0 , . . . , C
(s+1)
6s−1 ,

• C
(1)
1 = A

(1)
1 ×B

(1)
1 for n′ = n/3 and inputs C(s+1)

6s , . . . , C
(s+1)
2·6s−1,

• C
(1)
2 = A

(1)
2 ×B

(1)
2 for n′ = n/3 and inputs C(s+1)

2·6s , . . . , C
(s+1)
3·6s−1.
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Our first goal is to merge and arrange the valid code which computes C(1)
0 , C

(1)
1 and C

(1)
2 in order to

obtain a code which computes the term C
(1)
0 + Xn/3C

(1)
1 + X2n/3C

(1)
2 in (6). The merged code which

computes C(1)
0 , C

(1)
1 and C

(1)
2 is given in Algorithm 4. This code was obtained by first considering three

duplications of the code of Algorithm 3 of depth s with inputs C(s+1)
0 , . . . , C

(s+1)
6s−1 and C

(s+1)
6s , . . . , C

(s+1)
2·6s−1

and C
(s+1)
2·6s , . . . , C

(s+1)
3·6s−1. We then merged these three duplicated codes by accumulating in the same

variable U the accumulated terms of the code computing C
(1)
0 and the accumulated terms of C(1)

1

multiplied by Xn/3 and the accumulated terms multiplied by X2n/3 of C(1)
2 .

Algorithm 4 Merged GBRs computing C
(1)
0 +Xn/3C

(1)
1 +X2n/3C

(1)
2

Require: C(s+1)
0 , . . . , C

(s+1)
6s−1 and C

(s+1)
6s , . . . , C

(s+1)

2·6s+1−1
and C

(s+1)
2·6s , . . . , C

(s+1)
3·6s−1 and n′ = n/3.

Ensure: U = GBRs(C
(s+1)
0 , . . . , C

(s+1)
6s−1 ) +Xn′GBRs(C

(s+1)
6s , . . . , C

(s+1)
2·6s−1) +X2n′GBRs(C

(s+1)
2·6s , . . . , C

(s+1)
3·6s−1).

U ←
(∑3s−1

i=0 C
(s+1)

σ3(i)
X

in′
3s

)
+Xn′

(∑3s−1
i=0 C

(s+1)

6s+σ3(i)
X

in′
3s

)
+X2n′

(∑3s−1
i=0 C

(s+1)

2·6s+σ3(i)X
in′
3s

)
//Merged step 1

for h = s to 1

U ← U × (1 +X
n′
3h +X

2n′
3h ) //Merged step 2

for i = 0 to 3h − 1


//Merged step 3

j ← σ3(i) + 3

Vi ← GBRs−h(C
(s+1)

6s−hj
, . . . , C

(s+1)

6s−hj+6s−h−1
)

V ′i ← GBRs−h(C
(s+1)

6s+6s−hj
, . . . , C

(s+1)

6s+6s−hj+6s−h−1
)

V ′′i ← GBRs−h(C
(s+1)

2·6s+6s−hj
, . . . , C

(s+1)

2·6s+6s−hj+6s−h−1
)

end for

U ← U +X
n′
3h

(∑3h−1
i=0 ViX

in′
3h

)
+Xn′X

n′
3h

(∑3h−1
i=0 V ′iX

in′
3h

)
//Merged step 4

+X2n′X
n′
3h

(∑3h−1
i=0 V ′′i X

in′
3h

)
end for

Now we arrange each step of the previous algorithm as follows:

• Modification of merged step 1. By definition of σ3 in Lemma 1, we have 6s + σ3(i) = σ3(3
s + i) and

2 · 6s + σ3(i) = σ3(2 · 3s + i) for any i ∈ {0, . . . , 3s − 1}. Then we can arrange the merged step 1 as

follows:

U =
(∑3s−1

i=0 C
(s+1)

σ3(i)
X

in′
3s

)
+Xn′

(∑3s−1
i=0 C

(s+1)

6s+σ3(i)
X

in′
3s

)
+X2n′

(∑3s−1
i=0 C

(s+1)

2·6s+σ3(i)X
in′
3s

)
=

(∑3s−1
i=0 C

(s+1)

σ3(i)
X

in′
3s

)
+

(∑3s−1
i=0 C

(s+1)

σ3(3s+i)
X

(3s+i)n′
3s

)
+

(∑3s−1
i=0 C

(s+1)

σ3(2·3s+i)X
(2·3s+i)n′

3s

)
where we used that Xn′X

in′
3s = X

3s+in′
3s and X2n′X

in′
3s = X

2·3s+in′
3s . Now we have

U =
(∑3s−1

i=0 C
(s+1)

σ3(i)
X

in′
3s

)
+
(∑2·3s−1

i=3s C
(s+1)

σ3(i)
X

in′
3s

)
+
(∑3s+1−1

i=2·3s C
(s+1)

σ3(i)
X

in′
3s

)
=

∑3s+1−1
i=0 C

(s+1)

σ3(i)
X

in′
3s ,

which is the initialization of U in the code of GBRs+1.
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• Modification of the merged step 3 (reconstruction of the L-then-R terms). We arrange the for loop by

splitting this loop into three loops: a loop for Vi, a loop for V ′i and a loop for V ′′i . We then perform

the following changes on the variables i and j of these three loops:

• In the loop on Vi, we only change the name of the subscripts: i becomes i′ and j becomes j′.

• In the loop on V ′i , we first perform the change of variable i′ = i + 3h. For the variable j we

notice that 6s + 6s−hj = 6s−h(6h + j) and if we set j′ = 6h + j we have j′ = 6h + σ3(i) + 3 =

σ3(3
h + i) + 3 = σ3(i

′) + 3.

• In the loop on V ′′i , we perform the change of variable i′ = i+2 · 3h. For the variable j we notice

that 2 · 6s+6s−hj = 6s−h(2 · 6h+ j) and if we set j′ = 2 · 6h+ j it satisfies j′ = 2 · 6h+ σ3(i)+ 3 =

σ3(2 · 3h + i) + 3 = σ3(i
′) + 3.

The resulting pseudo-code is depicted below.

for i′ = 0 to 3h − 1 do

j′ ← σ(i′) + 3

Vi′ ← GBRs−h(C
(s+1)

6s−hj′
, . . . , C

(s+1)

6s−hj′+6s−h−1)

end for

for i′ = 3h to 2 · 3h − 1 do

j′ ← σ(i′) + 3

V ′i′−3h ← GBRs−h(C
(s+1)

6s−hj′
, . . . , C

(s+1)

6s−hj′+6s−h−1)

end for

for i′ = 2 · 3h to 3h+1 − 1 do

j′ ← σ(i′) + 3

V ′i′−2·3h ← GBRs−h(C
(s+1)

6s−hj′
, . . . , C

(s+1)

6s−hj′+6s−h−1)

end for

The three for loops in the former pseudo-code can be merged into a unique for loop. We just have

to rename V ′i′−3h by Vi′ , i′ = 3h, . . . , 2 ·3h−1 and V ′′i′−2·3h by Vi′ , i′ = 2 ·3h, . . . , 3h+1−1. This provides

the following loop:

for i′ = 0 to 3h+1 − 1 do

j′ ← σ(i′) + 1

Vi′ ← GBRs−h(C
(s+1)

6s−hj′
, . . . , C

(s+1)

6s−hj′+6s−h−1)

end for

• Modification of merged step 4 (accumulation of the L-then-R terms). Here we first need to replace V ′i =

V ′i′−3h by Vi′ for i′ = 3h, . . . , 2 · 3h − 1 and V ′′i = V ′′i′−2·3h by Vi′ for i′ = 2 · 3h, . . . , 3h+1 − 1 due to the
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modifications made in Step 3. We then arrange the accumulation as follows

U +X
n′
3h

(∑3h−1
i=0 ViX

in′
3h

)
+Xn′X

n′
3h

(∑3h−1
i=0 V ′iX

in′
3h

)
+X2n′X

n′
3h

(∑3h−1
i=0 V ′′i X

in′
3h

)
= U +X

n′
3h

(∑3h−1
i′=0 Vi′X

i′n′
3h

)
+Xn′X

n′
3h

(∑2·3h−1

i′=3h
Vi′X

(i′−3h)n′

3h

)
,

+X2n′X
n′
3h

(∑3h+1−1

i′=2·3h Vi′X
(i′−2·3h)n′

3h

)
the factors Xn′ and X2n′ are then canceled, and we obtain

= U +X
n′
3h

(∑3h−1
i′=0 Vi′X

i′n′
3h

)
+X

n′
3h

(∑2·3h−1

i′=3h
Vi′X

i′n′
3h

)
+X

n′
3h

(∑3h+1−1

i′=2·3h Vi′X
i′n′
3h

)
= U +X

n′
3h

(∑3h+1−1
i′=0 Vi′X

i′n′
3h

)
.

These modifications, along with the changes of variables h′ = h+ 1 and n = 3n′, result in the pseudo-

code given in Algorithm 5 which correctly computes C(1)
0 +Xn/3C

(1)
1 +X2n/3C

(1)
2 .

Algorithm 5 Modified merged GBRs

Require: C(s+1)
0 , . . . , C

(s+1)
6s−1 and C

(s+1)
6s , . . . , C

(s+1)
2·6s+1−1 and C

(s+1)
2·6s , . . . , C

(s+1)
3·6s−1

Ensure: U = GBRs(C
(s+1)
0 , . . . , C

(s+1)
6s−1 ) +Xn/3GBRs(C

(s+1)
6s , . . . , C

(s+1)
2·6s−1) +X2n/3GBRs(C

(s+1)
2·6s , . . . , C

(s+1)
3·6s−1)

U ←
∑3s+1−1
i=0 C

(s+1)
σ(i) X

in

3s+1

for h′ = s+ 1 to 2 do

U ← U × (1 +X
n

3h
′ +X

2n

3h
′ )

for i′ = 0 to 3h
′ − 1 do

j′ ← σ3(i
′) + 3

Vi′ ← GBRs+1−h′(C
(s+1)

6s+1−h′ j′
, . . . , C

(s+1)

6s+1−h′ j′+6s+1−h′−1)

end for

U ← U +X
n

3h
′

(∑3h
′
−1

i′=0 V ′iX
i′n
3h
′

)
end for

We finally obtain the code of Algorithm 3 for s+ 1 by adding the following two computations corre-

sponding to the multiplication by (1+Xn/3+X2n/3) and the additions of the terms Xn/3C
(1)
3 , X2n/3C

(1)
4

and X3n/3C
(1)
5 in (6):

U ← (1 +Xn/3 +X2n/3)U,

U ← U +Xn/3GBRs(C
(s+1)
3·6s , . . . , C

(s+1)
4·6s−1) +X2n/3GBRs(C

(s+1)
4·6s , . . . , C

(s+1)
5·6s−1) +X3n/3GBRs(C

(s+1)
5·6s , . . . , C

(s+1)

6s+1−1
).

Indeed, these two operations provide the missing loop operations for h′ = 1 of Algorithm 5. This

concludes the proof on the validity of Algorithm 3.

4.3 Complexity evaluation

This section is dedicated to the complexity evaluation of the GBRs algorithm and the resulting multiplier

based on it.
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Lemma 2. The number of bit additions S⊕(n, s) of the GBRs algorithm satisfies the following recursive expression

S(s, n) = s

(
7n

2
− 1

)
− 5

2
3s − n

4
− n

4 · 3s−1
+

5

2
+

s−1∑
i=1

3s−iS(i, n/3s−i). (7)

Proof: We evaluate the cost of each step of Algorithm 2 separately. For each step we also provide the

resulting degree of U .

• Cost of Step 1, the initialization step. We evaluate here the cost of the initialization step

U ←
3s−1∑
i=0

C
(s)
σ3(i)

X
in
3s .

We arrange the sum as(
3s−1∑
i=0

C
(s)
σ3(i)

X
in
2s

)
=

 3s−1
2∑
j=0

C
(s)
σ3(2j)

X
2jn
3s


︸ ︷︷ ︸

S1

+

 3s−3
2∑
j=0

C
(s)
σ3(2j+1)X

(2j+1)n
3s


︸ ︷︷ ︸

S2

.

There are no overlaps in S1 and S2 and these two sums can be arranged as shown in Fig. 4.

Fig. 4. Cost evaluation of the initialization step

0

S2 → C
(s)
σ3(1)

C
(s)
σ3(0)

C
(s)
σ3(2)

C
(s)
σ3(3s−3)

C
(s)
σ3(3s−2)

C
(s)
σ3(3s−1)

4n
3s

2n
3s

n
3s

S1 →

(3s−3)n
3s

(3s−1)n
3s

(3s−2)n
3s

3sn
3s

From Fig. 4, we notice that the addition to S1 of each of the 3s−1
2 terms C(s)

σ3(1)
, C

(s)
σ3(3)

, . . . , C
(s)
σ3(3s−2)

of S2 requires 2n
3s − 2 bit additions each. Consequently the number of bit additions performed in the

initialization step of the GBRs algorithm is as follows

3s − 1

2
×
(
2n

3s
− 2

)
= n− n

3s
− 3s + 1.

We also remark from Fig. 4 that the degree of U after this first step is dI = (3s+1) n3s −2 = n+ n
3s −2.

• Cost of Step 2. In this step we sequentially multiply U by 1 +Xn/3h +X2n/3h for h = s, s− 1, . . . , 1.

The degree of U starts at n+ n
3s − 2 and then changes to n+ n

3s−1 − 2, then n+ n
3s−2 − 2, and so on

up to 2n − 2. The computation of the product of U of degree n + n
3h
− 2 by 1 +Xn/3h +X2n/3h is

performed as follows:
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n
3h0 n + n

3h − 12n
3h

3n
3h

4n
3h

5n
3h n

Costs 2n/3h Costs 3n/3h

bit additions
Costs 2n/3h − 1

bit additionsbit additions

In the above diagram, duplicated additions are filled with the same pattern. The cost of the multi-

plication by 1 +Xn/3h +X2n/3h is then as follows:

– The left hand side block of size 2n/3h requires 2n/3h bit additions.

– The right hand side block of size 2n/3h and requires 2n/3h − 1 bit additions.

– The middle blocks, which again are of size 2n/3h, require 3n/3h bit additions each. The number

of these blocks is (n+n/3h)−4n/3h
2n/3h

= 3h−3
2 .

Consequently, the cost of a multiplication by 1 +Xn/3h +X2n/3h requires(
3h − 3

2

)
× 3n/3h + 2n/3h + 2n/3h − 1 =

3n− n/3h

2
− 1 bit additions.

We report in Table 2 the costs of the multiplications by 1 +Xn/3h +X2n/3h for h = s, s− 1, . . . , 2, 1

and the degree of U after these multiplications.

TABLE 2

Cost of the multiplications by 1 +Xn/3h +X2n/3h for h = s, s− 1, . . . , 1

Depth Cost Resulting degree

h = s
3n−n/3s

2
− 1 ds = dI + 2n/3s = n+ n/3s−1 − 2

h = s− 1
3n−n/3s−1

2
− 1 ds−1 = ds + 2n/3s−1 = n+ n/3s−2 − 2

...
...

...

h = 2
3n−n/32

2
− 1 d2 = d3 + 2n/32 = n+ n/3− 2

h = 1
3n−n/3

2
− 1 d1 = d2 + 2n/3 = n+ n− 2 = 2n− 2

The sum of the costs of the s multiplications by (X2n/3h + Xn/3h + 1), h = s, s − 1, . . . , 1 given in

Table 2 is equal to

Cost2 = s( 3n2 − 1)− n
2 (1/3

s + 1/3s−1 + · · ·+ 1/3)

= s( 3n2 − 1)− n
6

(
1− 1

3s

1− 1
3

)
= s( 3n2 − 1)− n

4 + n
4·3s .

• Cost of step 3. The contribution of the recursive computations is as follows:

Cost3 = 3S(s− 1, n/3) + 9S(s− 2, n/9) + · · ·+ 3s−1S(1, n/3s−1) =
s−1∑
i=1

3iS(s− i, n/3i).
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• Cost of step 4. For each h = s, s−1, . . . , 2, 1 we add to U the 3h L-then-R terms C(h)
j , j = 1, . . . , 3h−1.

Each C
(h)
j is of degree 2n/3h − 2. The cost is thus

Cost4 = 3(2n/3− 1) + 9(2n/9− 1) + · · ·+ 3s(2n/3s − 1)

=
∑s
i=1 3

i(2n/3i − 1)

= (
∑s
i=1 2n)− (

∑s
i=1 3

i)

= 2sn− 3s+1−3
2 .

Finally, the total cost of the GBRs algorithm is as follows:

S(s, n) = n− n

3s
− 3s + 1︸ ︷︷ ︸

Cost1

+ s(
3n

2
− 1)− n

4
+

n

4 · 3s︸ ︷︷ ︸
Cost2

+

s−1∑
i=1

3iS(s− i, n/3i)︸ ︷︷ ︸
Cost3

+2sn− 3s+1 − 3

2︸ ︷︷ ︸
Cost4

.

This latter expression can be re-written as

S(s, n) = s(
7n

2
− 1)− 5

2
3s +

3n

4
− n

4 · 3s−1
+

5

2
+

s−1∑
i=1

3s−iS(i, n/3s−i). (8)

The following lemma provides the non-recursive form of the complexity of the GBRs algorithm.

Lemma 3. The solution S(s, n) of the recursive expression
s−1∑
i=1

3s−iS(i, n/3s−i) = S(s, n)− γ(s, n) (9)

where γ(s, n) = s( 7n2 − 1)− 5
23
s + 3n

4 −
n

4·3s−1 + 5
2 is as follows

S(s, n) = −7n

2
+

28

25
− 28

25
6s − 2s

5
− n

10 · 3s−1
+

19n

5
2s. (10)

Proof: We prove this latter equality by induction on s: we assume that (10) and (9) are true up to

s− 1 and we show that they are also true for s. We begin by rewriting the summation in (9) as follows∑s−1
i=1 3s−iS(i, n/3s−i) = 3S(s− 1, n/3) +

∑s−2
i=1 3s−iS(i, n/3i)

= 3S(s− 1, n/3) + 3
∑s′−1
i=1 3s

′−iS(i, n′/3s′−1).

The latter identity was obtained by setting s′ = s− 1 and n′ = n/3. We apply the induction hypothesis

to the sum
∑s′−1
i=1 3s

′−iS(i, n′/3s′−i) and we obtain:∑s−1
i=1 3s−iS(i, n/3s−i) = 3S(s′, n′) + 3 (S(s′, n′)− γ(s′, n′))

= 6S(s− 1, n/3)− 3γ(s− 1, n/3).
(11)

Now we separately arrange the terms 6S(s − 1, n/3) and 3γ(s − 1, n/3). For 6S(s − 1, n/3), we use the

induction hypothesis and replace S(s−1, n/3) by their corresponding expression in term of n and s given
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in (10):

6S(s− 1, n/3) = 6
(
− 7n

6 + 28
25 −

28
256

s−1 − 2(s−1)
5 − n

10·3s−1 + 19n
15 2s−1

)
= −7n+ 6 · 2825 −

28
256

s − 12s
5 + 6 · 25 −

6n
10·3s−1 + 19n

5 2s

=
(
− 7n

2 + 28
25 −

28
256

s − 2s
5 −

n
10·3s−1 + 19n

5 2s
)
− 7n

2 + 5 · 2825 −
10s
5 + 6 · 25 −

5n
10·3s−1

= S(s, n)− 7n
2 +−2s+ 8− n

2·3s−1 .

We treat the term 3γ(s− 1, n/2) in the same way:

3γ(s− 1, n/3) = 3
(
(s− 1)( 7n6 − 1)− 5

23
s−1 + n

4 −
n

4·3s−1 + 5
2

)
= s( 7n2 − 3)− 7n

2 + 3− 5
23
s + 3n

4 −
3n

4·3s−1 + 15
2

=
(
s( 7n2 − 1)− 5

23
s + 3n

4 −
n

4·3s−1 + 5
2

)
− 2s− 7n

2 + 3− 2n
4·3s−1 + 10

2

= γ(s, n)− 2s− 7n
2 −

n
2·3s−1 + 8.

We finally we replace in (11) the new expressions of 6S(s− 1, n/2) and 3γ(s− 1, n/2), and make some

simplifications∑s−1
i=1 2i−1S(s− i, n/2i) = S(s, n) +

(
− 7n

2 +−2s+ 8− n
2·3s−1

)
− γ(s, n)−

(
−2s− 7n

2 −
n

2·3s−1 + 8
)
.

= S(s, n)− γ(s, n).

And this ends the proof.

Lemma 4. The number of bit additions S⊕(n) and bit multiplications S⊗(n) involved in the multiplication of two

degree n = 3sn′ polynomials consisting in parallel component formation of depth s, 6s parallel multiplications of

degree n/3s polynomials and a GBRs for the reconstruction are as follows S⊕(n) = − 11n
2 + 28

25 −
28
256

s − 2s
5 −

n
10·3s−1 + 29n

5 2s + 6sS⊕(n/3s)

S⊗(n) = 6sS⊗(n/3s)
(12)

The delay of this approach is as follows

D(n) = (3s+ 1)D⊕ +D(n/3s). (13)

Proof: Evaluation of the space complexity. Since, in Lemma 3, we have already established the complexity

of the reconstruction, we have only to evaluate the number of bit additions for a component formation of

depth s. We prove by induction that a component formation of depth s requires n(2s − 1) bit additions.

For s = 1 we have seen in Section 2 that a CPF requires n bit additions: the induction hypothesis is thus

satisfied. Now we assume that the induction hypothesis is true up to s and we prove it for s + 1. We

decompose the s+1 recursions of CPFs+1 into one recursion which generates six polynomials of degree

n/3 and then we apply a CPFs to each of them. The cost of CPFs+1 is then: n bit additions for the first

recursion plus six times the number of bit additions involved in CPFs with input of size n/3. This results

in

n+ 6× n

3
(2s − 1) = n+ n2s+1 − 2n = n(2s+1 − 1) bit additions.
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We finally obtain the overall space complexity by adding the complexity of two CPFs plus 6s times the

complexity of a multiplication of degree n/3s plus the complexity of GBRs given in (10). This results in S⊕(n) = − 11n
2 + 28

25 −
28
256

s − 2s
5 −

n
10·3s−1 + 29n

5 2s + 6sS⊕(n/3s),

S⊗(n) = 6sS⊗(n/3s).

Evaluation of the delay. Again, we prove it by induction. For s = 1 this corresponds to the delay given

in Section 2. We now assume that the delay given in the lemma is true for s and we prove it for s+1. We

have drawn a diagram (Fig. 5) showing the circuit of the considered multiplier. This diagram is based on

the proof of validity of Algorithm 3 in which we rewrote GBRs+1 in terms of a modified merged GBRs

(Algorithm 5), three GBRs and a final loop operation. We also know from the proof of Theorem 1 that

GBRs and the merged GBRs have the same delay since the merging process does not increase the delay.

This means that, by induction hypothesis, the circuits based on the GBRs and merged GBRs algorithms

have a delay of D(n/3s) + (3s+ 1)D⊕.

Fig. 5. Reconstruction of depth s+ 1
A

Three−way split Three−way split

B

CPFs CPFs CPFs CPFs CPFs CPFs CPFs CPFs CPFs CPFs CPFs CPFs

C

Mult. by Xn/3 Mult. by X2n/3 Mult. by X3n/3Mult. by (1 +Xn/3 +X2n/3)

Merged GBRs

(Algorithm 5)

6s parallel 6s parallel 6s parallel 6s parallel 6s parallel 6s parallel

Mult(n/3s+1) Mult(n/3s+1)Mult(n/3s+1) Mult(n/3s+1) Mult(n/3s+1) Mult(n/3s+1)

GBRs GBRs GBRs

The critical path of the circuit of Fig. 5 goes through any of the three left most CPFs blocks of A

or B, then through one Mul(n/3s+1) block and then one merged GBRs block and finally through a

multiplication by 1 +Xn/3 +X2n/3 and a last accumulation step. By induction hypothesis, the sequence

CPFs then Mul(n/3s+1) and then merged GBRs contributes to (3s+ 1)D⊕ +D(n/3s+1) to the critical path

delay. The final operations contributes to 3D⊕, leading to an overall delay of

D(n) = (3(s+ 1) + 1)D⊕ +D(n/3s+1).
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and this concludes the proof.

In the following corollary, we give the complexity of the multiplier for the special case s = log3(n), i.e.,

if the optimization GBRs is applied to all the recursions.

Corrolary 1. Let n be a power of 3, then the three-way split multiplier based on GBRs when s = log3(n) has the

following space and time complexities
S⊕(n) = 117

25 n
log3(6) − 11

5 n−
2 log3(n)

5 + 41
50 ,

S⊗(n) = nlog3(6),

D(n) = 3 log3(n)D⊕ +D⊗.

Proof: We obtain the space complexity directly from Lemma 4 by replacing s by log3(n) in (12). For

the delay, we notice that the delay of the Initialization steps of GBRs is null. Indeed, when s = log3(n)

then the polynomials C(s)
i for i = 0, 1, . . . , 6log3(n) − 1 are of degree 0. Consequently, the Initialization

step consists in interleaving the coefficients C(s)
σ3(i)

, i ∈ [0, 3log3(n)[ and does not require any delay. So we

remove one D⊕ from the delay of (13) with s = log3(n) resulting in the required delay.

5 COMPLEXITY COMPARISON AND CONCLUSION

We have presented in this paper a generalization the optimization technique initiated by Bernstein on

two recursion of Karatsuba to three-way split formula. We have first presented this technique on two

recursions of the three-way split formula and then we have extended this idea to an arbitrary number s

of recursions.

In Table 3 we recall the complexity of the best known three-way approaches for the multiplication of

binary polynomials of size n = 3k. Specifically, we report the complexity results of Murat et al. [2] and

of Fan et al. [4]. The proposed approach provides formulas and complexity results for any value of s.

Here, we focus on three situations: the case s = 2 which assumes that n = 32k
′

and has been studied in

details in Section 3. We also provide the complexity for the case s = 3 under the assumption n = 33k
′
:

the reported complexity in Table 3 is the non-recursive form of the following complexity derived from

Lemma 4 for s = 3 
S⊕(n) = 216S⊕(n/27) + 368

9 n− 242,

S⊗(n) = 216S⊗(n/27),

D(n) = 10D⊕ +D(n/27).

We also report in Table 3 the complexity of Corollary 1 when the optimization on the reconstruction is

performed to the full recursion tree.

The results presented above show that the generalization of the Bernstein reconstruction to the case of

three-way split formula reduce significantly the space complexity. The improvement can be seen in the

leading terms of the number of bit additions S⊕(n): for s = 1 we have 4.8nlog3(6)+O(n), the use of GBR2

in the reconstruction provide S⊕(n) = 4.74nlog3(6) +O(n) and the use of GBR3 gives 4.71nlog3(6) +O(n).
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TABLE 3

Space and time complexities of three-way multiplier for n = 3k

Method # AND # XOR Delay(∗)

Murat et al. formula [2] (reviewed in Section 2) nlog3(6) 4.8nlog3(6) − 6n+ 1.2 4 log3(n)D⊕ +D⊗

Fan et al. overlap-free approach [4] nlog3(6) 5.33nlog3(6) − 22n
3

+ 2 3 log3(n)D⊕ +D⊗

Proposed s = 2 (cf. Section 3) nlog3(6) 4.74nlog3(6) − 5.89n+ 1.14 3.5 log3(n)D⊕ +D⊗

Proposed s = 3 nlog3(6) 4.71nlog3(6) − 5.84n+ 1.12 3.33 log3(n)D⊕ +D⊗

Proposed s = log3(n) (Corollary 1) nlog3(6) 4.68nlog3(6) − 2.2n− 0.4 log3(n) + 0.82 3 log3(n)D⊕ +D⊗

(∗) D⊕ represents the delay of an XOR gate and D⊗ represents the delay of an AND gate.

The case s = log3(n) can be seen as the limit case, it has the smallest leading terms 4.68nlog3(6) + O(n)

among all cases.

We also notice that the use of GBRs also improves the delay of the multiplier: for s = 1 we have

4 log3(n)D⊕ +D⊗, for s = 2 we have 3.5 log3(n)D⊕ +D⊗ and for s = 3 we have 3.33 log3(n)D⊕ +D⊗.

Again, the case s = log3(n) can be seen as the limit case reaching the lowest delay 3 log3(n)D⊕ + D⊗.

This later case has a delay of the same order as the delay of the three-way multiplier of [4].
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