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Abstract

In order to properly address the simulation of complex (weakly compressible) turbulent flows, the

lattice Boltzmann method, originally designed for uniform structured grids, needs to be extended

to composite multi-domain grids displaying various levels of spatial resolution. Therefore, physical

conditions must be specified to determine the mapping of statistical information (about the popu-

lations of moving particles) at the interface between two domains of different resolutions. It is here

argued that these conditions can express quite simply in terms of the probability distributions of

the underlying discrete-velocity Boltzmann equation. Namely, the continuity of the mass density

and fluid momentum is fulfilled by imposing the continuity of the equilibrium part of these dis-

tributions, whereas the discontinuity of the rate-of-strain tensor is ensured by applying a “spatial

transformation” to the collision term of the discrete-velocity Boltzmann equation. This latter con-

dition allows us to explicitly account for the subgrid-scale modeling in the treatment of resolution

changes. Test computations of a turbulent plane-channel flow have been considered. The lattice

Boltzmann scheme relies on the standard D3Q19 lattice in a cell-vertex representation, and uses

the BGK approximation for the collision term. A shear-improved Smagorinsky viscosity is used for

the subgrid-scale modeling. In a quasi-Direct Numerical Simulation at Reτ = 180 (with two levels

of resolution) the results are found in excellent agreement with reference data obtained by a high-

resolution pseudo-spectral simulation. In a Large-Eddy Simulation at Reτ = 395 (with three levels

of resolution) the results compare very well with high-resolution reference data. The accuracy is

improved in comparison with a large-eddy simulation based on finite-volume discretization with

the same subgrid-scale viscosity model and comparable grid resolution. This study demonstrates

the good capabilities of the lattice Boltzmann method to handle both Direct and Large-Eddy Sim-

ulations of turbulent flows with grid resolutions comparable to those commonly used in simulations

based on standard discretization methods, e.g. pseudo-spectral or finite-volume methods.

PACS numbers: 47.11.Qr, 47.11.-j, 47.27.E-
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I. INTRODUCTION

It is characteristic of fluid flows to develop finer and finer dynamical structures, e.g.

shear layers or elongated vortices, as the Reynolds number increases [1]. Adapting the whole

resolution of a numerical simulation to the size of these finest structures implies considerable

computational efforts. So in practice, it is desirable to refine the grid only in regions where a

finer resolution is needed, and use a coarser grid in the rest of the domain. This requirement

becomes mandatory for the Large-Eddy Simulation (LES) of turbulent flows, in which grid

refinement is often necessary near solid boundaries whereas a coarser resolution can be used

in the bulk of the flow, on the condition to account for subgrid-scale turbulent dynamics [2].

Despite its relative novelty (see [3] for a seminal article), the lattice Boltzmann (LB) method

has already proven its potential to simulate complex flows on (sufficiently fine) uniform grids

[4]. However, improvements are still needed to tackle turbulent flows on composite multi-

resolution grids, the main difficulty arising from the “lack of deformability” of the lattice. As

recently quoted by Sagaut [5], the development of LES within the framework of the lattice

Boltzmann method is still at a very early stage.

While conventional methods start with a continuous description of the fluid at a macro-

scopic level, e.g. the Navier-Stokes equations, the LB method considers the fluid at a meso-

scopic level, intermediate between the microscopic and the macroscopic [6]. Concretely, the

fluid is modeled as populations of (fictitious) particles that collide, re-distribute and propa-

gate along the different links of a discrete lattice, so that the desired “collective dynamics”

can be recovered in the continuous limit [7]. The complexity of the flow emerges from the

repeated application of simple rules of collision and streaming possibly supplemented by

bounce-back or reconstruction procedures at the boundaries [8]. The LB method expresses

the evolution of the probability distributions of these populations on the lattice, or grid.

Originally, the method was designed for simple structured grid with a constant spacing in

the three directions. Nevertheless, multi-resolution may be fulfilled by embedding domains

of different (spatial) resolutions within the original grid (see Fig. 1). In that situation, some

specific conditions are required to determine the mapping of the probability distributions at

the boundary between two resolution domains. For the simulation of turbulent flows, this

mapping is essential since it should account for the discontinuity of the rate of strain (related

to the change of spatial resolution) and encompass effects related to possible subgrid-scale

3



?

?

FIG. 1: Sketch of a (two-dimensional) multi-domain/multi-resolution grid in a cell-vertex represen-

tation. Inside each domain, particles can move towards neighboring nodes according to a discrete

set of velocities. Some inconsistency in the connectivity of boundary nodes requires to suitably

transmit the statistics of moving particles at the boundary of each domain.

turbulent dynamics.

In section II, the general framework of the LB method is briefly recalled and the position

of the problem is presented. Our proposal is introduced and discussed with respect to

existing works in section III. In section IV, the results from test computations of a turbulent

channel flow are reported and compared with reference data from Direct and Large-Eddy

Simulations. Finally, conclusions and perspectives are drawn in the last section.
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II. THE GENERAL FRAMEWORK OF THE LB METHOD AND THE POSITION

OF THE PROBLEM

The LB method originates from the Boltzmann transport equation restricted to a finite

set of velocities {cα} in phase-space:

∂fα(x, t)

∂t
+ cαi

∂fα(x, t)

∂xi

= −1

τ
(fα(x, t)− f eq

α (x, t)) , (1)

where fα(x, t)d
3x represents the probability (at time t) for a fictitious particle of fluid with

the velocity cα to find itself within the elementary volume d3x about the position x. Eq.

(1) is usually called the discrete-velocity Boltzmann equation. It is essentially a balance of

probability per unit volume, in which the BGK approximation −(fα − f eq
α )/τ is adopted in

place of the complicated collision operator of the Boltzmann equation [9]; τ is a relaxation

time related to the collision process. Indeed, it is thought that most details hidden in the

collision operator play no role at the macroscopic level. It is therefore replaced with a much

handier expression retaining only the basic features of fluid dynamics (at a mesoscopic level).

If the fluid has constant properties and its mass is conserved, fα(x, t) may also be viewed

(provided a proper normalization) as the mass of fluid per unit volume that moves with

the velocity cα. The main strenght of the LB method is to prescribe the restricted sets of

velocities, {cα}, and equilibrium distributions, {f eq
α }, so as to recover (up to some order)

the Navier-Stokes dynamics for the mass density and fluid momentum

ρ(x, t) ≡
∑

α

fα(x, t) =
∑

α

f eq
α (x, t) (2a)

(ρu)(x, t) ≡
∑

α

fα(x, t) cα =
∑

α

f eq
α (x, t) cα (2b)

by applying the Chapman-Enskog expansion method [7]. Therefore, a common practice is

to consider the so-called D3Q19 lattice (in three dimensions) with 19 possible velocities [10],

as sketched in Fig. 2. The (isothermal) equilibrium distribution expresses as

f eq
α (ρ,u) =

∑

ij

wαρ

(
1 +

uicαi
c2s

+
uiuj Qαij

2c4s

)
with Qαij = cαicαj − δijc

2
s. (3)

The weighting coefficients are given by w0 = 1/3 for the “center”, w1...6 = 1/18 for the

“faces” and w7...18 = 1/36 for the “edges”. Finally, to ensure physical consistency, the

constant velocity cs refers to the speed of sound (in the fluid) and the relaxation time τ is

linked to the kinematic viscosity of the fluid by τ = ν/c2s [11].
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FIG. 2: The set of discrete velocities (including null velocity) of the D3Q19 lattice. For clarity,

only the velocities in the horizontal plane are displayed. These 19 velocities can be grouped into

three categories of vectors pointing respectively to the “center” (null vector), the “faces” and the

“edges” of a cube. By construction, the respective velocities satisfy |c0|2 = 0, |c1...6|2 = 3c2s and

|c7...18|2 = 6c2s.

In the LB scheme, the discretization of space stems directly from the discrete set of

velocities so that each (fictitious) particle of fluid moves exactly to a neighboring lattice

node during one timestep ∆t. The integration of the discrete-velocity Boltzmann equation

along these characteristics then yields

fα(x+ cα∆t, t+∆t)− fα(x, t) = −1

τ

∫ ∆t

0

(fα(x+ cαs, t+ s)− f eq
α (x+ cαs, t+ s)) ds

≈ −∆t

2τ
(fα(x+ cα∆t, t+∆t)− f eq

α (x+ cα∆t, t+∆t) + fα(x, t)− f eq
α (x, t))

by approximating the integral by means of the (second-order) trapeziodal rule. If the

“lattice-based” probability distribution

gα(x, t) = fα(x, t) +
∆t

2τ
(fα(x, t)− f eq

α (x, t)) (4)
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is used instead of fα(x, t), the previous equation eventually simplifies as

gα(x+ cα∆t, t+∆t) = gα(x, t)−
∆t

τg
(gα(x, t)− geqα (x, t)) with τg = τ +

∆t

2
. (5)

This equation is usually considered as the fundamental equation of the LB scheme. The

positions x are now restricted to the lattice nodes occupied by the particles at the discrete

instants t, t+∆t, etc. In this regard, Eq. (5) may be truly interpreted as a (second-order)

space-and-time discretized version of Eq. (1). However, the solution gα is not exactly the

genuine probability distribution of the discrete-velocity Boltzmann equation. It shares the

same equilibrium part with fα (geqα = f eq
α ) but the non-equilibrium parts are different and

related by

gneqα ≡ gα − geqα =
τg
τ

fneq
α . (6)

In principle, the statistical information about the displacement of particles on the lattice is

carried by fα. This implies in particular that local probability budgets should be developed

with fα rather than with gα. Importantly, one can notice that fα does not depend on

the lattice resolution, whereas the non-equilibrium part of gα does obviously depend on ∆t

through the lattice parameter τg. Despite these differences, the confusion between fα and

gα has often been made in previous works (as specified later), leading to a depreciating of

the accuracy of the method (since it amounts to ignore a term of order ∆t in Eq. (4)).

The integration of Eq. (5) is usually organized in a two-step “collide-and-stream” algo-

rithm, in which the collision step accounts for the re-distribution of the particles among the

different directions of propagation,

goutα (x, t) = gα(x, t)−
1

τ ∗g
(gα(x, t)− geqα (x, t)) with τ ∗g ≡ τg

∆t
, (7)

whereas the streaming step transports the particles (according to their post-collision veloc-

ity) to their neighboring lattice nodes,

gα(x+ cα∆t, t+∆t) = goutα (x, t). (8)

This algorithm is explicit, easy to implement and straightforward to parallelize, and thus

achieves a very high performance on common computing systems [12]. However, these ad-

vantages are inherently connected with the use of a regular lattice with a constant spacing.

This is in contrast with conventional discretization methods in which the grid may be prof-

itably refined locally to gain in accuracy while minimizing the computational efforts (as
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FIG. 3: In the transition zone (in grey) between two domains of different resolutions, it is re-

quired to map the probability distributions from the fine interior nodes to the coarse boundary

nodes (downwards arrow), and vice-versa from the coarse interior nodes to the fine boundary

nodes (upwards arrow). The probability distributions at intermediate fine boundary nodes can be

reconstructed by 3rd-order interpolation in space and time (at odd timesteps) [13].

recalled in the introduction). Therefore, in order for the LB method to remain competi-

tive compared to other discretization methods, it should be adapted to handle composite

multi-resolution grids, especially in the context of turbulent flows.

A number of variants have been proposed to port the LB method to non-uniform grids

(in a cell-vertex representation). First proposals rely on the combination of the LB method

with finite-volume or finite-difference techniques on irregular grids [14, 15]. Nonetheless, such

combination can only accomodate relative smooth varations of the flow due to numerical

instabilities triggered by the deformation of the grid. Another solution is the so-called

“locally embedded uniform grids” technique. Namely, the embedding (within the root grid)
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of domains in which the local connectivity is unchanged but the grid spacing is different,

typically multiplied or divided by a power of two (see Fig. 1). Here, the advantage is

to place domains with a smaller spacing in flow regions which require more accuracy, and

coarser domains in less demanding regions. Within each domain, the lattice is uniform and

the computational performance of the method is preserved. However, some inconsistency in

the connectivity of boundary nodes requires to correctly map the probability distributions

at the transition between two domains (Fig. 3).

Lin and Lai [16] suggested on the basis of probabilistic arguments that the distributions

gα should be directly transfered between two domains without any transformation. To our

understanding, this method makes the confusion between fα and gα. Indeed, while the

(genuine) distributions fα may be transferable to some degree between two domains, the

(lattice-based) distributions gα surely cannot since they depend on the local grid resolution.

As a result, this technique only ensures the continuity of the mass density and fluid mo-

mentum (because ρ and ρu can be recovered equivalently from geqα and f eq
α ) but introduces

some spurious error in the continuity of the viscous stress (per unit mass), which depends

explicitly on the non-equilibrium part of the distributions [11]. Precisely,

σvisc.
ij ∝ τ

τg

∑

α

cαicαjg
neq
α =

∑

α

cαicαj

(
τ

τg
gneqα

)
=
∑

α

cαicαjf
neq
α . (9)

The continuity of the viscous stress requires to account for the variation of the factor τ/τg

at resolution changes. This issue has been addressed by Filippova and Hänel [17] who

suggested to rescale adequately gneqα in the mapping. Interestingly, Filippova and Hänel’s

method eventually amounts to transfering directly fα according to Eq. (9). Later on, Dupuis

and Chopard [18] have introduced a method that resembles Filippova and Hänel’s method

but is simpler, and avoids a singularity when τg = ∆t/2. Concretely, they have suggested

a rescaling of gneqα before the collision step, whereas Filippova and Hänel had considered a

rescaling after the collision step. Finally, Lagrava et al. [13] have very recently proposed

to improve futher Filippova and Hänel’s method by applying a local average (restricted

to the first neighboring nodes) to gneqα on the fine grid before performing the mapping to

the coarse grid. The authors claim that this procedure is expected to filter out unphysical

grid-scale excitations and “guarantee the stability of the numerical scheme at high Reynods

numbers”. Two-dimensional test calculations at moderate Reynolds numbers have indeed

established that the stability was improved, nonetheless, fully developed turbulent flows (in
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three dimensions) have not been examined in their study.

In section III, the mapping conditions at the transition between two domains of different

resolutions will be reconsidered on a more general basis. This description will allow us to

recast previous modeling (reported above) in a unified framework, and extend it to address

the LES of turbulent flows.

III. MAPPING OF PROBABILITY DISTRIBUTIONS AT RESOLUTION

CHANGES

A. General assumptions

As detailed before, the continuous discrete-velocity Boltzmann equation is amenable to

space-and-time dicretization to eventually yield the lattice Boltzmann equation. Conceptu-

ally, the LB solution is therefore expected to represent the locally coarse-grained (at a scale

comparable to the lattice spacing) solution of the original problem. According to Eq. (1),

this coarse-grained (or smoothed) solution, fα, a priori satisfies

Dfα
Dt

≡ ∂fα
∂t

+ cαi ·
∂fα
∂xi

= −
(
fneq
α

τ

)
≈ −fα

neq

τ
, (10)

where the last approximation on the “smoothed collision term” will hold provided that the

lattice spacing is sufficiently fine to resolve the finest details of the (exact) solution. In that

situation, fα is therefore solution of the original discrete-velocity Boltzmann equation, and

is thus expected to give an accurate representation of the exact solution: fα ≈ fα. This is

the traditional context of a Direct Numerical Simulation (DNS). Importantly, Eq. (10) does

not depend explicitly on the lattice resolution, which implies that the probability distribu-

tions fα may be directly exchanged at resolution changes. This is indeed the underlying

assumption of the Filippova and Hänel’s method, which thus happens to be justified in the

limit of sufficiently fine lattices. However, if the lattice spacing is not sufficiently fine, un-

resolved subgrid-scale variations of the (exact) solution must be taken into account in the

approximation of the “smoothed collision term”, and consequently −(fneq
α /τ) 6= −fα

neq
/τ .

This is the general context of a Large-Eddy Simulation (LES).

When dealing with turbulent flows, a common thread is to assume that subgrid-scale

effects may be taken into account by an additional (subgrid-scale) viscosity νsgs in the
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viscous stress [19]. Within the LB approach, this heuristic assumption amounts to correct

the relaxation time so that [20]

−
(
fneq
α

τ

)
≈ − fα

neq

τ + τ sgs
with τ sgs ≡

νsgs

c2s
. (11)

In that situation, the LB solution a priori satisfies

Dfα
Dt

≈ −fα
neq

τ
, (12)

where the redefined relaxation time τ(x, t) ≡ τ + τ sgs(x, t) is now a flow quantity that is

bound to the local grid spacing through the subgrid-scale viscosity. Note that Eq. (11)

can only be justified in the weakly compressible limit [21]. Also, it is worth mentioning

that an alternative estimation of the “smoothed collision term” relying on the Approximate

Deconvolution Model [22] has been recently introduced by Malaspinas and Sagaut [23]. This

latter offers a more systematic estimation but is a priori heavier to handle numerically. In

this study, we follow the common approach, which is simpler and computationally efficient.

Eq. (12) is fulfilled in each domain separately since τ depends explictly on the local

grid spacing. At a boundary node xb between two domains (of different resolutions), the

respective collision terms are expected to match according to

−fα
c,neq

τ c
(xb, t) =

(
R ∗ −fα

f,neq

τ f

)
(xb, t) (13a)

and −fα
f,neq

τ f
(xb, t) =

(
P ∗ −fα

c,neq

τ c

)
(xb, t), (13b)

where the convolution operators R and P are introduced formally to account for the rescal-

ing of the collision term to the appropriate grid resolution. These operators are denoted by

R and P in analogy with the restriction and prolongation operators used in multigrid or

Adaptive Mesh Refinement techniques [24]. From now on, the superscripts f and c refer re-

spectively to the fine and coarse resolution. Also, the overbar symbol (used to indicate that

the flow quantity is bound to the local grid spacing) is abandoned to simplify the notations.

According to Eq. (9), the previous matching conditions account for the discontinuity

of the rate-of-strain tensor Sij ∝ σvisc.
ij /τ associated with the enlargement or refinement of

the grid spacing: Sc
ij(xb, t) =

(
R ∗ Sf

ij

)
(xb, t) and Sf

ij(xb, t) =
(
P ∗ Sc

ij

)
(xb, t). Besides, the

continuity of the mass and fluid momentum is ensured by imposing the matching of the
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equilibrium part of the probability distributions, i.e.

f f,eq
α (xb, t) = f c,eq

α (xb, t). (14)

Eqs. (13) and (14) eventually define the full mapping of probability distributions at

the transition between two domains (see Fig. 3). In terms of the lattice-based probability

distributions, this mapping reformulates as

gf,eqα (xb, t) = gc,eqα (xb, t) (15a)

gα
c,neq(xb, t) = τ cg (xb, t) ·

(
R ∗ gα

f,neq

τg f

)
(xb, t) (15b)

gα
f,neq(xb, t) = τ fg(xb, t) ·

(
P ∗ gα

c,neq

τgc

)
(xb, t). (15c)

Importantly, this mapping has the merit of conserving the mass because the condition
∑

α g
neq
α (x, t) = 0 is preserved. To be fully determined, an additional relation between

τ fg(xb, t) and τ cg (xb, t) is also required; for instance, τ cg (xb, t) is unkown in the rhs of Eq.

(15b) and needs to be expressed as a function of τ fg(xb, t). Because these lattice relaxation

times are expected to account for (possible) subgrid-scale turbulent dynamics, this relation

should rely on some turbulence modeling. This is now detailed.

B. Accounting for subgrid-scale turbulent dynamics

In general, the lattice relaxation time τg expresses (in lattice units denoted by the symbol

∗) as

τ ∗g (x, t) =
1

2
+ 3(ν∗ + ν∗

sgs(x, t)) (16)

with the normalized viscosity defined as ν∗ ≡ ν/3c2s∆t. By construction, the spacing and

the timestep of the lattice are related by ∆x/∆t =
√
3cs. Since ∆xc = 2∆xf , this implies

that ∆tc = 2∆tf and ν∗f = 2ν∗c. From Eq. (16), one therefore gets

2τ ∗cg (xb, t) = τ ∗fg (xb, t) +
1

2
+ 3

(
2ν∗c

sgs(xb, t)− ν∗f
sgs(xb, t)

)
. (17)

Generally speaking, a kinematic viscosity is a diffusion coefficient that may be viewed

as the product of a characteristic length scale and a characteristic velocity (at that scale)

[19]. Concerning the subgrid-scale viscosity, these two characteristic quantities should be

identified with the local grid spacing, ∆x, and the typical velocity difference at this grid
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scale, δu(∆x). According to Kolmogorov’s theory, one can establish that δu(∆x) ∼ (∆x)1/3

[25]. The change of grid resolution (by a factor two) then leads to

ν∗c
sgs(xb, t) = 21/3 ν∗f

sgs(xb, t), (18)

and finally

2τ ∗cg (xb, t) = τ ∗fg (xb, t) +
1

2
+ 3(24/3 − 1)ν∗f

sgs(xb, t) with ν∗f
sgs ≡

νf
sgs

3c2s∆t
. (19)

The contribution related to the subgrid-scale dynamics is explicitly taken into account by

the last term in the rhs of Eq. (19). This contribution automatically vanishes with the

subgrid-scale viscosity if there is no subgrid-scale turbulence. In that case, the standard

relation between the lattice relaxation times is recovered [17]. It should be noted that Eq.

(19) is general and does not depend on the specific modeling of the subgrid-scale viscosity,

e.g. the classical Smagorinsky model [2]. It also ensures that τ ∗g remains greater than one

half — a condition for the stability of the LB scheme — provided that the subgrid-scale

viscosity is kept positive [43].

C. Restriction and prolongation operators

The restriction and prolongation operators involved in the mapping need to be specified.

The restriction accounts for the rescaling of the collision term from a fine grid to a coarse

grid resolution. To be compliant with the geometry of the D3Q19 lattice and to remain

simple, it is here proposed to achieve this coarse-graining by a full-weighted volumic average

accounting for the 19 neighbors (including the node itself). For the collision term C f
α(x, t)

resolved on the fine lattice, this transformation reads

(
R ∗ C f

α

)
(x, t) =

1

7
C f

α(x, t) +
1

14

6∑

β=1

C f
α(x+ cβ∆tf , t) +

1

28

18∑

β=7

C f
α(x+ cβ∆tf , t), (20)

where the three contributions correspond respectively to the “center”, “faces” and “edges”

neighboring nodes (see Fig. 2). The volumic weights are respectively 1, 1/2 and 1/4, and a

normalization factor is used to set the sum of all coefficients equal to one.

More generally, a Gaussian box-filter with half-width σ ≈ ∆xc/2 could be considered for

the restriction operation. In that case, one obtains that R ≈ I+ (σ2/2)∆ at leading order.
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By discretizing the Laplacian operator ∆ on a stencil corresponding to the D3Q19 molecule

[26], one gets

∆C f
α(x, t) ≈

1

6(∆xf)2

(
−24C f

α(x, t) + 2
6∑

β=1

C f
α(x+ cβ∆tf , t) +

18∑

β=7

C f
α(x+ cβ∆tf , t)

)

and finally

(
R ∗ C f

α

)
(x, t) =

(
1− 2σ∗2

)
C f

α(x, t)

+
σ∗2

12

(
2

6∑

β=1

C f
α(x+ cβ∆tf , t) +

18∑

β=7

C f
α(x+ cβ∆tf , t)

)
(21)

with σ∗ ≡ σ/∆xf in lattice units. Eq. (21) yields a more general formulation of the

restriction operator, in which σ∗ may be viewed as a free parameter (with σ∗ close to

1). Our proposal based on a (basic) volumic average corresponds to the specific value

σ∗ =
√
3/7 ≃ 0.7. In practice, we have checked that the whole method was not sensitive to

the precise value of σ∗ and that our (arbitrary) choice was satisfactory.

Concerning the prolongation from a coarse grid to a fine grid, a common practice is to

simply copy the value at coinciding nodes and resort to interpolation at intermediate fine

nodes [13]. As a matter of fact, this is a “low-level approximation” that does not explicitly

account for the enrichment of turbulent fluctuations on the fine grid [27]. In a LES, this

enrichment is a priori essential since turbulent excitations are expected to populate the

whole resolution bandwidth. Nonetheless, we have disregarded this feature (as a first step)

in our study and prolongation has been estimated by simple (3rd-order) interpolation. Test

computations for a turbulent channel flow (reported in section IV) will show that this neglect

does not significantly impact the results.

In principle, the prolongation is expected to “de-smooth” the collision term and recreate

some grid-scale excitations on the fine grid. However, this operation is delicate and prone

to numerical instability. Our attempts to approximate the prolongation operator by simply

inverting the previous Gaussian box-filter: P ≈ I − (σ2/2)∆, have resulted in strong per-

turbations of the solution. Finally, even if an improved procedure may be desirable in fine

for the prolongation procedure, we believe that “enrichment” is already partially achieved

in our coarse-to-fine mapping by accounting explicitly for turbulence in Eq. (19) between

τ ∗cg (xb, t) and τ ∗fg (xb, t).
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D. Unified framework

Interestingly, if one excludes the restriction operation and disregards subgrid-scale effects,

our proposal eventually reduces to the formula introduced by Filippova and Hänel [17] and

revisited later by Dupuis and Chopard [18]. As previously argued, the domain of validity of

these approaches is restricted to DNS on sufficiently fine grids (in order to validate Eq. (10)).

If one retains the restriction operation but disregards subgrid-scale effects, our proposal

resembles the method proposed recently by Lagrava et al. [13] by identifying the restriction

with their filtering procedure. This latter has proved itself to improve the numerical stability

of the LB scheme in presence of strong gradients but does not explicitly account for subgrid-

scale effects. In this regard, it is therefore also restricted to DNS. Our proposal may be

viewed as an attempt to conciliate these different aspects in order to suitably address the

LES of turbulent flows.

IV. TESTS COMPUTATIONS OF A TURBULENT CHANNEL FLOW

A turbulent channel flow has been used to test the capabilities of our multi-resolution

LB scheme (Fig. 4). This academic flow configuration is of importance in engineering-

flow problems and is commonly used as a prototypical case to investigate wall-bounded

turbulence [28]. It is well documented in the literature and can benefit in particular from

the comprehensive database built by Moser et. al [29].

Our LB simulations are refered to as LaBS (for Lattice Boltzmann solver) in the following.

The scheme is based on the standard D3Q19 lattice and relies on the BGK approximation.

The speed of sound is arbitrary and fixed to optimize the long-time convergence of the

simulation while ensuring that the Mach number remains small, typically Ma ≈ 0.15. The

no-slip condition is enforced at the boundaries by using the method developed by Verschaeve

and Muller [30], which is a generalization of the model introduced by Skordos [31] to off-

lattice boundaries. The strategy of this boundary treatment is to accurately interpolate or

extrapolate macroscopic flow quantities at boundary nodes, and reconstruct the probability

distributions from these quantities. In our simulation, the first fluid node is at a distance

0.5∆x (half-spacing) from the wall. This method is consistent with the overall second-order

accuracy (in space) of the LB scheme. A uniform body force is added to the dynamics in
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FIG. 4: Bi-periodic plane-channel flow. The flow is driven along the x-direction by a uniform body

force (adjusted in time to reach an objective averaged flow rate). Periodic boundary conditions

are used in the streamwise and spanwise directions. No-slip boundary conditions are considered at

the wall.

the streamwise direction to drive the flow against the viscous forces. This force is adjusted

dynamically to reach the target averaged flow rate across the channel, as detailed in [32].

In the LB scheme, this external body force is included in the collision step according to the

procedure established by Guo et al. [33]. Finally, the subgrid-scale viscosity relies on the

shear-improved Smagorinsky model (SISM) introduced by Lévêque et al. [34]. Namely,

νsgs(x, t) = (Cs∆x)2
(
|S(x, t)| −

∣∣∣S̃(x, t)
∣∣∣
)

(22)

where Cs is the Smagorinsky constant, ∆x is the local grid spacing and S(x, t) is the resolved

rate of strain. Here, the rate of strain cannot be easily computed from the distributions; it

is better evaluated by differentiating the reconstructed velocity field. The correcting term to

the Smagorinsky viscosity is the norm of the averaged rate of strain. The average (indicated

by the tilde) is here meant in time and is estimated by using a recursive exponential filter,

as detailed in [35].

The SISM accomodates the effects pertaining to the presence of a strong shear by reducing

significantly the value of the Smagorinsky viscosity in that situation, e.g. near a solid

boundary. Interestingly, this model does not call for any adjustable parameter besides the

Smagorinsky constant Cs ≈ 0.18 that is fixed for all flows [19]. There is no need for ad-hoc

(Van Driest) damping function nor any kind of dynamic adjustment [2]. The simplicity and

the manageability of the original Smagorinsky model are therefore preserved. The SISM has
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FIG. 5: Sketch of the grid of our test simulation at Reτ = 180. The grid spacing is ∆y+ ≈ 2.7

in the near-wall zones, whereas ∆y+ ≈ 5.3 in the bulk. The transition between the two domains

occurs at y+ ≈ 40.

already validated in various flow configurations [34–36].

In the following, the grid-scale velocity components are U + u′, v′ and w′ along the

streamwise, wall-normal and spanwise directions, respectively. U(y) is the mean velocity,

whereas u′(x, t), v′(x, t) and w′(x, t) are (instantaneous) turbulent velocities. The distance

to the wall is y. The Reynolds number is defined as Reτ = uτH/ν, where uτ =
√
τw/ρ is

the skin-friction velocity and τw = ρν|dU(y)/dy|wall is the averaged shear stress at the wall.

As usual, the distance to the wall and the velocity are normalized according to y+ = yuτ/ν

and u+ = u/uτ (wall units).

Two Reynolds numbers (both referenced in the database published by Moser et al. [29])

are considered. In a first simulation at Reτ = 180, the grid resolution is refined in the

boundary zones to resolve the finest structures of the flow and perform a (quasi-)DNS. The

grid resolution is much coarser in a LES at Reτ = 395.

A. Quasi-DNS at Reτ = 180

An important requirement of our scheme is that reference high-resolution results should

be recovered in the limit of a sufficiently fine grid. This is the motivation of our first test

simulation at Reτ = 180. A sketch of the grid is displayed in Fig. 5. The domain size
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FIG. 6: Test simulation at Reτ = 180. Left : The magnitude of the streamwise component of the

vorticity is displayed in greyscale in a plane normal to the mean flow (at an arbitrary time). Right :

The corresponding streamlines of the projected velocity field (in the plane).

follows the minimum specifications for a periodic channel flow given by Jiménez and Moin

[37]. The lattice is refined (by a factor two) in the viscous and transition layers, whereas

a coarser resolution is used in the logarithmic layer. Accordingly, the transition between

the two domains occurs at y+ ≈ 40. The high-resolution Fourier-Chebyshev pseudo-spectral

simulation performed by Moser et al. [29] is considered as reference. A comparison between

the two grid configurations is summarized in Table I. The resolutions are relatively similar

except in the vicinity of the walls, where ∆y+ is significantly coarser in LaBS. Only 6 points

are used in the range 0 < y+ < 10, whereas 13 points are used in the pseudo-spectral

simulation.

simulation domain size grid size ∆x+ ∆y+ (from wall to center) ∆z+

Reference DNS 4πH × 2H × 4
3
πH 128× 129× 128 17.7 0.05− 4.4 5.9

LaBS 4H × 2H × 2H 128× 65× 64 2.7, 5.3 (1.3, ) 2.7, 5.3 2.7, 5.3

TABLE I: Grid configurations at Reτ = 180. In LaBS, the grid size is given in coarse-cell units.

The grid cell is cubic: the resolution in the streamwise and spanwise direction is imposed by the

wall-normal resolution. The first fluid node (near the wall) is at half-spacing, i.e. y+ ≈ 1.3.

Qualitatively, the streamwise component of the vorticity (related to the presence of
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FIG. 7: Test simulation at Reτ = 180. Top: Mean velocity as a function of the distance to the

wall (in wall units). Bottom: Mean-squared turbulent velocity fluctuations. The change of grid

resolution in LaBS is indicated by the arrow.
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FIG. 8: The Reynolds stress at Reτ = 180.

streamwise vortices near the wall) seems to be suitably prolongated from the fine and the

coarse domain (see Fig. 6). The streamlines of the projected velocity do not show any

notable discontinuity. These observations are consistent with the physical conditions used

to derive the mapping of probability distributions at resolution changes.

As previously argued, our scheme is here expected to reduce to Filippova and Hänel’s

method [17] with an additional restriction procedure in the fine-to-coarse mapping. Inter-

estingly, we have verified that Filippova and Hänel’s scheme alone was unstable (in the same

grid configuration) and that the restriction operation was necessary to prevent the growth of

spurious excitations. This observation is consistent with the results obtained by Lagrava et

al. [13] at moderate Reynolds numbers (in two dimensions). It is also worth mentioning that

several recent papers have reported stable multi-resolution simulations of turbulent flows (in

a plane channel [38] or past a sphere [39]) resorting to the Filippova and Hänel’s method

without any restriction procedure. However, these simulations rely on the so-called MRT

scheme [40] instead of the standard BGK scheme. In that case, a good behavior is recov-

ered by using a Multi-Relaxation-Time modeling of the collision operator that is specifically

“adjusted” to improve the stability of the scheme. In return the computational cost of the
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FIG. 9: Sketch of the grid at Reτ = 395. Three refinement levels are used. The lattice spacing

is ∆y+ ≈ 5 near the walls and is coarsened successively by a factor two. The transitions are at

y+ ≈ 40 and y+ ≈ 150 (in the logarithmic-layer).

simulation domain size grid size ∆x+ ∆y+ (from wall to center) ∆z+

DNS 2πH × 2H × πH 256× 193× 192 10 0.03− 6.5 6.5

LES-FV 2πH × 2H × πH 49× 89× 41 52 0.5− 24 31

LaBS 4.5H × 2H × 3H 89× 41× 59 5, 10, 20 (2.5, ) 5, 10, 20 5, 10, 20

TABLE II: Grid configurations at Reτ = 395. In LES-FV, the grid spacing is stretched in the

y-direction by a hyperbolic tangent function.

scheme is heavier. Our position is somehow opposite since we want to remain as simple as

possible in the physical modeling of the collision operator but focus on the improvement of

the mapping conditions.

The mean velocity and the turbulence intensities are displayed as a function of the wall-

normal distance in Fig. 7. The various profiles compare very well with the reference DNS

data. The change of resolution is hardly noticeable even in the turbulence intensity profiles.

The Reynolds-stress profile is shown in Fig. 8 and the agreement is also very satisfactory.

B. LES at Reτ = 395

In a second simulation at Reτ = 395, the grid resolution has been deliberately reduced so

as to perform a LES. A sketch of the grid is displayed in Fig. 9. LaBS results are compared
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FIG. 10: Simulations at Reτ = 395. Top: mean velocity as a function of the wall distance (in

wall units). Bottom: mean-squared velocity fluctuations. LaBS results (symbols) are compared

with high-resolution pseudo-spectral data (DNS) and results obtained from a LES (with the same

subgrid-scale viscosity) based on finite-volume discretization (LES-FV). The two arrows indicate

the change of resolution in LaBS.
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FIG. 11: The Reynolds stress at Reτ = 395.

with both high-resolution pseudo-spectral data [29] and the results obtained from an alter-

native LES with the same subgrid-scale viscosity but relying on finite-volume discretization

(LES-FV). In LES-FV, convective fluxes are interpolated with a four-point centered scheme

(fourth-order accuracy on regular grid) and diffusive fluxes with a two-point centered scheme

(second-order). The time stepping is driven by a five-step Runge-Kutta scheme. More de-

tails about this code may be found in [41]. Importantly, the resolutions are comparable

except in the near-wall region where the grid resolution (in the wall-normal direction) is

again much coarser in LaBS. The different grid configurations are summarized in Table II.

First of all, one must point out that the simulation remained stable. The mean-velocity

and turbulent-intensity profiles are shown in Fig. 10. The reference velocity (used in the

normalization) is here the objective friction velocity of the DNS (uτ = 0.59m · s−1) and

not the individual friction velocity of each simulation. This setting allows us for a direct

comparison between the different simulations. Moreover, it makes the nondimensional mean-

centerline velocity match the reference DNS value, which is consistent with the strategy of

calibration of the extenal forcing. A good prediction of the overall mean-velocity profile is

achieved as compared to the DNS data. The two LES yield similar results with LaBS being
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slightly closer to the DNS in the transition layer. This is remarkable in consideration of

the relatively low resolution used in the near-wall region. Indeed, only 3 points are used in

the range 0 < y+ < 10 in LaBS, whereas 11 grid points are used in LES-FV (as standardly

recommended [2]). This observation brings out the (intrinsic) capability of the LB scheme

to handle strong shear layers. Concerning the turbulent-intensity profiles, they are very well

captured for the streamwise and spanwise components. This is not so surprising since the

resolution in these two directions is significantly finer than in LES-FV and almost comparable

to the DNS resolution. Nevertheless, the two changes of resolution are very well handled.

The overall profile of the wall-normal component is also well captured but a small depletion

is observed at y+ & 40 in the coarser domain near the first resolution jump. This depletion

is also noticeable on the Reynolds stress in Fig. 11. The second change of resolution (in

the logarithmic layer) is much better handled. The cause of this small depletion remains

unclear to us. Our simplified prolongation procedure may be questioned at first. However,

similar depletion was also observed by Quéméré et al. [27] by using an improved enrichment

procedure in the context of finite-volume multi-domain/multi-resolution LES. Therefore, it

seems to be inherent to the decrease of resolution.

V. CONCLUSION

In summary, this study addresses in a physically-sound framework the multi-resolution

simulations of turbulent flows by the lattice Boltzmann method. Our approach allows us to

conciliate previous works in a unified description, and extend them to suitably account for

possible subgrid-scale turbulent dynamics in the context of LES. Importantly, the key Eq.

(19) governing the mapping of lattice relaxation times (at resolution changes) is general and

does not explicitly depend on the subgrid-scale viscosity model. Also, our study relies on

the BGK approximation for the collision operator, but a similar approach could a priori be

followed for any other approximation, e.g. the MRT approximation.

Rohde et al. [42] have recently advocated a cell-centered formulation (rather than the

standard cell-vertex description) to address multi-resolution lattice Boltzmann simulations.

In that case, the inconsistency in the connectivity of boundary nodes is alleviated, and our

restriction and prolongation operations are naturally accounted by simply redistributing

(merging or splitting) the populations of particles within embedded grid cells. In that
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context, our approach suggests (i) that such redistribution should be applied to the genuine

probability distributions fα instead of the lattice-based distributions gα (see discussion in

section II) and (ii) that Eq. (19) should be profitably integrated in the scheme to account

for possible subgrid-scale turbulent dynamics.

Finally, we believe that the great amenability of the LB method to fluid dynamics com-

puting, which is to a large extent preserved in the multi-resolution version, is expected to

provide an asset for future applications to complex turbulent flows.

Acknowledgements

We acknowledge P. Lacabanne, B. Gaston, J.-P. Lahargue for their inputs in the develop-

ment of the LaBS solver, and P. Sagaut for fruitful discussions about the l attice Boltzmann

method and its application to the LES of turbulent flows. The authors would like to ac-

knowledge the French Ministry of Industry (DGCIS) for its financial support of the LaBS

project. Numerical simulations have been performed by using local HPC facilities at the

Ens de Lyon (PSMN) supported by the grants CPER-CIRA (2007-2013) and FR-3403.

[1] M. Lesieur, Turbulence in Fluids (Kluwer, 1997).

[2] P. Sagaut, Large-Eddy Simulation for Incompressible Flows: An introduction (Springer,

Berlin, 2001).

[3] G. R. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988).

[4] C. Aidun and Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010).

[5] P. Sagaut, Comput. Math. Appl. 59, 2194 (2010), ISSN 0898-1221.

[6] S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998), ISSN 0066-4189.

[7] Y. H. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17, 479 (1992), ISSN 0295-

5075.

[8] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford Univesity,

Oxford, 2001).

[9] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

[10] X. W. Shan, X. F. Yuan, and H. D. Chen, J. Fluid Mech. 550, 413 (2006), ISSN 0022-1120.

25



[11] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992), ISSN 0370-1573.

[12] M. Schoenherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, and M. Krafczky, Comput.

Math. Appl. 61, 3730 (2011).

[13] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, J. Comp. Phys. 231(14), 4808 (2012).

[14] F. Nannelli and S. Succi, J. Stat. Phys. 68, 401 (1992), ISSN 0022-4715.

[15] R. W. Mei and W. Shyy, J. Comp 143, 426 (1998), ISSN 0021-9991.

[16] C. L. Lin and Y. G. Lai, Phys. Rev. E 62, 2219 (2000), ISSN 1063-651X.

[17] O. Filippova and D. Hanel, J. Comp. Phys. 147, 219 (1998), ISSN 0021-9991.

[18] A. Dupuis and B. Chopard, Phys. Rev E 67 (2003), ISSN 1063-651X.

[19] S. B. Pope, Turbulent Flows (Cambridge University Press, UK, 2000).

[20] H. Chen, S. Succi, and S. Orszag, Phys. Rev. E, Rap. Comm. 59, R2527 (1999).

[21] O. Malaspinas and P. Sagaut, J. Fluid Mech. 700, 514 (2012).

[22] S. Stolz and A. Adams, Phys. Fluids 11, 1699 (1999).

[23] O. Malaspinas and P. Sagaut, Phys. Fluids 23, 105103 (2011).

[24] M. J. Berger and P. Colella, J. Comp. Phys. 82, 64 (1989).

[25] U. Frisch, Turbulence: The Legacy of Kolmogorov (Cambridge University Press, UK, 1995).

[26] R. C. O’Reilly and J. M. Beck, Int. J. Numer. Meth. Engng 00, 1 (2006).
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