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The first step of the GBT formulation is to discretise the cross section
of a member in plate segments (with nodes inserted at their ends)
along which linearly varying warping functions are assumed to exist.
By following the methodology commonly used with the direct

It is in authors’ opinion that an unified procedure for the
determination of the conventional deformation modes would con
tribute to a wider diffusion and use of the GBT approach. In this
context, a new version of the method is proposed here, which, in

(b) closed or (c) partially closed cross section formed with flat plates
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stiffness method, unit warping displacements are applied to one
node at the time, while keeping all the remaining ones equal to zero,
thus creating a set of ‘warping modes’. The corresponding in plane
tangential displacements of the segments are determined for each of
these modes based on the zero shear Vlasov condition (valid for open
cross sections). This procedure leads to a loss of compatibility at the
‘natural nodes’ (i.e. at the corners of the plates). A rigid body
kinematic problem is then solved to restore the compatibility of the
translations by applying normal displacements and rotations to each
plate segment. After this, the force method is used to restore
compatibility of the rotations at the natural nodes, while treating
the plate segments as (deformable) continuous members and assum
ing their corners restrained by pinned supports. With this procedure,
a basis of linearly independent modes (with number equal to the
number of nodes of the section) is created. This set of ‘warping
modes’, however, is not exhaustive, since it is associated to deforma
tions in which the nodes translate in the cross section plane. ‘Bending
modes’, instead, in which the plate deforms by leaving the corners
(practically) immovable and without warping, cannot be determined
with this procedure. The way that GBT addresses this problem is to
restart a new calculation in which unit displacements are assigned,
this time normal to the plate segments, at ‘non natural’ intermediate
nodes (i.e. not at the corners), followed, also in this instance, by the
solution of the elastic problem of a continuous member. This second
set of modes, however, does not include deformations of closed

sections in which the displacements are essentially tangential,
triggering shear deformations of the plates, and therefore referred
to as ‘shear modes’. To determine these latter ones another ad hoc

procedure needs to be applied, which induces unit tangential
displacements to each segment of the cross section belonging to
closed cells (based on the considerations that membrane shear strains
are negligible in segments included in open branches).

The different deformation modes constructed, based on the
procedures previously outlined, are local type in nature because
they involve nontrivial displacements only in a few adjacent
segments. Remaining consistent with their derivations, these
modes could be used in this form, in a similar manner as, for
example, the finite strip approach is applied to TWM analysis or
splines are used to describe extended functions (e.g., [32 36]).
Such a local type representation, however, is not convenient, if
one desires to use few significant modes to capture the main
structural behaviour. Therefore, a change of basis is then per
formed in the classical GBT to obtain global type deformation
modes. This is obtained as the eigenvectors of a properly chosen
eigenvalue problem, able to simplify the amplitude equations.
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Fig. 1. Generic thin-walled cross-sections: (a) open cross-section;
the spirit of the semi variational method selects the conventional
deformation modes directly defined on the whole domain and
chosen as the eigenvectors of a positive semi definite eigenvalue
problem. The free dynamics of the unconstrained planar frame,
represented by the plate segments forming the cross section placed
at their mid lines, is chosen as the eigenvalue problem. Since the
frame is free in its plane, it possesses rigid motions that account for
the Vlasov beam theory, and flexural modes which account for
deformation modes. Once the planar modes are determined, e.g.
using a standard finite element analysis, even performed with a
commercial software, the cross sectional analysis is completed by
evaluating the corresponding warping displacements based on
conditions enforced on the shear strain. Among these, the purely
extensional mode appears as an arbitrary quantity rising from
integration. In this way, the strategy used by the classical theory
is reversed, in the sense that in plane components are evaluated
first, and warping components successively.

This paper starts by briefly recalling the basis of the GBT,
limiting the description to the first order analysis. This is fol
lowed by the new proposed cross sectional analysis and its ease
of use is outlined by means of two applications on simply
supported TWM. For clarity, the procedure proposed for the
calculation of the warping displacements, starting from the in
plane ones, is detailed with an example in Appendix A.

2. Basis of the GBT approach

A generic thin walled member is considered with (a) open,
(Fig. 1). The displacement field u(s,z) of an arbitrary point P(s,z) lying
in the mid plane of the section thickness is expressed as (Fig. 2):

uðs,zÞ ¼ uðs,zÞesðsÞþvðs,zÞeyðsÞþwðs,zÞezðsÞ ð1Þ

where s is the curvilinear abscissa (if necessary defined on several
branches) along the section mid line C, z is the coordinate along the
member axis, es(s), ey(s) and ez(s) are unit vectors in the tangential,
normal and bi normal directions at the abscissa s, respectively, and
u(s,z), v(s,z) and w(s,z) are the displacement components in the
same triad.

2.1. Displacement and strain fields

In the framework of the GBT, and making use of Kantorovich’s
semi variational method, the displacement components of points
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(b) closed cross-section; and (c) partially-closed cross-section.



P(s,0,z) lying on the mid surface y¼0 are expressed as a linear
combination of K assumed deformation modes, depending on the
abscissa s, and unknown amplitude functions, depending on the
coordinate z, namely:

flexural strain component eF ¼ ðeF
s ,eF

z ,gF
zsÞ

T , proportional to the y

coordinate. Based on Eqs. (2) and (4), the six component strain
field e¼ ðeM

s ,eM
z ,gM

zs ; eF
s ,eF

z ,gF
zsÞ

T can be written as:

K
2 3

s

u (s,z)

w (s,z)
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z
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Fig. 2. Displacement field.
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uðs,zÞ ¼
XK

k 1

UkðsÞjkðzÞ ð2aÞ

vðs,zÞ ¼
XK

k 1

VkðsÞjkðzÞ ð2bÞ

wðs,zÞ ¼
XK

k 1

WkðsÞjk,zðzÞ ð2cÞ

where Uk(s), Vk(s) and Wk(s) are the three components of the k th
deformation mode, jk(z) describes the amplitude of the k th
mode along the member axis and a comma denotes differentia
tion with respect the variable that follows. The displacement
d(s,y,z)¼ds(s,z)es(s)þdy(s,z)ey(s)þdz(s,z)ez(s) of an arbitrary point
Q(s,y,z) located within the thickness of the plate segments is
evaluated according to the Kirchhoff plate model, namely:

dsðs,y,zÞ ¼ uðs,zÞ yv,sðs,zÞ ð3aÞ

dyðs,y,zÞ ¼ vðs,zÞ ð3bÞ

dzðs,y,zÞ ¼wðs,zÞ yv,zðs,zÞ ð3cÞ

or, based on Eq. (2):

dðs,y,zÞ ¼

XK

k 1

½UkðsÞ yVk,sðsÞ�jkðzÞ

XK

k 1

VkðsÞjkðzÞ

XK

k 1

½WkðsÞ yVkðsÞ�jk,zðzÞ

2
666666666664

3
777777777775

ð4Þ

The corresponding infinitesimal strain fields es¼ds,s, ez¼dz,z,
gzs¼dz,sþds,z are made of two contributions, a membrane strain
component eM ¼ ðeM

s ,eM
z ,gM

zs Þ
T , relevant to the y¼0 plane, and a
e¼

u,sðs,zÞ

w,zðs,zÞ

u,zðs,zÞþw,sðs,zÞ

yv,ssðs,zÞ

yv,zzðs,zÞ

2yv,szðs,zÞ

2
6666666664

3
7777777775
¼

X
k 1

Uk,sðsÞjkðzÞ

XK

k 1

WkðsÞjk,zzðzÞ

XK

k 1

½UkðsÞþWk,sðsÞ�jk,zðzÞ

y
XK

k 1

Vk,ssðsÞjkðzÞ

y
XK

k 1

VkðsÞjk,zzðzÞ

2y
XK

k 1

Vk,sðsÞjk,zðzÞ

66666666666666666666666666664

77777777777777777777777777775

ð5Þ

According to the two fundamental Vlasov’s hypotheses, for
mulated for open cross sections, the plate components are
assumed: (i) inextensible in the tangential direction, i.e. eM

s ¼ 0,
and (ii1) shear indeformable in their middle plane, i.e. gM

zs ¼ 0. This
latter condition, however, is relaxed for closed sections (or, more
in general, for plates belonging to closed loops of partially closed
cross sections), and substituted by (ii2) gM

zs ¼ const stepwise with
respect to s (i.e. on each element of a closed loop), according to
the Bredt theory for torsion. As a consequence of (ii1) and (ii2), no
shear strains due to shear forces (as for example predicted by the
Jourawsky theory) are permitted on any kind of section. It is
assumed here that the deformation modes appearing in Eqs.
(2) are selected in such a way to identically satisfy the constraints
(i) and (ii1) or, if appropriate, (ii2).

2.2. Stress field

Due to the internal constrains, the associate stress field
r¼ ðsM

s ,sM
z ,tM

zs ;sF
s ,sF

z ,tF
zsÞ

T is made of an active part ra and a reactive

one rr, i.e. r¼raþrr, in which ra is linked to the non zero strains,
and rr collects the stresses which spend zero work on the strain
field, namely rT

r e¼ 0. Accordingly, these can be expressed as
ra ¼ ð0,sM

z ,0;sF
s ,sF

z ,tF
zsÞ

T on plates lying on open branches and
ra ¼ ð0,sM

z ,tM
zs ;sF

s ,sF
z ,tF

zsÞ
T on plates on closed branches, while

rr ¼ ðsM
s ,0,tM

zs ;0,0,0ÞT on all plates. It should be noted that tM
zs is

made of two contributions: an active one due to twist of closed
branches and a reactive one due to shear forces applied to any kind
of section. Assuming linear (plane stress) elastic material properties,
the constitutive relationship can be expressed as:

r¼ Eeþrr ð6Þ

where:

E¼

0 0 0 0 0 0

0 E 0 0 0 0

0 0 G 0 0 0

0 0 0 E
1�n2

nE
1�n2 0

0 0 0 nE
1�n2

E
1�n2 0

0 0 0 0 0 G

2
6666666664

3
7777777775

ð7Þ

is the elastic matrix, containing elastic moduli E and G, in which, as
usually accepted, the Poisson ratio n has been ignored in the
entry (2,2).

Evaluation of the reactive part of stress is beyond the scope of
this paper, consistently with the displacement method followed.
Hence, focusing the attention on the active part only, and using



Eq. (2) in the constitutive law of Eq. (6), it follows that:

sM
z ðs,zÞ ¼

XK

k 1

EWkðsÞjk,zzðzÞ ð8aÞ

in which p and pz are load K vectors, whose coefficients are
defined as:

ph ¼

Z
fsUhdsþ

Z
fyVhds

Z
fz,zWhds; pz

h ¼

Z
fzWhds ð13a;bÞ

modelling consists of the identification of suitable deformation
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tM
zs ðs,zÞ ¼

XK

k 1

G½UkðsÞþWk,sðsÞ�jk,zðzÞ ð8bÞ

sF
s ðs,y,zÞ ¼ y

XK

k 1

E

1 n2
Vk,ssðsÞjkðzÞþnVkðsÞjk,zzðzÞ
� �

ð8cÞ

sF
z ðs,y,zÞ ¼ y

XK

k 1

E

1 n2
VkðsÞjk,zzðzÞþnVk,ssðsÞjkðzÞ
� �

ð8dÞ

tF
zsðs,y,zÞ ¼ 2y

XK

k 1

½GVk,sðsÞjk,zðzÞ� ð8eÞ

It should be noted that, due to the Poisson effect, the normal
flexural stresses are the superposition of two contributions,
whose relative amplitudes at the abscissa z depends on the
magnitudes of jk(z)and jk,zz(z); consequently, the stress distri
bution changes (in shape) with z. In the particular case in which
jk(z) is harmonic, the stress variation is independent of z and its
amplitude varies along the member length.

2.3. Weak form of the equilibrium

The weak form of the problem is derived by means of the

principle of virtual work, which is expressed as:
Z

V
rTdedV ¼

Z
S

fTdudS ð9Þ

where f(s,z)¼ fs(s,z)es(s)þ fy(s,z)ey(s)þ fz(s,z)ez(s) represents the
surface loads, applied at the mid surface of the member, and
the d denotes a virtual quantity. Performing standard steps of
variational calculus, the following system of ordinary differential
equations in the unknown amplitude functions is obtained:

Cu,zzzzþDu,zzþBu¼ p ð10Þ

and the relevant boundary conditions at z¼0,L:

ðCu,zzþDauÞdu,z ¼ 0

½Cu,zzzþðD
a Dc

Þu,z pz�du¼ 0
ð11Þ

In the previous equations C, Da, Db, Dc and B are K�K

symmetric stiffness matrices with coefficients:

Chk ¼

Z
C

EtWhWkþ
Et3

12ð1 n2Þ
VhVk

� �
ds ð12aÞ

Da
hk ¼

Z
C

nEt3

12ð1 n2Þ
VhVk,ss

� �
ds ð12bÞ

Db
hk ¼

Z
C

nEt3

12ð1 n2Þ
Vh,ssVk

� �
ds ð12cÞ

Dc
hk ¼

Z
C

GtðUhþWh,sÞðUkþWk,sÞþ
Gt3

3
Vh,sVk,s

� �
ds ð12dÞ

Dhk ¼Da
hkþDb

hk Dc
hk ð12eÞ

Bhk ¼

Z
C

Et3

12ð1 n2Þ
Vh,ssVk,ss

� �
ds ð12fÞ
C C C C

In Eq. (11), matrix C accounts for internal work spent by
stresses sM

z ,sF
z in the dual strains; matrices Da and Db include the

work spent by flexural stresses due to the Poisson effect; matrix
Dc depicts the work of tangential stresses due to the Bredt torsion
(i.e. relevant to closed branches) and De Saint Venant torsion (i.e.
relevant to open branches), respectively; finally, matrix B is
associated with transversal bending of the plates in the cross
section plane. It is worth noting that in Vlasov theory Da

hk ¼Db
hk ¼

Bhk ¼ 0 and the second contribution in Chk (related to bending of
plates in the longitudinal direction) is not accounted for.

3. Cross-sectional analysis

The fundamental task to be performed for an adequate
modes (described by Uk(s), Vk(s) and Wk(s) in Eq. (2)) capable of
describing the loss of initial shape of the cross section. Compared
with the classical theory, discussed in Section 1, a new approach
is presented in the following to achieve this, in which the
deformation modes are taken as the dynamic eigenmodes of the
cross section, considered as a free planar frame.

3.1. Discrete models for cross section analysis

To perform the dynamic analysis of the cross section, a discrete
model is adopted and implemented using the finite element
procedure. This leads to the algebraic eigenvalue problem:

ðK lMÞq¼ 0 ð14Þ

where K is the stiffness matrix, M the mass matrix and q is the
vector of the nodal displacements of the section. Three different
one dimensional elements are considered, consisting of (Fig. 3):
(i) a 6 DOF finite element with cubic and linear polynomials for the
transverse and axial displacements, respectively, and masses
equally lumped at its end nodes (referred to as FE 1 in the
following); (ii) a 6 DOF finite element with same polynomial
interpolation functions of FE 1 but with consistent masses (referred
to as FE 2); and (iii) a 8 DOF stiffness element same as FE 2 with the
order of the polynomial approximating the transverse displacement
increased to five (referred to as FE 3). These elements are derived
based on standard finite element procedures (e.g., [37 39]).

3.2. Inextensibility conditions

Solving the eigenvalue problem in the form specified in Eq. (14)
produces the eigenmodes of the section whose members are free to
stretch. However, to enforce inextensibility, internal constraints need
to be introduced in the model. This is carried out following available
procedures commonly used in finite element modelling (e.g., [37]),
also applied to thin walled structures in recent years (e.g., [30,40]).

Referring to the generic member e, connecting nodes i and j,
whose axis forms an angle ae with the X axis, these (linearised)
constraints can be expressed in local coordinates as ue

1 ue
2 ¼ 0

(Fig. 3) or in global coordinates as:

ðuj uiÞcosaeþðvj viÞsinae ¼ 0 e¼ 1,2,. . .,M ð15aÞ

or, in matrix form:

Aq¼ 0 ð15bÞ

where A is a M�N matrix, M being the number of elements and
N4M the number of dofs; and q¼ f. . .,uj,vj,yj,. . .g

T collects the N



nodal displacements defined in the global reference system (X,Y).
The previous equation permits to express the M slave dofs qS in
terms of the N M master dofs qM. Partitioning Eq. (15b) as:" #

translations and the rotation around an arbitrary selected point
(e.g., but not necessarily, the shear centre of the Vlasov theory).

According to the suggested procedure, the in plane deformation
modes (excluding the rigid ones) are the infinite deflections

e
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Fig. 3. Nodal displacements in local and global coordinates for 6 DOF and 8 DOF finite elements: (a) nodal displacements in local coordinates (6 DOF finite element); (b) nodal

displacements in global coordinates (6 DOF finite element); (c) nodal displacements in local coordinates (8 DOF finite element); and (d) nodal displacements in global

coordinates (8 DOF finite element).
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AM AS
� � qM

qS
¼ 0 ð16Þ

where AS is a non singular M�M sub matrix, the slave dofs included
in qS can be expressed as a function of the master dofs qM based on:

q¼RqM ð17Þ

where:

q¼
qM

qS

" #
; R¼

I

A�1
S AM

" #
ð18a;bÞ

Requiring the virtual work included in equation dqT(K lM)
q¼0 to be nil for any dq satisfying the constraint enforced with
Eq. (17), i.e. dq¼RdqM, the algebraic eigenvalue problem for the
internally restrained cross section becomes:

ðKR lMRÞqM ¼ 0 ð19Þ

where the two reduced order (N M)� (N M) matrices KR and
MR are defined as:

KR ¼RT KR; MR ¼ RT MR ð20a;bÞ

3.3. Dynamic eigenmodes and warping functions

The in plane deformation modes Uk(s) and Vk(s) appearing in Eq.
(2) are obtained by solving the eigenvalue problem in Eq. (19). In
this case, the eigenvalues l represent the squared eigenfrequencies,
and the associated eigenvectors qM (suitably normalised by taking,
for example, max9qM9¼ 1) are nodal displacements representing,
based on the adopted interpolation functions, the deformation
modes in the plane of the cross section. Due to the inextensibility
condition, it follows that Uk(s) is piecewise constant on s, i.e.
UkðsÞ ¼Ue

k ðe¼ 1,2,. . .,MÞ. Since the frame is not restrained (i.e. it
is free in its plane), a triple eigenvalue l¼0 is found, associated to
three rigid modes of the section. These are taken as the two
u(s) assumed to occur at the cross section when loaded by (active)
distributed forces f(s) proportional to the displacements themselves
(indeed, f ¼ mu ¼mo2u, with o being the circular frequency and
m is the distributed mass per unit length). Consequently, since f(s)
are self equilibrated forces due to the absence of constraint reac
tions, the deformation modes have zero mean value. Because of this,
displacements are usually observed to occur at the corners of the
cross section in the calculated deformation modes. The latter
represents a peculiarity of the proposed class of deformation modes,
if compared with those derived with the classical GBT.

The warping deformations undergone by the member in each
mode (including the rigid ones) are successively obtained from
the nil (ii1), or constant (ii2), membrane shear assumption.

Recalling that (Eq. (5)) gM
zs ¼ u,zþw,s ¼

PK
k 1

½UkðsÞþWk,sðsÞ�jk,zðzÞ,
it follows that:

gM
zs ¼

XK

k 1

GkðsÞjk,zðzÞ ð21aÞ

with:

GkðsÞ ¼UkðsÞþWk,sðsÞ ð21bÞ

and Gk(s) results in a piecewise constant function, i.e. GkðsÞ ¼Ge
k

(e¼1,2,y,M), which equals zero for elements in open branches or
unknown values for those included in closed branches. The linear
warping along each plate element can be expressed as a function of
its values at its end nodes as:

WkðsÞ ¼Wk,sðsÞsþWi1
k ¼

Wi2
k Wi1

k

be
sþWi1

k e¼ 1,2,. . .,M

and i1,i2AI e
nodes ð22Þ

where Wi1
k and Wi2

k depict the values of warping at the first node i1
(i.e. at s¼0) and the end one i2 (i.e. at s¼be), respectively, of
element e of length be based on the positive direction specified by
an arbitrary location vector; i1 and i2 are integers included in the set



I e
nodes. Based on this, Eq. (21b) can be rewritten for each element

forming the cross section in terms of the node warping as:

Ge
¼Ueþ

Wi2
k Wi1

k e¼ 1,2,. . .,M and i1,i2AI e ð23Þ

TWM, the simplest boundary conditions are considered for the
member analysis, i.e. a simply supported member torsionally
restrained and free to warp at the ends (i.e. uðs,zÞ ¼ vðs,zÞ ¼ 0
and w,zðs,zÞ ¼ 0 at z¼ 0,L). The forces f are assumed harmonically

G. Ranzi, A. Luongo / Thin-Walled Structures 49 (2011) 1404–1414 1409
k k be nodes

In the case of open sections (i.e. without closed loops) the
warping functions are defined once the n unknown values Wi

k,
which depict the warping at the i th node (with i¼1,..,n), are
determined. This is achieved by enforcing for each member:

Ge
k ¼Ue

kþ
Wi2

k Wi1
k

be
¼ 0 ð24Þ

Since one of these unknowns remains arbitrary, it describes the
uniform extension of the member. To make the warping orthogonal to
the extension, it is convenient to choose the remaining arbitrary
constant in such a way that the average k mode warping is zero, i.e.:Z

C
WkðsÞds¼ 0 ð25Þ

In the case of closed cross section, or those containing closed
loops, the constants Ge

k are not equal to zero, but are related, via
the constitutive law, to the (unknown) tangential stress flow Qj

k

acting on the j th loop Cj. For an element e belonging to this loop
Eq. (24) must then be replaced by:

GteGe
k ¼ Gte Ue

kþ
We

1,k We
0,k

be

� �
¼
X
jAI e

C

ð7 ÞQj
k ð26Þ

where the sum is extended to the set I e
C of all integers j labelling

the closed loops Cj to which member e belongs to. The sign of the
positive flow is specified by the arbitrary positive rotation
assigned to each closed loop. A positive (negative) sign is then
used in the summation for Qj

k in the right hand side of Eq. (26)
when the directions of the adopted element location vector and of
the shear flow passing through the e element coincide (differ).
The procedure required for the calculation of the warping modes
is illustrated by an example in Appendix A.

The determination of the warping shapes concludes the evalua
tion of the deformation modes, so that the stiffness matrices
(Eqs. 12) and the load vector (Eq. 13) can finally be evaluated.

4. Member linear analysis

The member analysis requires solving the set of ordinary

differential equations (Eq. (10)). In order to highlight the ability

of the proposed deformation modes to capture the behaviour of

50 mm 
100 mm 

20 mm 

Fig. 4. Uniformly distributed loads applied to the lipped C-section: (a) transverse u

uniformly distributed load applied to the top flange (Loading Case 2).
varying with z, namely:

fs ¼ fsnsin
npz

L

� �
; fy ¼ fynsin

npz

L

� �
; fz ¼ fzncos

npz

L

� �
ð27a2cÞ

so that the load vector in Eq. (10) is ph ¼ p0
hsinðnpz=LÞ, with n

being an integer. Such a problem is well suited for the following
amplitude functions:

jk ¼ aksin
npz

L

� �
, k¼ 1,2,. . .,K ð28Þ

where ak are unknown constants. Eq. (10) is thus transformed in
an algebraic problem for ak, reading:

XK

k 1

Chk
np
L

� �4

Dhk
np
L

� �2

þBhk

� 	
ak ¼ p0

h, h¼ 1,2,. . .,K ð29Þ

Once Eq. (29) is solved, the displacement field can be calculated
using Eqs. (2) and (4) and, recalling the introduced constitutive
relationships of Eq. (6), the active stresses can be obtained, based on
Eqs. (8) and (9):
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5. Numerical results

The proposed approach is illustrated in the following consid
ering a lipped section with a distributed loading applied to the
web and to the top flange, respectively (Fig. 4). For clarity, these
loading scenario have been referred to as Loading Cases 1 and 2.
The deformation modes obtained by the cross sectional analysis
are presented in Fig. 5 where, for each mode, the displacements
taking place in the plane of the cross section have been labelled
as ‘uv’ and their corresponding warping distributions as ‘w’. For
illustrative purposes the first 19 modes have been provided.

Considering a 1000 mm long member, a plate thickness of 1 mm
and a sinusoidal load (with wave number n¼1) of amplitude
1 N/mm, the results of the linear elastic analysis, calculated using
50 mm 

100 mm 

20 mm 

niformly distributed load applied to the web (Loading Case 1); and (b) vertical



Fig. 5. Rigid and deformation modes: (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 9; (j) mode 10; (k) mode

11; (l) mode 12; (m) mode 13; (n) mode 14; (o) mode 15; (p) mode 16; (q) mode 17; (r) mode 18; (s) mode 19.

Fig. 6. Cross-sectional deformation and stress distributions for Loading Case 1: (a) at z L/2; (b) at z 0, L/2; (c) at z L/2; (d) at z L/2; (e) at z L/2; and (f) at z 0, L.
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Fig. 7. Comparison between results obtained for Loading Case 1 using (i) FE-1: 6DOF with nodal masses, (ii) FE-2: 6DOF with consistent masses and (iii) FE-3: 8DOF with

consistent masses: (a) deflections; (b) membrane stresses sz
M; (c) bending stresses ss

F; and (d) bending stresses sz
F.

Fig. 8. Cross-sectional deformation and stress distributions for Loading Case 2: (a) at z L/2; (b) at z 0, L; (c) at z L/2; (d) at z L/2; (e) at z L/2; and (f) at z 0, L.
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the 19 modes depicted in Fig. 5, have been presented in Fig. 6. The
cross sectional and warping displacements have been scaled dif
ferently to provide a clear overview of the deformed shapes. Also,
all stresses have been plotted using the same scale to enable direct

when compared to the results obtained using a large number of
modes. In particular, different mesh refinements have been used
to model the cross section. Based on these results, only FE 3
performs well with the coarser discretisation (i.e. with one FE

G. Ranzi, A. Luongo / Thin-Walled Structures 49 (2011) 1404–14141412
comparisons between their magnitudes. The GBT results have been
compared against those furnished by the Vlasov Beam Theory
(VBT), (which, in the spirit of the GBT, considers only the rigid
modes of the cross section), and those obtained using a shell
element model implemented in ABAQUS [41]. In general there is
good agreement between the GBT and Abaqus results while, as
expected, the VBT underestimates the deformation and stress states
of the member. Modes 2 6 are the only ones with a participation
greater than 1%. This is calculated defining the participation of the
k th mode as the ratio between the maximum absolute value of its
amplitude function and the sum of the maximum absolute values of
the amplitude functions related to all modes considered in the
analysis. In particular, the participations of the rigid modes 2, 3 and
4 are 5.3%, 9.1% and 59.9%, respectively, and the ones of the
deformable modes 5 and 6 equal 19.6% and 4.5, respectively.

The performance of the three finite elements (i.e. previously
referred to as FE 1, FE 2 and FE 3, respectively) to describe the
deformation modes to be used for the cross sectional analysis has
been compared in Fig. 7. This has been carried out considering
only 9 deformation modes in the solution, which has been noted
to produce errors within 1% for both deformations and stresses
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element per plate segment) even if both FE 1 and FE 2 produce
acceptable values (with an error of 4% when compared to the
refined solution) for moderate levels of meshing. Fig. 7 highlights
how flexural stresses are more sensitive to the number of finite
elements specified and require higher levels of discretisation
when using FE 1 and FE 2 to achieve an accurate solution.

The same lipped cross section has then been considered when
subjected to a sinusoidal distributed load with amplitude 0.1 N/
mm applied to its top flange (Fig. 4), referred to as Loading Case 2.
Similarly to the previous case, the results calculated using the
GBT have been obtained using the 19 modes illustrated in Fig. 5
and have been compared in Fig. 8 against those obtained with VBT
and ABAQUS. Also in this case the GBT values match well with the
ABAQUS ones. In this case, participations greater than 1% are
exhibited by rigid mode 2 (with 37.8%) and by the deformation
modes 5 (with 53.7%), 7 (with 7.2%) and 9 (with 1.0%).

When using the coarser mesh (i.e. one element per plate
segment) the FE 3 produces errors of the order of 2% in the
calculation of the stresses, when compared to the values obtained
with highly refined meshes (Fig. 9). This error increases to about
8% and 20% when using FE 1 and FE 2, respectively. For these
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latter two elements the error tends to decrease for moderate
levels of meshing to a value of 3% (Fig. 9). Ue 3

k þ
Wi 4

k Wi 2
k

be 3
¼ 0

(ii) Eq. (26) is written for each plate element e part of a
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6. Conclusions

A new approach has been presented for the determination of

the conventional deformation modes within the framework of the

Generalised Beam Theory (GBT), which is applicable to generic
cross sections, i.e. open, partially closed and closed ones. The new
method is based on a semi variational procedure, in which the in
plane deformation modes are evaluated as the eigenfunctions of a
positive semi definite auxiliary problem. This is chosen as the
free dynamic problem of an unconstrained planar frame, repre
senting the cross section of the structural member. Then, the
resulting dynamic modes are adopted as the deformation modes
for the GBT analysis, while the corresponding induced warping is
calculated in a post processing phase, based on the enforcement
of shear conditions. This procedure, reversed with respect the
classical approach, heavily simplifies the cross sectional analysis
of GBT and removes its need to separately determine bending,
shear and local modes. Numerical applications have been pre
sented to highlight the ease of use of the proposed approach.
Moreover, an analytical worked example has been presented in
Appendix A to better illustrate the determination of the warping
displacements, consistently with the new cross sectional analysis.
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Appendix A

The procedure proposed for the calculation of the warping

functions can be applied once the functions Uk and Vk defining the

deformations in the plane of the cross section are evaluated from
the eigenvectors obtained from the dynamic analysis outlined in
Section 3. The proposed process needs to be applied for each of
the K deformation modes considered (with k¼1,y,K). The
unknown warping functions have been expressed in terms of
their values at each node Wi

k (with i referring to the i th node at
which the warping function is calculated) in Eq. (22). Based on
this, the unknowns to be determined consist of the warping nodal
values Wi

k and of the tangential shear flows Qj
k for each loop

present in the section (with j¼1,y,J). For illustrative purposes,
the partially closed cross section depicted in Fig. 10 is considered,
which is formed by 10 elements and 2 closed loops. In this case,
the problem is setup in terms of 11 unknowns, which consist of
the values of warping at each node Wi

k (with i¼1,y,9) and the
values of the tangential shear flows Qj

k (with j¼1,2) related to the
k th deformation mode considered (with k¼1,y,K).

The governing system of equations to be used for the 11
unknowns is obtained applying Eqs. (24) (26) as follows (with i, j,
e and k being indexes used for nodes, closed loops, elements and
deformation modes, respectively):

(i) Eq. (24) is applied to each plate element e not included in a
loop (i.e. free branched segment) in Fig. 10 there are 3 free
branched segments and these correspond to elements e¼1 3:

Ue 1
k þ

Wi 2
k Wi 1

k

be 1
¼ 0

Ue 2
k þ

Wi 2
k Wi 3

k

be 2
¼ 0
loop there are 7 plate segments in Fig. 10, which satisfy this
condition and consist of elements e¼4 10:

Gte 4 Ue 4
k þ
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k Wi 4

k

be 4

 !
¼ þQj 2

k

Gte 5 Ue 5
k þ
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k Wi 5

k

be 5

 !
¼ þQj 2

k

Gte 6 Ue 6
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k Wi 6

k

be 6

 !
¼ þQj 2

k

Gte 7 Ue 7
k þ

Wi 8
k Wi 7

k

be 7

 !
¼ þQj 1

k

Gte 8 Ue 8
k þ

Wi 9
k Wi 8

k

be 8

 !
¼ þQj 1

k

Gte 9 Ue 9
k þ

Wi 4
k Wi 9

k

be 9

 !
¼ þQj 1

k

Gte 10 Ue 10
k þ

Wi 7
k Wi 4

k

be 10

 !
¼ þQj 1

k Qj 2
k

(iii) Eq. (25) is applied considering every plate element e

forming the cross section for the section of Fig. 10 the contribu
tion of all 10 elements is considered:
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