A new approach for thin-walled member analysis in the framework of GBT
Gianluca Ranzi, Angelo Luongo

► To cite this version:

HAL Id: hal-00788057
https://hal.archives-ouvertes.fr/hal-00788057
Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A new approach for thin-walled member analysis in the framework of GBT
Gianluca Ranzi a,*, Angelo Luongo b

a School of Civil Engineering, The University of Sydney, NSW 2006, Australia
b Dipartimento d’Ingegneria delle Strutture, delle Acque e del Territorio, Università dell’Aquila, Italy

ABSTRACT

A new approach is illustrated for the cross sectional analysis to be performed in the context of the Generalised Beam Theory (GBT). The novelty relies in formulating the problem in the spirit of Kantorovich’s semi variational method, namely using the dynamic modes of an unconstrained planar frame as in plane deformation modes. Warping is then evaluated from the post processing of these in plane modes, thus reversing the strategy of the classical GBT procedure. The new procedure does not require several steps of the classical algorithm for the determination of the conventional modes, in which bending, shear and local modes are evaluated separately, and is applicable indifferently to open, partially closed and closed sections. The efficiency and ease of use of the method are outlined by means of two examples, aimed to describe the linear elastic behaviour of thin walled members.

1. Introduction

The Generalised Beam Theory (GBT) is a powerful tool for the elastic and buckling analysis of thin walled members (TWM). The basic ideas of the method have been originally proposed by Schardt [1,2] and disseminated in English by Davies and co-workers [3-7] while its large diffusion in the scientific community is due to the strong impulse given to it in the last decade by Camotim and co-workers [8-27]. They generalised the method to include new aspects, not present in the original formulation, and combined it with a FE approach [8-10], so that GBT is now applicable to anisotropic members [11], branched open sections [12], closed or partially closed sections [13], circular sections [14], non standard support conditions [15,16], frames of TWM [17], buckling problems [10,13,14,18-22], linear dynamic problems [23,24], and post buckling problems [25-27]. In recent years, Adany and Schafer [28,29] and Casarfort et al. [30] applied the principles at the basis of the GBT to reduce the number of freedoms required in performing buckling investigations using the finite strip method and finite element method, respectively.

As well known, GBT considers a TWM as an assembly of (generally, but not necessarily, flat) thin plates, free to bend in the plane orthogonal to the member axis. Thus, GBT accounts for deformable cross sections, differently from the classical Vlasov theory [31] in which the cross section keeps its original shape. The basic idea of the method consists in describing the displacement field of the TWM as a linear combination of assumed ‘deformation modes’ of the cross section (including in plane and warping components), and ‘amplitude modes’, which are unknown functions depending on the axial coordinate. A variational principle, as the virtual work equation, provides the weak formulation of the problem, leading to a system of ordinary differential equations in the unknown amplitudes, with the relevant boundary conditions. These equations, equal in number to the deformation modes considered, generalise the classical Vlasov beam theory, where the latter can be described using four amplitude functions, each associated to a rigid motion of the section, namely three translations (two flexures and an extension) and one rotation (torsion) around the shear centre. Even if not initially noted by Schardt, this approach falls within Kantorovich’s semi variational method, aimed at reducing the dimensionality of a problem through a technique of partially assumed modes. Thus, in the case of the GBT, a three dimensional continuous problem is transformed into a vector valued one dimensional problem. In particular, the GBT method consists of two phases: (1) the choice of the deformation modes, referred to as ‘cross sectional analysis’, and (2) the solution of the amplitude equations, denoted as ‘member analysis’. The fundamental step of this method relies on its ability to determine a suitable set of deformation modes.

A brief overview of the essence of the classical GBT is provided in the following, partly for readers not fully familiar with this approach, to highlight the procedure involved in the evaluation of the conventional deformation modes and to better outline the contribution of the proposed work. Throughout this paper and consistently with the definitions provided in [8], conventional modes are assumed to include the rigid body modes, the distortional ones, the local (bending) ones complemented, when dealing with closed sections, with a shear mode to depict the case of pure torsional shear flow.

* Corresponding author. Tel.: +61 2 9351 5215; fax: +61 2 9351 3343.
E-mail address: gianluca.ranzi@sydney.edu.au (G. Ranzi).
The first step of the GBT formulation is to discretize the cross section of a member in plate segments (with nodes inserted at their ends) along which linearly varying warping functions are assumed to exist. By following the methodology commonly used with the direct stiffness method, unit warping displacements are applied to one node at the time, while keeping all the remaining ones equal to zero, thus creating a set of ‘warping modes’. The corresponding in plane tangential displacements of the segments are determined for each of these modes based on the zero shear Vlasov condition (valid for open cross sections). This procedure leads to a loss of compatibility at the ‘natural nodes’ (i.e. at the corners of the plates). A rigid body kinematic problem is then solved to restore the compatibility of the translations by applying normal displacements and rotations to each plate segment. After this, the force method is used to restore compatibility of the rotations at the natural nodes, while treating the plate segments as (deformable) continuous members and assuming their corners restrained by pinned supports. With this procedure, a basis of linearly independent modes (with number equal to the number of nodes of the section) is created. This set of ‘warping modes’, however, is not exhaustive, since it is associated to deformations in which the nodes translate in the cross section plane. ‘Bending modes’, instead, in which the plate deforms by leaving the corners (practically) immovable and without warping, cannot be determined with this procedure. The way that GBT addresses this problem is to restart a new calculation in which unit displacements are assigned, this time normal to the plate segments, at ‘non natural’ intermediate nodes (i.e. not at the corners), followed, also in this instance, by the solution of the elastic problem of a continuous member. This second set of modes, however, does not include deformations of closed sections in which the displacements are essentially tangential, triggering shear deformations of the plates, and therefore referred to as ‘shear modes’. To determine these latter ones another ad hoc procedure needs to be applied, which induces unit tangential displacements to each segment of the cross section belonging to closed cells (based on the considerations that membrane shear strains are negligible in segments included in open branches).

The different deformation modes constructed, based on the procedures previously outlined, are local type in nature because they involve nontrivial displacements only in a few adjacent segments. Remaining consistent with their derivations, these modes could be used in this form, in a similar manner as, for example, the finite strip approach is applied to TWM analysis or splines are used to describe extended functions (e.g., [32 36]). Such a local type representation, however, is not convenient, if one desires to use few significant modes to capture the main structural behaviour. Therefore, a change of basis is then performed in the classical GBT to obtain global type deformation modes. This is obtained as the eigenvectors of a properly chosen eigenvalue problem, able to simplify the amplitude equations.

It is in authors’ opinion that an unified procedure for the determination of the conventional deformation modes would con tribute to a wider diffusion and use of the GBT approach. In this context, a new version of the method is proposed here, which, in the spirit of the semi variational method selects the conventional deformation modes directly defined on the whole domain and chosen as the eigenvectors of a positive semi definite eigenvalue problem. The free dynamics of the unconstrained planar frame, represented by the plate segments forming the cross section placed at their mid lines, is chosen as the eigenvalue problem. Since the frame is free in its plane, it possesses rigid motions that account for the Vlasov beam theory, and flexural modes which account for deformation modes. Once the planar modes are determined, e.g. using a standard finite element analysis, even performed with a commercial software, the cross sectional analysis is completed by evaluating the corresponding warping displacements based on conditions enforced on the shear strain. Among these, the purely extensional mode appears as an arbitrary quantity rising from integration. In this way, the strategy used by the classical theory is reversed, in the sense that in plane components are evaluated first, and warping components successively.

This paper starts by briefly recalling the basis of the GBT, limiting the description to the first order analysis. This is followed by the new proposed cross sectional analysis and its ease of use is outlined by means of two applications on simply supported TWM. For clarity, the procedure proposed for the calculation of the warping displacements, starting from the in plane ones, is detailed with an example in Appendix A.

2. Basis of the GBT approach

A generic thin walled member is considered with (a) open, (b) closed or (c) partially closed cross section formed with flat plates (Fig. 1). The displacement field \(\mathbf{u}(s,z) \) of an arbitrary point \(P(s,z) \) lying in the mid plane of the section thickness is expressed as (Fig. 2):

\[
\mathbf{u}(s,z) = u(s,z)\mathbf{e}_x(s) + v(s,z)\mathbf{e}_y(s) + w(s,z)\mathbf{e}_z(s)
\]

(1)

where \(s \) is the curvilinear abscissa (if necessary defined on several branches) along the section mid line \(C, z \) is the coordinate along the member axis, \(\mathbf{e}_x(s), \mathbf{e}_y(s) \) and \(\mathbf{e}_z(s) \) are unit vectors in the tangential, normal and bi normal directions at the abscissa \(s \), respectively, and \(u(s,z), v(s,z) \) and \(w(s,z) \) are the displacement components in the same triad.

2.1. Displacement and strain fields

In the framework of the GBT, and making use of Kantorovich’s semi variational method, the displacement components of points...
The corresponding infinitesimal strain fields evaluated according to the Kirchhoff plate model, namely:

\[u(s,z) = \sum_{k=1}^{K} U_k(s) \phi_k(z) \]

\[w(s,z) = \sum_{k=1}^{K} V_k(s) \phi_k(z) \]

\[[w(s,z)] = \sum_{k=1}^{K} W_k(s) \phi_k(z) \]

where \(U_k(s), V_k(s) \) and \(W_k(s) \) are the three components of the infinitesimal deformation mode, \(\phi_k(z) \) describing the amplitude of the \(k \)th deformation mode along the member axis and a comma denotes differentiation with respect to the variable that follows. The displacement field is evaluated according to the Kirchhoff plate model, namely:

\[d_1(s,y,z) = u(s,z) \ yV_k(z) \]

\[d_2(s,y,z) = w(s,z) \ yV_k(z) \]

or, based on Eq. (2):

\[d(s,y,z) = \begin{bmatrix} \sum_{k=1}^{K} [U_k(s) \ yV_k(z)] \phi_k(z) \\ \sum_{k=1}^{K} V_k(s) \phi_k(z) \\ \sum_{k=1}^{K} W_k(s) \ yV_k(z) \phi_k(z) \end{bmatrix} \]

According to the two fundamental Vlasov's hypotheses, for mated open cross sections, the plate components are assumed: (i) inextensible in the tangential direction, i.e. \(e_{y}^M = 0 \), and (ii) shear deformable in their middle plane, i.e. \(e_{z}^M = 0 \). This latter condition, however, is relaxed for closed sections (or, more in general, for plates belonging to closed loops of partially closed cross sections), and substituted by \(e_{y}^M, e_{z}^M = 0 \) for plates lying on open branches and \(e_{y}^M, e_{z}^M = \text{const stepwise with respect to } z \) (i.e. on each element of a closed loop), according to the Bredt theory for torsion. As a consequence of (i) and (ii), no shear strains due to shear forces (as for example predicted by the Jouwansky theory) are permitted on any kind of section. It is assumed here that the deformation modes appearing in Eqs. (2) are selected in such a way to identity satisfy the constraints (i) and (ii) or, if appropriate, (ii).

2.2. Stress field

Due to the internal constraints, the associate stress field \(\sigma = \sigma_1^M \sigma_2^M \sigma_3^M \sigma_4^M \sigma_5^M \sigma_6^M \) is made of an active part \(\sigma_0 \) and a reactive one \(\sigma_0 \), i.e. \(\sigma = \sigma_0 + \sigma_0 / C_0 \), in which \(\sigma_0 / C_0 \) is linked to the non zero strains, and \(\sigma_0 \) collects the stresses which spend zero work on the strain field, namely \(\sigma_0 / C_0 \). Accordingly, these can be expressed as \(\sigma_0 = (0, \sigma_1^M, \sigma_2^M, \sigma_3^M, \sigma_4^M, \sigma_5^M, \sigma_6^M) \) on plates lying on open branches and \(\sigma_0 = (0, \sigma_1^M, \sigma_2^M, \sigma_3^M, \sigma_4^M, \sigma_5^M, \sigma_6^M) \) on plates lying on closed branches, while \(\sigma_0 = (0, \sigma_1^M, \sigma_2^M, \sigma_3^M, \sigma_4^M, \sigma_5^M, \sigma_6^M) \) on all plates. It should be noted that \(\sigma_0 \) is made of two contributions: an active one due to twist of closed branches and a reactive one due to shear forces applied to any kind of section. Assuming linear (plane stress) elastic material properties, the constitutive relationship can be expressed as:

\[\sigma = E \varepsilon + \sigma_0 \]

where:

\[E = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & E & 0 & 0 & 0 & 0 \\ 0 & 0 & G & 0 & 0 & 0 \\ 0 & 0 & 0 & E & 0 & 0 \\ 0 & 0 & 0 & 0 & E & 0 \\ 0 & 0 & 0 & 0 & 0 & G \end{bmatrix} \]

is the elastic matrix, containing elastic moduli \(E \) and \(G \), in which, as usually accepted, the Poisson ratio \(v \) has been ignored in the entry (2,2).

Evaluation of the reactive part of stress is beyond the scope of this paper, consistently with the displacement method followed. Hence, focusing the attention on the active part only, and using
Eq. (2) in the constitutive law of Eq. (6), it follows that:

\[\sigma_z^M(s,z) = \sum_{k=1}^{N} EW_k(s)\phi_{k,z}(z) \]
(8a)

\[\tau_z^M(s,z) = \sum_{k=1}^{N} G[U_k(s) + W_k(s)]\phi_{k,z}(z) \]
(8b)

\[\sigma_{f,y,z} = \sum_{k=1}^{K} E [V_{k,ss}(s)\phi_{k,z}(z) + vV_k(s)\phi_{k,zz}(z)] \]
(8c)

\[\sigma_{f,y,z} = \sum_{k=1}^{K} E [V_k(s)\phi_{k,z}(z) + vV_{k,ss}(s)\phi_{k,z}(z)] \]
(8d)

\[\tau_{f,y,z} = 2y \sum_{k=1}^{K} [GV_k(s)\phi_{k,z}(z)] \]
(8e)

It should be noted that, due to the Poisson effect, the normal flexural stresses are the superposition of two contributions, whose relative amplitudes at the abscissa \(z \) depends on the magnitudes of \(\phi_{k,z}(z) \) and \(\phi_{k,zz}(z) \); consequently, the stress distribution changes (in shape) with \(z \). In the particular case in which \(\phi_{k,z}(z) \) is harmonic, the stress variation is independent of \(z \) and its amplitude varies along the member length.

2.3. Weak form of the equilibrium

The weak form of the problem is derived by means of the principle of virtual work, which is expressed as:

\[\int_V \sigma^T \delta \delta V = \int_L f^T \delta u dS \]
(9)

where \(f(s,z) = f_z(s,z)e_z(s) + f_x(s,z)e_x(s) + f_y(s,z)e_y(s) \) represents the surface loads, applied at the mid surface of the member, and the \(\delta \) denotes a virtual quantity. Performing standard steps of variational calculus, the following system of ordinary differential equations in the unknown amplitude functions is obtained:

\[C_{phzzzz} + D_{phzz} + B_{ph} = p \]
(10)

and the relevant boundary conditions at \(z = 0, L \):

\[(C_{phzz} + D_{ph})\phi_z = 0 \]
\[C_{phzzzz} + (D_{phzz} - D_{ph})p \phi_z = 0 \]
(11)

In the previous equations \(C, D^b, D^h, D^c \) and \(B \) are \(K \times K \) symmetric stiffness matrices with coefficients:

\[C_{ek} = \int_C (EtW_hW_k + \frac{Et^3}{12(1-v^2)}V_kV_k) ds \]
(12a)

\[D_{hke} = \int_C \left(\frac{E}{12(1-v^2)}V_hV_{k,ss} \right) ds \]
(12b)

\[D_{hke} = \int_C \left(\frac{E}{12(1-v^2)}V_hV_{k,ss} \right) ds \]
(12c)

\[D_{hke} = \int_C \left(\frac{Gt(U_h + W_h)(U_k + W_k) + \frac{Et^3}{3}V_hV_{k,ss}}{} \right) ds \]
(12d)

\[D_{hke} = D_{hke}^b + D_{hke}^c \]
(12e)

\[B_{hk} = \int_C \left(\frac{Et^2}{12(1-v^2)}V_{k,ss}V_{k,ss} \right) ds \]
(12f)

in which \(p \) and \(p^c \) are load \(K \) vectors, whose coefficients are defined as:

\[p_h = \int f_z U_h ds + \int f_x V_h ds + \int f_y W_h ds; \quad p^c_h = \int f_x W_h ds \]
(13a, b)

In Eq. (11), matrix \(C \) accounts for internal work spent by stresses \(\sigma_{f,y}^b, \sigma_{f,y}^c \) in the dual strains; matrices \(D^b \) and \(D^c \) include the work spent by flexural stresses due to the Poisson effect; matrix \(D^h \) depicts the work of tangential stresses due to the Bredt torsion (i.e. relevant to closed branches) and De Saint Venant torsion (i.e. relevant to open branches), respectively; finally, matrix \(B \) is associated with transversal bending of the plates in the cross section plane. It is worth noting that in Vlasov theory \(D_{hk}^b = D_{hk}^c = B_{hk} = 0 \) and the second contribution in \(C_{hk} \) (related to bending of plates in the longitudinal direction) is not accounted for.

3. Cross-sectional analysis

The fundamental task to be performed for an adequate modelling consists of the identification of suitable deformation modes (described by \(U_j(s), V_j(s) \) and \(W_j(s) \) in Eq. (2)) capable of describing the loss of initial shape of the cross section. Compared with the classical theory, discussed in Section 1, a new approach is presented in the following to achieve this, in which the deformation modes are taken as the dynamic eigenmodes of the cross section, considered as a free planar frame.

3.1. Discrete models for cross section analysis

To perform the dynamic analysis of the cross section, a discrete model is adopted and implemented using the finite element procedure. This leads to the algebraic eigenvalue problem:

\[(K - \lambda M)\mathbf{q} = 0 \]
(14)

where \(K \) is the stiffness matrix, \(M \) the mass matrix and \(\mathbf{q} \) is a vector of the nodal displacements of the section. Three different one dimensional elements are considered, consisting of (Fig. 3): (i) a 6 DOF finite element with cubic and linear polynomials for the transverse and axial displacements, respectively, and masses equally lumped at its end nodes (referred to as FE 1 in the following); (ii) a 6 DOF finite element with same polynomial interpolation functions of FE 1 but with consistent masses (referred to as FE 2); and (iii) a 8 DOF stiffness element same as FE 2 with the order of the polynomial approximating the transverse displacement increased to five (referred to as FE 3). These elements are derived based on standard finite element procedures (e.g., [37 39]).

3.2. Inextensibility conditions

Solving the eigenvalue problem in the form specified in Eq. (14) produces the eigenmodes of the section whose members are free to stretch. However, to enforce inextensibility, internal constraints need to be introduced in the model. This is carried out following available procedures commonly used in finite element modelling (e.g., [37]), also applied to thin walled structures in recent years (e.g., [30 40]).

Referring to the generic member \(e \), connecting nodes \(i \) and \(j \), whose axis forms an angle \(\alpha_e \) with the X axis, these (linearised) constraints can be expressed in local coordinates as \(u_i = 0 \) (Fig. 3) or in global coordinates as:

\[u_i = 0 \]
(15a)

or, in matrix form:

\[Aq = 0 \]
(15b)

where \(A \) is a \(M \times N \) matrix, \(M \) being the number of elements and \(N > M \) the number of dofs; and \(q = \{u_i, v_j, \alpha_j, \ldots \} \) collects the \(N \)
nodal displacements defined in the global reference system (X,Y).

The previous equation permits to express the M slave dofs \(q_s \) in terms of the \(N M \) master dofs \(q_M \): Partitioning Eq. (15b) as:

\[
[A_M \ A_s] \begin{bmatrix} q_M \\ q_s \end{bmatrix} = 0
\]

(16)

where \(A_s \) is a non singular \(M \times M \) sub matrix, the slave dofs included in \(q_s \) can be expressed as a function of the master dofs \(q_M \) based on:

\[
q = Rq_M
\]

(17)

where:

\[
q = \begin{bmatrix} q_M \\ q_s \end{bmatrix}; \quad R = \begin{bmatrix} I \\ A_s^{-1} A_M \end{bmatrix}
\]

(18a, b)

Requiring the virtual work included in equation \(\delta q^T(K + \lambda M)q = 0 \) to be nil for any \(\delta q \) satisfying the constraint enforced with Eq. (17), i.e. \(\delta q = R\delta q_M \), the algebraic eigenvalue problem for the internally restrained cross section becomes:

\[
(K_e - \lambda M_e)q = 0
\]

(19)

where the two reduced order \((N \times M) \times (N \times M) \) matrices \(K_e \) and \(M_e \) are defined as:

\[
K_e = R^T K R; \quad M_e = R^T M R
\]

(20a, b)

3.3. Dynamic eigenmodes and warping functions

The in plane deformation modes \(U_k(s) \) and \(V_k(s) \) appearing in Eq. (2) are obtained by solving the eigenvalue problem in Eq. (19). In this case, the eigenvalues \(\lambda \) represent the squared eigenfrequencies, and the associated eigenvectors \(q_M \) (suitably normalised by taking, for example, \(\max |q_M| = 1 \)) are nodal displacements representing, based on the adopted interpolation functions, the deformation modes in the plane of the cross section. Due to the inextensibility condition, it follows that \(U_k(s) \) is piecewise constant on \(s \), i.e. \(U_k(s) = U^e_k (e = 1,2,\ldots,M) \). Since the frame is not restrained (i.e. it is free in its plane), a triple eigenvalue \(\lambda = 0 \) is found, associated to three rigid modes of the section. These are taken as the two translations and the rotation around an arbitrary selected point (e.g., but not necessarily, the shear centre of the Vlasov theory).

According to the suggested procedure, the in plane deformation modes (excluding the rigid ones) are the infinite deflections \(\{u(s)\} \) assumed to occur at the cross section when loaded by (active) distributed forces \(f(s) \) proportional to the displacements themselves (indeed, \(f = mu = mo^2 u \), with \(o \) being the circular frequency and \(m \) is the distributed mass per unit length). Consequently, since \(f(s) \) are self equilibrated forces due to the absence of constraint reactions, the deformation modes have zero mean value. Because of this, displacements are usually observed to occur at the corners of the cross section in the calculated deformation modes. The latter represents a peculiarity of the proposed class of deformation modes, if compared with those derived with the classical GBT.

The warping deformations undergone by the member in each mode (including the rigid ones) are successively obtained from the nil \((ii_1) \), or constant \((ii_2) \), membrane shear assumption.

Recalling that (Eq. (5)) \(\gamma^M_{\text{global}} = \sum_k [U_k(s)+W_k(s)]{\phi}_{k,z}(z) \), it follows that:

\[
\gamma^M_{\text{global}} = \sum_k \Gamma_k(s)\phi_{k,z}(z)
\]

(21a)

with:

\[
\Gamma_k(s) = U_k(s) + W_{k,z}(s)
\]

(21b)

and \(\Gamma_k(s) \) results in a piecewise constant function, i.e. \(\Gamma_k(s) = \Gamma^e_k \) \((e = 1,2,\ldots,M) \), which equals zero for elements in open branches or unknown values for those included in closed branches. The linear warping along each plate element can be expressed as a function of its values at its end nodes as:

\[
W_k(s) = W_{k,z}(s) + W_{k,z}^i = \frac{W_{k,z}^i}{b^e} s + W_{k,z}^i \quad e = 1,2,\ldots,M
\]

and

\[
i_1 i_2 \in I^\text{nodes}
\]

(22)

where \(W_{k,z}^i \) and \(W_{k,z}^i \) depict the values of warping at the first node \(i_1 \) (i.e. at \(s = 0 \)) and the end one \(i_2 \) (i.e. at \(s = b^e \)), respectively, of element \(e \) of length \(b^e \) based on the positive direction specified by an arbitrary location vector; \(i_1 \) and \(i_2 \) are integers included in the set...
\[T_{\text{node}}^e \] based on this, Eq. (21b) can be rewritten for each element forming the cross section in terms of the node warping as:

\[T_{\text{node}}^e = U_k^e + \frac{W_{k1}^e}{b^e} \ W_{k1}^e \quad e = 1, 2, ..., M \quad \text{and} \quad i_1, i_2 \in T_{\text{node}}^e \] (23)

In the case of open sections (i.e. without closed loops) the warping functions are determined once the \(n \) unknown values \(W_k^e \), which depict the warping at the \(i \)th node (with \(i=1,...,n \)), are determined. This is achieved by enforcing for each member:

\[\Gamma_k^e = U_k^e + \frac{W_{k1}^e}{b^e} \ W_{k1}^e = 0 \] (24)

Since one of these unknowns remains arbitrary, it describes the **uniform extension** of the member. To make the warping orthogonal to the extension, it is convenient to choose the remaining arbitrary constant in such a way that the average uniform extension, it is convenient to choose the remaining arbitrary constant in such a way that the average

5. Numerical results

The proposed approach is illustrated in the following considering a lipped section with a distributed loading applied to the web and to the top flange, respectively (Fig. 4). For clarity, these loading scenario have been referred to as Loading Cases 1 and 2. The deformation modes obtained by the cross sectional analysis are presented in Fig. 5 where, for each mode, the displacements taking place in the plane of the cross section have been labelled as 'u' and their corresponding warping distributions as 'w'. For illustrative purposes the first 19 modes have been provided.

Considering a 1000 mm long member, a plate thickness of 1 mm and a sinusoidal load (with wave number \(n=1 \) of amplitude 1 N/mm, the results of the linear elastic analysis, calculated using TWMM, the simplest boundary conditions are considered for the member analysis, i.e. a simply supported member torsionally restrained and free to warp at the ends (i.e. \(u(s, \zeta) = w(s, \zeta) = 0 \) and \(w_f(s, \zeta) = 0 \) at \(\zeta = 0, l \)). The forces \(f \) are assumed harmonically varying with \(\zeta \), namely:

\[f_s = f_0 \sin \left(\frac{n\pi \zeta}{L} \right) ; \quad f_p = f_0 \cos \left(\frac{n\pi \zeta}{L} \right) \] (27a-c)

so that the load vector in Eq. (10) is \(p_k = p_0 \sin (n\pi z/L) \), with \(n \) being an integer. Such a problem is well suited for the following amplitude functions:

\[\phi_k = a_k \sin \left(\frac{n\pi \zeta}{L} \right), \quad k = 1, 2, ... K \] (28)

where \(a_k \) are unknown constants. Eq. (10) is thus transformed in an algebraic problem for \(a_k \), reading:

\[\sum_{k=1}^{K} \left[C_{bk} \left(\frac{n\pi \zeta}{L} \right)^4 D_{bk} \left(\frac{n\pi \zeta}{L} \right)^2 + B_{bk} \right] a_k = p_0^k, \quad h = 1, 2, ... K \] (29)

Once Eq. (29) is solved, the displacement field can be calculated using Eqs. (2) and (4) and, recalling the introduced constitutive relationships of Eq. (6), the active stresses can be obtained, based on Eqs. (8) and (9):

\[\left(\begin{array}{c} \sigma_{xx}^e \\ \sigma_{yy}^e \\ \tau_{xy}^e \\ \tau_{zx}^e \\ \end{array} \right) = \sum_{k=1}^{K} \left(\begin{array}{c} \frac{E}{1+v} \frac{b^e}{b^e} \sin \left(\frac{n\pi \zeta}{L} \right) \\ G \left(U_k + W_{k1} \right) \frac{b^e}{b^e} \sin \left(\frac{n\pi \zeta}{L} \right) \\ \frac{E}{1-v} \frac{b^e}{b^e} y \left(V_{k1,ss} + V_{k2} \right) \sin \left(\frac{n\pi \zeta}{L} \right) \\ 2yG V_{k1,ss} \frac{b^e}{b^e} \cos \left(\frac{n\pi \zeta}{L} \right) \end{array} \right) a_k \] (30)
Fig. 5. Rigid and deformation modes: (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 9; (j) mode 10; (k) mode 11; (l) mode 12; (m) mode 13; (n) mode 14; (o) mode 15; (p) mode 16; (q) mode 17; (r) mode 18; (s) mode 19.

Fig. 6. Cross-sectional deformation and stress distributions for Loading Case 1: (a) at $z = L/2$; (b) at $z = 0$; (c) at $z = L/2$; (d) at $z = L/2$; (e) at $z = L/2$; and (f) at $z = 0$, L.
Fig. 7. Comparison between results obtained for Loading Case 1 using (i) FE-1: 6DOF with nodal masses, (ii) FE-2: 6DOF with consistent masses and (iii) FE-3: 8DOF with consistent masses: (a) deflections; (b) membrane stresses σ_μ^M; (c) bending stresses σ_z^F; and (d) bending stresses σ_z^M.

Fig. 8. Cross-sectional deformation and stress distributions for Loading Case 2: (a) at $z = L/2$; (b) at $z = 0, L$; (c) at $z = L/2$; (d) at $z = L/2$; (e) at $z = L/2$; and (f) at $z = 0, L$.

G. Ranzi, A. Luongo / Thin-Walled Structures 49 (2011) 1404–1414
the 19 modes depicted in Fig. 5, have been presented in Fig. 6. The cross sectional and warping displacements have been scaled differently to provide a clear overview of the deformed shapes. Also, all stresses have been plotted using the same scale to enable direct comparisons between their magnitudes. The GBT results have been compared against those furnished by the Vlasov Beam Theory (VBT), (which, in the spirit of the GBT, considers only the rigid modes of the cross section), and those obtained using a shell element model implemented in ABAQUS [41]. In general there is good agreement between the GBT and Abaqus results while, as expected, the VBT underestimates the deformation and stress states of the member. Modes 2 6 are the only ones with a participation greater than 1%. This is calculated defining the participation of the k th mode as the ratio between the maximum absolute value of its amplitude function and the sum of the maximum absolute values of the amplitude functions related to all modes considered in the analysis. In particular, the participations of the rigid modes 2, 3 and 4 are 5.3%, 9.1% and 59.9%, respectively, and the ones of the deformable modes 5 and 6 equal 19.6% and 4.5, respectively.

The performance of the three finite elements (i.e. previously referred to as FE 1, FE 2 and FE 3, respectively) to describe the deformation modes to be used for the cross sectional analysis has been compared in Fig. 7. This has been carried out considering only 9 deformation modes in the solution, which has been noted to produce errors within 1% for both deformations and stresses when compared to the results obtained using a large number of modes. In particular, different mesh refinements have been used to model the cross section. Based on these results, only FE 3 performs well with the coarser discretisation (i.e. with one FE element per plate segment) even if both FE 1 and FE 2 produce acceptable values (with an error of 4% when compared to the refined solution) for moderate levels of meshing. Fig. 7 highlights how flexural stresses are more sensitive to the number of finite elements specified and require higher levels of discretisation when using FE 1 and FE 2 to achieve an accurate solution.

The same lipped cross section has then been considered when subjected to a sinusoidal distributed load with amplitude 0.1 N/mm applied to its top flange (Fig. 4), referred to as Loading Case 2. Similarly to the previous case, the results calculated using the GBT have been obtained using the 19 modes illustrated in Fig. 5 and have been compared in Fig. 8 against those obtained with VBT and ABAQUS. Also in this case the GBT values match well with the ABAQUS ones. In this case, participations greater than 1% are exhibited by rigid mode 2 (with 37.8%) and by the deformation modes 5 (with 53.7%), 7 (with 7.2%) and 9 (with 1.0%).

When using the coarser mesh (i.e. one element per plate segment) the FE 3 produces errors of the order of 2% in the calculation of the stresses, when compared to the values obtained with highly refined meshes (Fig. 9). This error increases to about 8% and 20% when using FE 1 and FE 2, respectively. For these
latter two elements the error tends to decrease for moderate levels of meshing to a value of 3% (Fig. 9).

6. Conclusions

A new approach has been presented for the determination of the conventional deformation modes within the framework of the Generalised Beam Theory (GBT), which is applicable to generic cross sections, i.e. open, partially closed and closed ones. The new method is based on a semi variational procedure, in which the in-plane deformation modes are evaluated as the eigenfunctions of a positive semi definite auxiliary problem. This is chosen as the free dynamic problem of an unconstrained planar frame, representing the cross section of the structural member. Then, the resulting dynamic modes are adopted as the deformation modes for the GBT analysis, while the corresponding induced warping is calculated in a post processing phase, based on the enforcement of shear conditions. This procedure, reversed with respect to the classical approach, heavily simplifies the cross sectional analysis of shear conditions. This procedure, reversed with respect to the classical approach, heavily simplifies the cross sectional analysis of shear conditions. This procedure, reversed with respect to the classical approach, heavily simplifies the cross sectional analysis of shear conditions. This procedure, reversed with respect to the classical approach, heavily simplifies the cross sectional analysis of shear conditions.

Acknowledgements

The work of the first author was supported by the Australian Research Council through its Discovery Projects funding scheme (DP1096454).

Appendix A

The procedure proposed for the calculation of the warping functions can be applied once the functions \(U_k \) and \(V_i \) defining the deformations in the plane of the cross section are evaluated from the eigenvectors obtained from the dynamic analysis outlined in Section 3. The proposed process needs to be applied for each of the \(K \) deformation modes considered (with \(k = 1, \ldots, K \)). The unknown warping functions have been expressed in terms of their values at each node \(W_{ik} \) (with \(i \) referring to the \(i \) th node at which the warping function is calculated) in Eq. (22). Based on this, the unknowns to be determined consist of the warping nodal values \(W_{ik} \) and of the tangential shear flows \(Q_{ij} \) for each loop present in the section (with \(j = 1, \ldots, J \)). For illustrative purposes, the partially closed cross section depicted in Fig. 10 is considered, which is formed by 10 elements and 2 closed loops. In this case, the problem is setup in terms of 11 unknowns, which consist of the values of warping at each node \(W_{ik} \) (with \(i = 1, \ldots, 9 \)) and the values of the tangential shear flows \(Q_{ij} \) (with \(j = 1,2 \)) related to the \(k \) th deformation mode considered (with \(k = 1, \ldots, K \)).

The governing system of equations to be used for the 11 unknowns is obtained applying Eqs. (24) (26) as follows (with \(i, j, k \) and \(e \) being indexes used for nodes, closed loops, elements and deformation modes, respectively):

(i) Eq. (24) is applied to each plate element \(e \) not included in a loop (i.e. free branched segment) in Fig. 10 there are 3 free branched segments and these correspond to elements \(e = 1 \ 3 \):

\[
U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) = 0
\]

\[
U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) = 0
\]

(ii) Eq. (26) is written for each plate element \(e \) part of a loop there are 7 plate segments in Fig. 10, which satisfy this condition and consist of elements \(e = 4 \ 10 \):

\[
Gte_4 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_5 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_6 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_7 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_8 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_9 \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

\[
Gte_{10} \left(U_k^e \left(1 + \frac{W_{ik}^e}{b} + \frac{W_{ik}^e}{b^2} \right) \right) = Q_{ij}^e 2
\]

(iii) Eq. (25) is applied considering every plate element \(e \) forming the cross section for the section of Fig. 10 the contribution of all 10 elements is considered:

\[
\begin{align*}
W_{ik}^e 2 + W_{ik}^e 1 & b 1 1 + W_{ik}^e 2 2 + W_{ik}^e 3 3 + W_{ik}^e 4 2 2 2 2 1 2 2 4 4 + 5 2 5 5 + 5 2 6 6 + 6 2 5 5 + 5 2 7 7 + 7 2 8 8 + 8 2 9 9 + 9 2 10 10 & = 0
\end{align*}
\]

References