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ABSTRACT 

 
Dense point matching and tracking in image sequences is an 

open issue with implications in several domains, from 

content analysis to video editing. We observe that for long 

term dense point matching, some regions of the image are 

better matched by concatenation of consecutive motion 

vectors, while for others a direct long term matching is 

preferred. We propose a method to optimally estimate the 

correspondence of a point w.r.t. a reference image from a 

set of input motion estimations over different temporal 

intervals. Results on texture insertion by point tracking in 

the context of video editing are presented and compared 

with a state-of-the-art approach. 

 

Index Terms— dense point matching and tracking, 

optical flow, video editing. 

 

1. INTRODUCTION 

 

The problem of point and patch tracking is a widely studied 

and still open issue with implications in a broad area of 

computer vision and image processing [1,2,3,4,5]. On one 

side and among others, applications such as object tracking, 

structure from motion, motion clustering and segmentation, 

and scene classification may benefit from a set of point 

trajectories by analyzing an associated feature space. In this 

case, usually a sparse or semi-sparse [3] set of meaningful 

points needs to be tracked, and indeed, those points that 

carry important information about the structure of the scene 

are more easily tracked. Recent approaches as those 

presented in [1,2] are examples of the importance of long-

term motion cues for spatio-temporal video segmentation. 

 

On the other side, applications related to video processing 

such as augmented reality, texture insertion, scene 

interpolation, view synthesis, video inpainting and 2D-to-3D 

conversion eventually require determining a  dense set of 

trajectories or point correspondences that permit to 

propagate large amounts of information (color, disparity, 

depth, position, etc.) across the sequence. Dense motion 

information is well represented by optical flow fields and 

points can be simply propagated through time by 

accumulation of the motion vectors. That is why state-of-

the-art methods have built on top of optical flow methods 

for dense point tracking [1,3,5]. 

 

Our approach is similar as we exploit a set of input motion 

fields computed independently, which we call elementary 

motion fields. This set, however, is composed by motion 

fields obtained with different estimation steps, i.e., time 

intervals between pairs of images. We have observed that 

for long term dense point matching, some regions of the 

image are better matched by concatenation of instantaneous 

motion vectors, while for others a direct long term matching 

is preferred.  

 

The contribution of this work is two-fold: first we propose a 

novel sequential method of accumulating elementary motion 

fields to produce a long term matching; second, we show 

how to optimally combine different motion estimation steps 

in order to decide for the best point correspondence between 

two images. We present results in the context of video 

editing for automatic logo insertion by point tracking. 

Comparisons w.r.t. a state-of-the-art approach are given. 

 

2. MULTI-STEP POINT MATCHING 

 

2.1. Sequential displacement field construction 

 

Consider an image sequence   and let the last 

image  be the reference image. Our objective is to 

compute the displacement vector at each location of each 

image w.r.t. the reference, i.e. , for each n, where 

 belongs to the image grid . For the time being, we only 

assume that the elementary motion fields, 

, computed between pairs of consecutive frames 

are available as input information. 

 

In previous point tracking approaches based on optical flow 

[1,3,5], a simple 1st-order Euler integration is conducted as 

follows: 1) take a starting grid point  in , 2) for 

 obtain iteratively 

 

 , (1)  

 

3) repeat for each . This gives an estimate of the positions 

of the points at time , by forwards concatenation of 

elementary motion fields. This simple scheme can then be 

combined with a more sophisticated global formulation for 

track estimation [3]. 

 



 

 
Our approach is based on a different strategy that runs 

backwards and aims at computing  while 

exploiting the elementary motion fields. It is given by the 

following iteration: 

 

 (2)  

 

for each grid location  in . That is, the current long-term 

displacement field  is obtained by concatenation of the 

previously computed long-term field  and an 

elementary motion field .  

 

Note the difference between (1) and (2). Starting from the 

grid point  at image , and its elementary displacement 

, one computes . Then, in the 

former approach (Eq. 1), one interpolates the velocity 

 in  (e.g. by bilinear 

interpolation), and continues accumulating elementary 

motion vectors in the forward direction (Fig. 1a). In the 

second approach, the interpolation is applied once on the 

long term motion field  directly 

between instants  and . This procedure implies that 

 in (2) is available from the previous iteration (Fig. 

1b). The result is that we sequentially compute the dense 

displacement maps  backwards, for every frame  with 

respect to the reference frame . 

 

In order to obtain the correspondence between all pixels of 

all images w.r.t. the reference, it is easy to see that for the 

standard method the complexity is  while for the 

proposed method it is , where  is the number of 

pixels for a single image. Besides a higher efficiency, it also 

appears that this approach is more accurate.  

 

 

 

 

 

 

 

 

Fig. 2: Multi-step point correspondence. For a given point, the 

displacement from frames n to N can be obtained through different 

paths according to the input elementary motion fields (solid lines) 

and the previously estimated long-term displacements (dashed 

lines).  

 

2.2. Multi-step flow 

 

Now we exploit the previous strategy for defining an 

optimal and sequential way of combining elementary 

motion fields estimated with different frame steps (i.e. the 

time interval between two frames) in order to obtain an 

improved and dense displacement map. The reasoning is 

based on the following. We want to compute . 

Suppose that for a set of  frame steps at instant , say  

, the set of corres-

ponding motion fields  is 

available. For each  we write 

 

 
(3)  

In this manner we generate different candidate 

displacements or paths (Fig. 2) among which we aim at 

deciding the optimal for each location . With  

and  it reduces to (2). This scheme is somewhat 

related to that presented in [7] for computing a single optical 

flow field between two given images, where several 

candidate solutions are fused on the basis of a global 

optimization framework.  

2.3. Optimal path selection 

 

Let us recall the setting so far: we want to compute 

; we have defined and computed the  candidates 

 for every point  in image  and now the best 

one has to be selected at each location. For that sake, we 

need to define an optimality criterion and an optimization 

strategy. We first define the function  as a 

matching cost between location  in image  and location 

 in . It can be arbitrarily constructed so as to 

exploit different spatio-temporal image cues in order to 

evaluate the goodness of the match. For the results presented 

here, it is defined in section 3. Deciding for each location 

independently by selecting k such that  

 is minimized may result in the 

Fig. 1: Estimation of . a) Scheme corresponding to (1): 

elementary motion vectors are interpolated and then accumulated.  

b) Scheme corresponding to our method (2): a previously estimated 

long term displacement is interpolated and then accumulated with 

an elementary motion vector. Dashed arrows indicate the 

displacement vectors at grid locations used for interpolation. 
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introduction of an undesired noise in the final motion field, 

as neighboring image points will be frequently assigned 

with motion values computed with different values of k. 

Moreover, the proposed cost may not be robust enough. 

Thus, we improve the result by embedding it together with a 

spatial Potts-like regularization process. Let  be a 

full labeling of the image grid, where each label indicates 

one of the available candidate paths. We introduce the 

energy function: 

 

,  (4)  

where  is a pair of neighboring image locations 

according to the 4-point connected neighborhood,  is 

the Kronecker delta and  the spatial regularization 

parameter defined in (6). We obtain the optimal  by 

applying a graph-cut-based minimization [6]. This in turn 

gives the optimal long-term correspondence field 

. 

3. DENSE POINT TRACKING AND VIDEO EDITING 

 

3.1. Sequential forward-backward processing 

 

The multi-step algorithm was described on the basis of a set 

of forward motion fields as inputs. The result is a forward 

correspondence vector for each point of each image before 

. This reasoning is especially useful for video editing 

tasks, e.g. for the consistent insertion of graphics elements 

such as logos. Basically, one is able to edit frame , and 

then propagate the modified values to the preceding frames 

using the estimated correspondence fields. Analogously, 

using backward motion fields as inputs one can readily 

consider  as the reference image instead. Note that in 

applications where one needs to track points originated in 

the reference image (as opposed to track points all the way 

to the reference frame), it is better to apply the iteration in a 

different manner. In order to track each pixel  in  in the 

backward direction we write: 

 

 
(5)  

so that for each starting location we can compute the 

position at precedent frames. Similarly, using forward 

motion fields, we can track all the points from image  in 

the forward direction. It is worth to say that combining these 

different variations of the algorithm, one can track and 

match (forward and backward) all the pixels of a reference 

image arbitrarily picked from within the sequence. 

 

3.2. Input data and parameter selection 

For the main results presented in this paper, we consider a 

sequence of 1920x1080 HD video frames with  

(AmeliaRetro, courtesy of Dolby®). To each , we 

associate a leap  such that if  then . We 

then have a set of input motion fields that we pre-estimate 

by an adapted 2D version of the 1D disparity estimator 

described in [8] and for the set of  pairs 

.  

 

We also define  in (4) as the normalized sum of 

squared differences of pixel color values between image 

windows of size 5x5. Though this matching criterion may 

not be invariant to possible scale changes, illumination 

variations, large deformations and motion discontinuities, 

we have decided to keep it simple, as it permits to better 

observe the benefits of the multi-step approach. Meanwhile, 

the parameter  equals 

 
, (6)  

with  the 3-channel color vectors at locations  and , 

for image , respectively. The value  is set 

manually or can be estimated locally from the color images. 

This enforces smoothness of the labels assigned to nearby 

pixels with similar color. 

 

3.3. Results 

 

Having manually inserted a logo at frame  (Fig. 

3a), we modify each image by copying the color values 

from  according to the displacement field 

. We only edit the image at those pixels 

that fall inside a predefined insertion mask  in , 

i.e.,  such that  . For the rest, we 

leave the pixel unmodified. Note that our method notably 

reduces deformation, compared to the accumulation (1) of  

the same optical flow fields obtained with [8] as well as 

those given by [5] (implementation provided by the 

authors). In Fig. 4 we evaluate the accuracy of each method 

by propagating a region of the reference image to the whole 

sequence and computing the color PSNR w.r.t. the original 

input images at each instant . Our method shows a clear 

improvement at all frames especially for long term 

correspondences. The poor results obtained for Brox et al. 

[5] is a consequence of small spurious defects in the motion 

fields between successive frames, which are propagated to 

the final long-term displacement estimation.  Finally, the 

ability of our method to combine optical flow fields 

estimated with different frame distances (steps) allows us to 

handle complex situations as, for example, logo insertion in 

the presence of occlusions/disocclusions. As depicted in Fig. 

5, we can observe that some regions of the logo may be 

occluded at some instant of the sequence but they can be 

recovered when they reappear thanks to the long term 

matching. Moreover, pixels are modified only on 

disoccluded areas, as one would expect. 

 

 



                  
 

                  

 

 
 

                  
 

4. CONCLUSION 

 

Dense point correspondences over time can be notably 

enhanced by considering multi-step flow fields. We have 

described a method to optimally combine several flow 

estimations also exploiting a new motion accumulation 

strategy. In fact, any elementary optical flow method can be 

leveraged with this scheme. 
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Fig. 3: Logo insertion. a-b) See image captions. c) Computed path label map  for frame . Logo propagated at frame for d) Multi-

step flow. e) Accumulation of optical flows from [8]. f) Accumulation  of optical flows from Brox et al. [5]. 

 

Fig. 4: Image registration error through time. Left: PSNR (dB) between original frame and reconstructed frame for each instant ,  by 

propagating a region of   to the past. The depicted images illustrate the reconstruction provided by every method at frame . 

a) Logo manually inserted in . b) Insertion in  for our method. 

Multi-step Flow. Color PSNR (dB). 
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Accum. of  OFs from [8]. Accum. of  OFs from Brox et al. 

[5]. 
 

Fig. 5: Logo insertion in the presence of occlusions. a) Original image . b) Logo inserted at . c-e) Frames  of the 

resulting sequence obtained with our method. In each frame, pixel colors are only modified on non-occluded regions and points that reappear 

after an occlusion can be consistently matched with the reference image without losing them. 
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