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MONOFREQUENT OSCILLATIONS OF A NON-LINEAR MODEL
OF A SUSPENDED CABLE

A. LuonGgo
Istituto di Scienza delle Costruzioni, Universita di Roma, Roma 00184, Italy

AND

G. REGA AND F. VESTRONI
Istituto di Scienza delle Costruzioni, Universita dell’ Aquila, L’ Aquila 67100, Italy

A two-degree-of-freedom non-linear elastic model is considered to analyze the effects
of non-linearities on the free motion of a suspended cable. The discretized model is
obtained by referring to simplified kinematics of the cable; the equations of motion which
show quadratic and cubic non-linearities are solved through the multiple time scale
perturbation technique. The monofrequent oscillations of the system are studied in order
to analyze the modifications of frequency and motion amplitude of the modal oscillations
due to geometric non-linearities in the absence of internal resonance. The possibility that
effects arise due to non-linear coupling is examined. A numerical analysis is made for
the first symmetric mode for different amplitudes of motion by parametrically varying
the geometric and mechanical properties of the cable. The correction of frequency for
the in-plane oscillation varies appreciably with the cable properties due to prevalence of
either the quadratic or cubic term. In the out-of-plane monofrequent oscillation non-
linearities establish a coupling between the two components of motion which strongly
influences the frequency correction.

1. INTRODUCTION

The motion of mechanical systems is usually governed by ordinary or partial non-linear
differential equations. While in many cases a sufficiently broad and reliable description
of the dynamic phenomenon can be obtained through a linear analysis of the problem,
in other cases the actual non-linearity produces a very wide variety of dynamic phenomena
not disclosed by linear analysis [1, 2].

With the Lagrangian strain assumed to be the strain measure, the free motion of a
suspended cable about a deformed initial configuration of static equilibrium is governed
by a system of partial differential equations which contain non-linear terms of second
and third order in the displacement function [3].

The main characteristics of the dynamic behaviour of a linear cable have been analyzed
in previous works [4, 5]. However, in the linearized theory coupling among the displace-
ment components in the equations of motion is disregarded, so that in-plane and
out-of-plane oscillations are uncoupled. Coupling can be expected in the actual behaviour
of cables since in the linear free oscillations both in-plane and out-of-plane frequencies
can be commensurable for certain values of the geometric and mechanical properties of
the system.

Coupling phenomena occur in the dynamic behaviour of many mechanical systems.
In particular, for the non-linear free motions of beams, considerable attention has been



given in the literature to the non-linear resonance between the in-plane and out-of-plane
oscillation modes of the system [6-8]. As far as the free vibrations of a suspended cable
are concerned, the motion under conditions of internal resonance has been partially
dealt with in references [9, 10].

In the absence of internal resonance the non-linearities still establish a relationship
between the frequency of natural oscillation of each mode and the motion amplitude
which is influenced by the non-linear coupling among the modes. In this respect the
study of the monofrequent oscillations of the system, as defined by Bogolioubov and
Mitropolski [11], is of special interest. They occur if the natural frequencies of the
linearized system are incommensurable and are therefore stable. One of the normal
displacement co-ordinates prevails over the others in these oscillations and all the points
move with a frequency that is equal to or a multiple of the non-linear frequency of one
co-ordinate. From this point of view monofrequent oscillations are analogous, to a certain
extent, to the modal oscillations of linear dynamics and their study permits one to
determine the modifications of frequency and motion amplitude of these latter due to
non-linearities.

In this paper a two degree-of-freedom non-linear elastic model is considered to analyze
the effects of non-linearities on the free motion of a suspended cable in the absence of
internal resonance. Two ordinary differential equations are obtained for the in-plane
and the out-of-plane displacement components which are similar to those derived in the
study of non-linear vibrations of many structural problems (see references [6-8, 12, 13]).
The present equations, however, differ somewhat since not only cubic but also quadratic
non-linearities occur. The conditions under which in-plane and out-of-plane mono-
frequent oscillations exist are examined as well as those for which effects arise due to
non-linear coupling. A numerical evaluation of the modifications of the frequency and
of the motion amplitude is performed for the first symmetric mode of the cable, with
parametric variation of its geometric and mechanical characteristics and consideration
of different amplitudes of the motion.

2. EQUATIONS OF MOTION OF THE SYSTEM

Consider a heavy elastic cable suspended between two fixed supports at the same
level; the static equilibrium configuration of the cable—subsequently adopted as the
reference configuration of length /.—lies in the xy plane and is represented by the
function y(s).

The varied configuration is described through the components of displacement g, (s, ¢),
Ga(s, t), Gs(s, t) of a given point P(s) as shown in Figure 1. A simple two-parameter
model, governed by uncoupled equations in the linear theory, but able to represent the
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Figure 1. Cable configuration.



main kinematical aspects of both the in-plane modes and the out-of-plane first symmetric
mode, is obtained by assuming that

qi(s, t) = q1(6)f (s),
Go(s, 1) = @(t)y(s) =[G2(0, 1)/ y(O)]y(s) = [q2(1)/ y (0)]y (s5),
gs(s, 1) =0, (1)

f(s) being the in-plane displacement shape function. This means that the cable kinematics
are assumed to be such that during the motion the cable always remains in a plane whose
position with respect to the xy plane is defined by the angle ¢(¢) while the deformed
in-plane configuration is described only by the variation §,(s, ¢) of the distance r(s)=y(s)
from the x axis. With these assumptions, and with Lagrangian strain used as the strain
measure, the extensional strain of the axis of the cable is

e(s, 1) =(dg,/ds)(dy/ds) +3(dg./ds). (2)

The expressions for the strain energy U, the kinetic energy K and the potential energy
W are as follows:

U= U’+J (T'e +3EA€?) ds, K=J sm{Gs +(y +d1)°¢’]ds, (3.4)
[

le
W=WI—J' mgv ds, (5}
I,

where U’, W' are the values in the initial configuration, /., E, A and m are length of
the cable, elastic modulus, cross-sectional area and mass per unit length, respectively,
and T is the tension in the initial configuration. By using equations (1) and (2) and the
relationship among vertical displacement v and components g; and ¢, assumed to be of
the same order,

v(s,)=—y+[y+dlcos ¢ =G — (/2@ —3G1¢ >+ (y/24)0* +0(e?, (6)

the quantities U, K and W can be expressed in terms of just the two parameters g ()
and g (t).
Use of Lagrange equations leads to the following equations of motion:

ml.Igg, +{mg(l/d)Ir + EA(d*/1})1,}q1 ={—3EA(d/I?)..q}
—(mg/2)(L./d*[;q5 + m(l./d)];¢5}
+{m(l/d*)Iyq:4> —2EA/I2)],.q1},
md*I.G2 + mgdl.q, = {~2mdl.sq:1d, — 2mdl.s41d2 — mgliq g2}
+{(mg/6d)1.q> —2mlzq:d:d>— mIzqido}. {7

The geometric and mechanical constants of the cable I, d =y(0), m, E and A, and the
dimensionless coefficients I (see the Appendix), which depend on the initial configuration
and the displacement interpolation function adopted, appear in these equations. To
obtain an approximate solution to system (7) through a perturbation method, a dimension-
less form of the equations of motion can be deduced after the substitutions

qy = eduy, q> = edu,, (8)

where € is a perturbation parameter of the order of the motion amplitude and the
variables u; are of order O(1). Upon introducing the dimensionless time 7= w,¢ and



letting A = w;/w», where w; and w, are the frequencies of the associated linear problem,
equations (7) become

. 2 2 2 .2 2 .2 3
Ui+ A uy=elciui +cous +cs3us)+ e (cou s +cgu),
. " o 2 3 . 2.
Uo+ Us = €(Call lir+ Csttilir + Colt1 ) + £ (Colls + Crolrtittr +Cr1UT ), (9)

where the dot indicates d/dr. The ¢; coefficients (see the Appendix), functions of the I
integrals mentioned above, are all of order O(1); ¢, and ¢y also contain the parameter
p’=(EA/mgl)(d/1.)’.

Equations (9) govern the free oscillations of the cable within the approximations made.
They are uncoupled only in the linear part and contain quadratic and cubic non-linearities
of both geometrical and inertial nature. As is to be expected, an analogy occurs with
the equations of motion of a pendulum with an elastic spring for which large elongations
and rotations are considered.

The multiple scale method [2, 14] can be adopted to obtain the solution to system (9).
This is accomplished by considering the displacements to be functions of a sequence of
independent variables, or time scales, Ty, T4, ..., T,, ..., which are related to 7 by the
relations

T,=¢"r. (10)

Expansion of the unknown functions u; in power of ¢ up to second order terms, which
needs introduction of three time scales, gives

u; = wiol To, Ty, To) + eun(To, T, To)+ e uin Ty, Ty, To) + O(e77), (11)

where u,o is the solution to the linear problem (generating solution). By expressing the
time derivatives in terms of the 7, variables and substituting equations (11) in equations
(9) a system of two partial differential equations with the unknowns u;(i =1,2;j=0, 1, 2)
is obtained. By equating coefficients of like powers of ¢, a sequence of linear systems is
obtained ig each of which the non-linear part is known from the lower-order solutions:
of order ¢ :

Diottro+ A u10=0, Diot0+ tz0=0; (12)
of order ¢:
Dior + A un = =2Dg1ur0+ 110 + Cou30 + ¢3(Dotizo)’,

Diottas + uzy = =2DG 20+ catt10DooUz0 + csDott10Dotiz0 + Colt 104203 (13)
of order £

Diotrz+ A1y = ~2D%t10— Ditt10— 2Dty + 2¢1tr0tt11 + 2C2Us0U

+2¢3(Dottr0Dotta1 + Doti2oD 1 uzo) + cu10(Dottzo)” + cstt 10,

Diottay +tza = —2D%uz0— Di1ttz0~ 2D u1 + caltn Diottzo + t10Dotiz1 + 210D 31 120)

+ cs(DottroDoutr1 + Douty1Doting + Dout10D - ti20 + D1ur0Dott0)
3 2 2
+ celUr1Uzo+ Uroltz1) + Cottzg + Crot10Dot10 Dotz + c11u 10D oo t20. (14)

Here, for the sake of simplicity the notations D; =9/87T; and D?,« = az/aT,-aT,- have been
used. The problem is completed with the initial conditions

u;(0) = i, 1;(0) = IIi (15)

to be imposed on equations (11).



By means of the perturbation method adopted, the general solution of the equations
of motion can be found. Here only the steady motions of the system in absence of
internal resonance are treated, with attention focussed on the monofrequent oscillations.
The problem consists of ascertaining under what conditions the motion described by the
series expansion (11), in which u;o(i =1, 2) is a single-component periodic solution of
the linear system, is still periodic with the non-linear period of the generating non-zero
component. With ¢ assumed to be small enough to guarantee asymptotic convergence
of the expansion (11), a solution to this problem is generally possible only for given
initial conditions on the non-generating component of motion.

In the following sections the monofrequent oscillations obtained by assuming as
generating solutions both that for in-plane motion and that for out-of-plane motion are
studied. Each oscillation represents a two-parameter family of stable particular solutions;
their superimposition does not provide, of course, the general solution of the non-linear
system.

The study of monofrequent oscillations does not exhaust the analysis of all periodic
oscillations; in particular such oscillations may also exist with two-component generating
solutions for rational values of A, and with the occurrence of internal resonance
phenomena not excluded {9, 10].

3. EXTENSIONAL (IN-PLANE) OSCILLATION
The periodic solution

uo=A(T1, To) e*+ce,  uyp=0 (16)

is adopted as the sc_>lution to system (12). In equations (16) and the following, c.c. and
the overbar (e.g., A) indicate the complex conjugate. Substituting in system (13) gives

Do +A Ui = —2iADA e o+ A% e o4 0 AA + c.c., Diousi +us =0.

(17)

For the series expansion (11) to be valid for times up to O(e %) (uniformly valid),
u;/u;-1(1, j = 1, 2) must be limited for each 7; therefore there must be no secular terms
like 7 sin A7 and 7 cos AT.

By eliminating these terms in the equation of u,; it is found that A is constant over
the time scale T, and no frequency correction occurs at this order. Solving equations
(17) gives the solution at the improved first order? of ¢ as

ui=Ae*"—e(ci/ANGAY e~ AA)+cc.+ O(e?), u,=0(?). (18)

It is evident that at the ¢ order approximation, motion is still planar and periodic of
frequency A but it is no longer simply sinusoidal.
For the second order approximation, system (14) gives

D2ourz + 22U, = {—2iAD2A +[(10¢3/31%) + 3¢cg) A2 A} e To
+(cs—2c1/301)A% M o+ cc,

Dotz + 2y =0. (19)

t According to reference [11], this wording implies that in addition to the zeroing of the secular terms at
the order ™ (n =0, 1, 2) the solution of the linear system at that order is also calculated.



iB(T)

By introducing the polar form A(7T;)=a(T,)e
equations (19) provides the relations

a = do, BzéT2+Bo, (20)

the zeroing of the secular terms in

wherein
B=-Koas,  Ko=3(ci/AM)+(3/20)cs, 21
and ao= a(0) and B, = B(0). At the second order of ¢, therefore, the solution is given by
uy =240 cos [(A + &28)1 + Bol— (2c1/Aead {5 cos [2(A + £26)7 +2B0] - 1} + O(e),
uy=0(e”). (22)

The following points may now be made.

(a) The monofrequent oscillation of extensional type can exist for any value of A, and
also for w, a multiple of w,. The explanation for this is that the non-linear terms containing
u, in the second equation of motion are always multiplied by u, which is identically zero
up to & order, so that no modal coupling arises. Nevertheless it must be noticed that
for A =2 (internal resonance conditions) the extensional oscillation becomes unstable;
the resonance region is studied in reference [10].

(b) The motion is still planar, since u,;, and u,, are zero identically.

(c) The in-plane motion is not sinusoidal owing to the superposition, compared with
the linear case, of a double frequency harmonic and of a constant term. These contribu-
tions, associated with the non-linearities of even order in the first of equations (9), reveal
how the oscillation occurs about a position different from the initial configuration. In
the problem considered such a displacement is negative since the non-symmetrical
relationship f; —u; of the equivalent non-linear spring shows softening behaviour for
u; <0 (see Figure 2).
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Figure 2. Non-symmetrical relationship f,; —u; of the in-plane motion (quadratic non-linearities). u;mqay =
2a0— 5, Uymin =2d0+5; fr=A ur—eciut, ¢, <0, s = 2aleci /A2

(d) There is a frequency correction (ez,é) dependent on the square of the amplitude,
due to the contribution of the quadratic and cubic non-linearities; it appears only at the
e” order, since the non-linearities of system (9) at the ¢ order are of even order. According
to expressions (21) quadratic non-linearities produce a reduction of the fundamental



frequency irrespective of the ¢, sign; this behaviour always occurs for one degree-of-
freedom systems with quadratic non-linearities since the midpoint of the motion moves
towards the soft range and the frequency of the system decreases. Cubic non-linearities
which are of hardening type for the cable instead give rise to an increase of frequency.

In seeking solutions belonging to a two-parameter family a, and B,, it is possible to
impose only two arbitrary initial conditions. The imposition of these on the non-zero
co-ordinate of the generating solution,

2apcos Bo— (2¢1/A%)eai[5 cos 2B,— 1]+ O(e?) =i,
—2aA sin Bo+ (4cq/3A)eap sin 2Bo+ O(e?) = i, (23)

provides the values of these parameters. The conditions on the other co-ordinate are
automatically determined in terms of these and in this case are all zero; under such
conditions the extensional monofrequent oscillation can exist.

4. PENDULUM (OUT-OF-PLANE) OSCILLATION
For the case of pendulum (out-of-plane) oscillation the generating solution is
=0, un=A(T, T)e "+cc., (24)
which, when substituted in system (13) gives
D(z)ou” +A 2u1 1= (c2— c3)A2 ety (c2+c3)AA +c.c.,
Dioua +un =-2iDA e +cc. (25)
It is observed that for A =2 (i.e., at a multiple of the fundamental frequency) there is
internal resonance: i.e., there exists no uniformly valid expansion for the selected
generating solution. Under such conditions a two-component generating solution must
be adopted.

By eliminating the secular terms in the equation for u,; and solving system (25) the
following expression is derived for the improved first order solution:
C2—C3
Uy ==¢€ 3

A4

. AA <
A?e® o+ (et c3) e +c.c-}+0(ez), uz=Ae+cc.+0(?), (26)

where A is constant over T;. This still represents a periodic oscillation of frequency
equal to one; the out-of-plane vibration is still sinusoidal as per the linear theory, but
it is no longer uncoupled from the in-plane motion which is excited, at ¢ order, with a
multiple frequency of the spatial motion.

The second-order approximation is found by proceeding in the same way as in the
case of the extensional type oscillation:

uy=2[(c2—c3)/(A* = M)]ead cos [2(1+ )7+ 280+ 2(c2+c3)/A " Jead + O(e),
us=2agcos [(1+&8)r+Bo]+Ole?), (27)

in which é 1s still given by the first of equations (21) and expressions similar to equations
(20) hold good with

Ko=[(2cs+ce—ca)ca—c3) /200 = 4)]+[(co—ca)catc3)/ 271+ 3co. (28)

The following points may be made.
(a) Monofrequent oscillations of the pendulum type can exist only for A # 2; for A =2
of necessity u10# 0.



(b) Out-of-plane oscillation forces in-plane oscillation of ¢ order and frequency twice
the fundamental, the amplitude of which depends on the amplitude of the u, component
and on A; as in the extensional oscillation a constant term arises which is due in the
present case to the forced quadratic terms in the first of equations (9).

(c) The spatial motion is still sinusoidal since only mixed quadratic terms occur in the
second of equations (9) which are zero identically at £ order. The superposition of a
triple frequency harmonic appears at the improved second order.

(d) There is a frequency correction depending on the square of the amplitude and
due to the contribution of both quadratic and cubic non-linearities.

It is worthwhile to observe that for values of A less or greater than the resonant value
A =2 an increase or a reduction of frequency occurs respectively, since the first term in
equation (28) prevails over the others.

This different behaviour is bound up with the motion of the system which arises in
the two cases owing to the different sign of the initial amplitude of the in-plane component,
as shown in Figure 3. In case (a) (A <2) the in-plane motion is opposite in phase with

(a) \T/ (b)

Figure 3. Diagram of the motion (thick line) of the midpoint of the cable for (a) A <2 and (b) A > 2 (constant
term in first of equations (27) disregarded).

respect to the forced terms due to the out-of-plane component which appear in the first
of equations (9), while in case (b) (A >2) it is in phase. The corresponding modification
of the law f, — u, with respect to the linear case due to the quadratic terms in the second
of equations (9) (see Figure 4) is such that for A <2 the stiffness of the system in the

Figure 4. Relationship f, — u, in the non-linear case for (a) A <2 and (b) A >2 with respect to the (c) linear
case.



pendulum oscillation is greater than the linear one and therefore the frequency increases;
instead for A > 2 the stiffness is lower and the frequency decreases.

The monofrequent oscillation thus determined can exist only if the initial conditions
on u, are such that

27 C3

cos230)+0(e3), Ll_1=—4sa(2)iz 25in 280+ O(e),
(29)

_ 2f{C2%C3 Cr—Ca
i, =2¢ea ( +
‘ LAt A4

where aq and B, are obtained in terms of 7, and u,.

5. NUMERICAL RESULTS

In the linear analysis of free in-plane oscillations of a suspended cable it was found
that the dynamic behaviour of the cable is completely described by Irvine’s elasto-
geometric parameter A°=(8d/[)>EA/mgl[1+8(d/1)*], which determines the shape of
the first mode, and therefore of higher modes [4, 5].

By means of the model presented in this paper a numerical investigation has been
made of the non-linear in-plane and out-of-plane oscillations of a cable associated with
the first symmetric mode having zero nodal points, which occurs only with values of A°
less than 472; i.e., with low values of the d/! ratio when technical values of the cable
mechanical properties are considered.

In this case the displacement f(s) of the first in-plane symmetric mode is adequately
described by a cosine function and the assumption §; =0 appears reliable enough. The
initial configuration is described by the inextensible catenary. In the range of low values
of the d/! ratio the parameter p> which appears in the first of equations (9) is nearly
the same as A, apart from a constant. Based on the assumed kinematics of the cable,
the value of the linear frequency of the in-plane mode is governed for the most part by
p” and to a little extent by the d/! ratio as well; differences of some percent with respect
to the exact theory occur as regards w,—which however decrease as the suspended cable
approaches the taut string—while good agreement is obtained as regards w».

A numerical evaluation of the corrections for frequencies and amplitudes of motion
for the monofrequent oscillations considered has been made by parametrically varying
the characteristics of the cable through p” in the range between 0-07, which corresponds
to A>=4=", and a lower value which approaches the taut string; with technical values
of the mechanical properties, the d/[ ratio varies between about 1/12 and 1/250. The
influence of non-linear terms has been analyzed by varying the motion amplitude through
the parameter e.

For the extensional oscillation the ratio between the non-linear and linear frequencies
versus the amplitude of the linear part of the motion is shown in Figure 5 for different
values of p°.

Each curve is drawn as a solid line up to the value of amplitude for which the non-linear
terms in the first of equations (9) are of the same order as the linear term. As mentioned
in section 3, the effect of non-linearities is quite different depending on the predominance
of either the quadratic or the cubic term. The former prevails for higher values of p’
and produces a reduction of the frequency. As p” decreases a lower reduction of the
frequency occurs up to a certain value of p° below which the cubic non-linearity prevails
and produces an increase of the frequency. Considerable corrections both positive and
negative occur.

The modification of the amplitude of motion is illustrated in Figure 6 for a given value
of p?, putting into evidence the occurrence of a drift of the midpoint of the oscillation,
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Figure 5. Non-linear-linear frequencies ratio w,n;/w;; vs. the linear amplitude of motion (extensional
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Figure 6. (a) Amplitude of non-linear motion vs. the linear amplitude; (b) trajectories of linear (- ~~) and
non-linear (——) motion (extensional oscillation).

which is an important aspect of the non-linear dynamic behaviour; the trajectories of
the motion in the phase plane are shown in Figure 6(b), the linear ones plotted as broken
curves and the non-linear as solid ones.

For the pendulum oscillation the ratio between the non-linear and linear frequency
versus the amplitude of motion is shown in Figure 7 for different values of p’; these
correspond to a range of A which contains the resonant value A = 2. This value separates
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Figure 7. Non-linear-linear frequencies ratio w,nz /@, vs. the amplitude of motion (pendulum oscillation).

the range of p® values (i.e., for instance, of the d/! ratio values for a cable with given
mechanical properties) into two parts where either decrease or increase of frequency
occurs. In this monofrequent oscillation the correction of frequency depends on the
non-linear terms in the pendulum equation which contain the in-plane forced component;
it follows that the curves are steeper as A approaches the resonant value and u; grows
largely.

Each curve is drawn in solid line up to the value of amplitude for which the non-linear
terms in the pendulum equation are the same order as the linear term and in the
neighbourhood of A =2 up to the value of amplitude for which the more restrictive
condition u, < O(1) is satisfied. It is interesting to observe that as p® increases (e.g., d/!

o8

Figure 8. In-plane to out-of-plane amplitudes ratio u;n;/u;n; vs. A (pendulum oscillation). @pmayx: D 1°08';
@ 2°51"; @ 5°44'; @ 11°27'; ® 20°00'; @ 30°00'.



increases for a given cable) the maximum correction of frequency of the pendulum
oscillation increases as well up to a value of about 30%.

In the amplitude of motion there is no variation with respect to the linear theory as
far as the fundamental mode u, is concerned, while the forced in-plane oscillation u;
can grow up to considerable values depending on the A-value. This is shown in Figure
8 where the ratio between the maximum values of the two co-ordinates is plotted vs. A
for different @, values; for each motion amplitude the neighbourhood of the resonant
A-value to be excluded in order that u; < O(1) can be easily obtained.

6. CONCLUSIONS

The modification of the vibration modes of hyperelastic cable suspended between two
supports due to geometric non-linearities has been analyzed in this paper. For cases of
simplified kinematics a two degree-of-freedom model of the cable has been obtained.
The system of two differential equations of motion, which contain quadratic and cubic
non-linearities, has been solved by the multiple time scale perturbation method. Attention
has been focused on the monofrequent oscillations whose solution has been determined
up to the second order; extensional in-plane and pendulum out-of-plane monofrequent
oscillations have been studied.

Oscillation of the first kind exists if the initial conditions of the out-of-plane motion
are zero; the motion is always contained within the plane and can occur for any value
of the ratio between the linear frequencies of the system. Oscillation of the second kind,
instead, can occur only for particular initial conditions of the in-plane displacement
component, which in any case is present in the oscillation, forced by the out-of-plane
component; it cannot occur when the in-plane frequency is twice the out-of-plane one,
since internal resonance exists. In both cases the non-linear terms produce an amplitude-
dependent frequency correction.

Numerical results for the modification of the amplitude of motion and the correction
of frequency of the first symmetric mode have been obtained by varying the perturbation
parameter and a parameter which accounts for the geometric and mechanical properties
of the cable. For the in-plane oscillation, drift of the midpoint of the motion occurs; the
amount of the correction of frequency varies considerably with the cable properties,
being either negative or positive, due to predominance of either the quadratic or cubic
term. In the pendulum oscillation non-linearities establish a coupling between the two
components of motion so that the forced in-plane component grows considerably in the
neighbourhood of the resonant value; the correction of frequency strongly depends on
the ratio between the natural frequencies of the system, being positive or negative
respectively when the ratio is lower or higher than the resonant value.
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APPENDIX: EXPRESSIONS FOR THE DIMENSIONLESS COEFFICIENTS I AND ¢;

d 1 g /dy\?7df\>
e - K TR N R
T gl > . ) > =) \a) \as) 9
1 2 dy/df\’
Icc: J 2d: Ivv=_CJ’—(—/> ——J
PN R d)as\as) 4 =g f*ds,

1 1
vuv_l3J' f) d, I=_J‘ s c'—'_‘_J’ .
s fi . chds Ls al. lcyfds

1= “EP IuvIcc/IﬁIca 2= _%IfIcc/I/fIca C3= Is//Iﬁ';
C4=Cs5~= —2Icf/Icc, Ce ™ _If/Ic; C7= 15 Cg= _%p2Ivvacc/Iﬁ'Ic9
C9=1/6, CloZ"ZIg/ICC, C11=C10/2.

Here p’> = (EA/mgl.)(d/1.)’.





