Constructible characters and b-invariant
Cedric Bonnafe

To cite this version:

HAL Id: hal-00787350
https://hal.archives-ouvertes.fr/hal-00787350v3
Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CONSTRUCTIBLE CHARACTERS AND b-INVARIANT

by

CÉDRIC BONNAFÉ

Abstract. — If W is a finite Coxeter group and φ is a weight function, Lusztig has defined φ-constructible characters of W, as well as a partition of the set of irreducible characters of W into Lusztig φ-families. We prove that every Lusztig φ-family contains a unique character with minimal b-invariant, and that every φ-constructible character has a unique irreducible constituent with minimal b-invariant. This generalizes Lusztig’s result about special characters to the case where φ is not constant. This is compatible with some conjectures of Rouquier and the author about Calogero-Moser families and Calogero-Moser cellular characters.

Let (W, S) be a finite Coxeter system and let $\varphi : S \to \mathbb{R}_{\geq 0}$ be a weight function that is, a map such that $\varphi(s) = \varphi(t)$ whenever s and t are conjugate in W. Associated with this datum, G. Lusztig has defined [Lu3, §22] a notion of constructible characters of W: it is conjectured that a character is constructible if and only if it is the character afforded by a Kazhdan-Lusztig left cell (defined using the weight function φ). These constructible characters depend heavily on φ so we will call them the φ-constructible characters of W: the set of φ-constructible characters will be denoted by $\text{Cons}^\text{lus}_\varphi(W)$. We will also define a graph $\mathcal{G}_{\text{lus}, \varphi}$ as follows: the vertices of $\mathcal{G}_{\text{lus}, \varphi}$ are the irreducible characters and two irreducible characters χ and χ' are joined in this graph if there exists a φ-constructible character γ of W such that χ and χ' both occur as constituents of γ. The connected components of $\mathcal{G}_{\text{lus}, \varphi}$ (viewed as subsets of $\text{Irr}(W)$) will be called the Lusztig φ-families: the set of Lusztig φ-families will be denoted by $\text{Fam}^\text{lus}_\varphi(W)$. If $\mathcal{F} \in \text{Fam}^\text{lus}_\varphi(W)$, we denote by $\text{Cons}^\text{lus}_\varphi(\mathcal{F})$ the set of φ-constructible characters of W all of whose irreducible components belong to \mathcal{F}.

On the other hand, using the theory of rational Cherednik algebras at $t = 0$ and the geometry of the Calogero-Moser space associated with (W, φ), R. Rouquier and
the author (see [BoRo1] and [BoRo2]) have defined a notion of Calogero-Moser φ-cells of W, a notion of Calogero-Moser φ-cellular characters of W (whose set is denoted by $\text{Cell}_{\varphi}^\text{CM}(W)$) and a notion of Calogero-Moser φ-families (whose set is denoted by $\text{Fam}_{\varphi}^\text{CM}(W)$).

Conjecture (see [BoRo1], [BoRo2] and [GoMa]). With the above notation,

$$\text{Cons}_{\varphi}^\text{Lus}(W) = \text{Cell}_{\varphi}^\text{CM}(W) \quad \text{and} \quad \text{Fam}_{\varphi}^\text{Lus}(W) = \text{Fam}_{\varphi}^\text{CM}(W)$$

for every weight function $\varphi : S \to \mathbb{R}_{>0}$.

The statement about families in this conjecture holds for classical Weyl groups thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of Lusztig φ-families), [GoMa] (for the computation of Calogero-Moser φ-families in type A and B) and [Be2] (for the computation of the Calogero-Moser φ-families in type D). It also holds whenever $|S| = 2$ (see [Lu3, §17 and Lemma 22.2] and [Be1, §6.10]).

The statement about constructible characters is much more difficult to establish, as the computation of Calogero-Moser φ-cellular characters is at that time out of reach. It has been proved whenever the Calogero-Moser space associated with (W, S, φ) is smooth [BoRo2, Theorem 14.4.1] (this includes the cases where (W, S) is of type A, or of type B for a large family of weight functions: in all these cases, the φ-constructible characters are the irreducible ones). It has also been checked by the author whenever $|S| = 2$ or (W, S) is of type B_3 (unpublished).

Our aim in this paper is to show that this conjecture is compatible with properties of the b-invariant (as defined below). With each irreducible character χ of W is associated its fake degree $f_\chi(t)$, using the invariant theory of W (see for instance [BoRo2, Definition 1.5.7]). Let us denote by b_χ the valuation of $f_\chi(t)$: b_χ is called the b-invariant of χ. Let r_χ denote the coefficient of t^{b_χ} in $f_\chi(t)$. In other words,

$$r_\chi \in \mathbb{N}^* \quad \text{and} \quad f_\chi(t) \equiv r_\chi t^{b_\chi} \mod t^{b_\chi+1}.$$

For instance, $b_1 = 0$ and b_\varnothing is the number of reflections of W (here, $\varnothing : W \to \{1, -1\}$ denotes the sign character). Also, $b_\chi = 1$ if and only if χ is an irreducible constituent of the canonical reflection representation of W. The following result is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let $\varphi : S \to \mathbb{R}_{>0}$ be a weight function. Then:

(a) If $\mathcal{F} \in \text{Fam}_{\varphi}^\text{CM}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant. Moreover, $r_{\chi_{\mathcal{F}}} = 1$.

Constructible characters and b-invariants

(b) If $\gamma \in \text{Cell}_\varphi^{CM}(W)$, then there exists a unique irreducible constituent χ_γ of γ with minimal b-invariant. Moreover, $r_{\chi_\gamma} = 1$.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [Lu1] for the first occurrence of the special representations):

Theorem (Lusztig). Assume that φ is constant. Then:

(a) If $\mathcal{F} \in \text{Fam}_{\varphi}^{\text{Lus}}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant ($\chi_{\mathcal{F}}$ is called the special character of \mathcal{F}). Moreover, $r_{\chi_{\mathcal{F}}} = 1$.

(b) If $\gamma \in \text{Cons}_{\varphi}^{\text{Lus}}(W)$, then $\chi_{\mathcal{F}}$ is an irreducible constituent of γ (and, of course, among the irreducible constituents of γ, $\chi_{\mathcal{F}}$ is the unique one with minimal b-invariant). Moreover, $\langle \gamma, \chi_{\mathcal{F}} \rangle = 1$.

It turns out that, for general φ, there might exist Lusztig φ-families \mathcal{F} such that no element of \mathcal{F} occurs as an irreducible constituent of all the φ-constructible characters in $\text{Cons}_{\varphi}^{\text{Lus}}(W)$ (this already occurs in type B_n, and the reader can also check this fact in type F_4, using the tables given by Geck [Ge, Table 2]). Nevertheless, we will prove in this paper the following result, which is compatible with the above conjecture and the above theorems:

Theorem L. Let $\varphi : S \to \mathbb{R}_{\geq 0}$ be a weight function. Then:

(a) If $\mathcal{F} \in \text{Fam}_{\varphi}^{\text{Lus}}(W)$, then there exists a unique $\chi_{\mathcal{F}} \in \mathcal{F}$ with minimal b-invariant. Moreover, $r_{\chi_{\mathcal{F}}} = 1$.

(b) If $\gamma \in \text{Cons}_{\varphi}^{\text{Lus}}(W)$, then there exists a unique irreducible constituent χ_γ of γ with minimal b-invariant. Moreover, $r_{\chi_\gamma} = 1$ and $\langle \gamma, \chi_\gamma \rangle = 1$.

The proof of Theorem CM is general and conceptual, while our proof of Theorem L goes through a case-by-case analysis, based on Lusztig’s description of φ-constructible characters and Lusztig φ-families [Lu3, §22].

Remark 0. As the only irreducible Coxeter systems affording possibly unequal parameters are of type $I_2(2m)$, F_4 or B_n, and as $r_\chi = 1$ for any character χ in these groups, the statement “$r_\chi = 1$” in Theorem L(a) and (b) follows immediately from Lusztig’s Theorem. Therefore, we will prove only the statements about the minimality of the b-invariant and the scalar product. ■

Acknowledgements. We wish to thank N. Jacon for pointing out a mistake in a preliminary version of this work.
1. Proof of Theorem L

1.A. Reduction. — It is easily seen that the proof of Theorem L may be reduced to the case where \((W, S)\) is irreducible. If \(W\) is of type \(A_n, D_n, E_6, E_7, E_8, H_3, \) or \(H_4\), then \(\varphi\) is necessarily constant and Theorem L follows immediately from Lusztig’s Theorem. If \(W\) is dihedral, then Theorem L is easily checked using \([Lu3, \S17 \text{ and Lemma } 22.2]\). If \(W\) is of type \(F_4\), then Theorem L follows from inspection of \([Ge, \text{ Table } 2]\). Therefore, this shows that we may, and we will, assume that \(W\) is of type \(B_n\), with \(n \geq 2\). Write \(S = \{t, s_1, s_2, \ldots, s_{n-1}\}\) in such a way that the Dynkin diagram of \((W, S)\) is

\[
(\#) \quad t \quad s_1 \quad s_2 \quad \ldots \quad s_{n-1}
\]

Write \(b = \varphi(t)\) and \(a = \varphi(s_1) = \varphi(s_2) = \cdots = \varphi(s_{n-1})\). If \(b \notin a \mathbb{N}^*\), then \(\text{Cons}^\varphi_\psi(W) = \text{Irr}(W)\) (see \([Lu3, \text{ Proposition } 22.25]\)) and Theorem L becomes obvious. So we may assume that \(b = ra\) with \(r \in \mathbb{N}^*\), and since the notions are unchanged by multiplying \(\varphi\) by a positive real number, we may also assume that \(a = 1\). Therefore:

Hypothesis and notation. From now on, and until the end of this section, we assume that the Coxeter system \((W, S)\) is of type \(B_n\), with \(n \geq 2\), that \(S = \{t, s_1, s_2, \ldots, s_{n-1}\}\) is such that the Dynkin diagram of \((W, S)\) is given by \((\#)\) and that \(\varphi(t) = r \varphi(s_1) = r \varphi(s_2) = \cdots = r \varphi(s_{n-1}) = r\) with \(r \in \mathbb{N}^*\).

We will now review the combinatorics introduced by Lusztig (symbols, admissible involutions,...) in order to compute families and constructible characters in type \(B_n\) (see \([Lu3, \text{ \S22}]\) for further details).

1.B. Admissible involutions. — Let \(l \geq 0\) and let \(Z\) be a totally ordered set of size \(2l + r\). We will define by induction on \(l\) what is an \(r\)-admissible involution of \(Z\). Let \(\iota : Z \to Z\) be an involution. Then \(\iota\) is said \(r\)-admissible if it has \(r\) fixed points and, if \(l \geq 1\), there exist two consecutive elements \(b\) and \(c\) of \(Z\) such that \(\iota(b) = c\) and the restriction of \(\iota\) to \(Z \setminus \{b, c\}\) is \(r\)-admissible.

Note that, if \(\iota\) is an \(r\)-admissible involution and if \(\iota(b) = c > b\) and \(\iota(z) = z\), then \(z < b\) or \(z > c\) (this is easily proved by induction on \(|Z|\)).
1. C. Symbols. — We will denote by $\text{Sym}_k(r)$ the set of symbols $\Lambda = \left(\begin{array}{c} \beta \\ \gamma \end{array} \right)$ where $\beta = (\beta_1 < \beta_2 < \cdots < \beta_{k+r})$ and $\gamma = (\gamma_1 < \gamma_2 < \cdots < \gamma_k)$ are increasing sequences of non-zero natural numbers. We set

$$|\Lambda| = \sum_{i=1}^{k+r} (\beta_i - i) + \sum_{j=1}^{k} (\gamma_j - j)$$

and

$$b(\Lambda) = \sum_{i=1}^{k+r} (2k + 2r - 2i)(\beta_i - i) + \sum_{j=1}^{k} (2k + 1 - 2j)(\gamma_j - j).$$

The number $b(\Lambda)$ will be called the b-invariant of Λ. For simplifying our arguments, we will define

$$\nabla_{k,r} = \sum_{i=1}^{k+r} (2k + 2r - 2i)i + \sum_{j=1}^{k} (2k + 1 - 2j)j$$

so that

$$b(\Lambda) = \sum_{i=1}^{k+r} (2k + 2r - 2i)\beta_i + \sum_{j=1}^{k} (2k + 1 - 2j)\gamma_j - \nabla_{k,r}. $$

By abuse of notation, we denote by $\beta \cap \gamma$ the set $\{\beta_1, \beta_2, \ldots, \beta_{k+r}\} \cap \{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ and by $\beta \cup \gamma$ the set $\{\beta_1, \beta_2, \ldots, \beta_{k+r}\} \cup \{\gamma_1, \gamma_2, \ldots, \gamma_k\}$. We also set $\beta + \gamma = (\beta \cup \gamma) \setminus (\beta \cap \gamma)$.

We now define

$$z'(\Lambda) = (\beta_1, \beta_2, \ldots, \beta_r, \gamma_1, \beta_{r+1}, \gamma_2, \beta_{r+2}, \ldots, \gamma_k, \beta_{r+k})$$

and we will write

$$z'(\Lambda) = (z'_1(\Lambda), z'_2(\Lambda), \ldots, z'_{2k+r}(\Lambda)),$$

so that

$$b(\Lambda) = \sum_{i=1}^{r} (2k + 2r - 2i)z'_i(\Lambda) + \sum_{i=r+1}^{2k+r} (2k + r - i)z'_i(\Lambda) - \nabla_{k,r}$$

(1)

$$= \sum_{i=1}^{r} (r - i)z'_i(\Lambda) + \sum_{i=r+1}^{2k+r} (2k + r - i)z'_i(\Lambda) - \nabla_{k,r}$$

$$= \sum_{i=1}^{r} \left(\sum_{j=1}^{i} z'_j(\Lambda) \right) + \sum_{i=r+1}^{2k+r} \left(\sum_{j=i}^{2k+r} z'_j(\Lambda) \right) - \nabla_{k,r}.$$ (1.1)

1. D. Families of symbols. — We denote by $z(\Lambda)$ the sequence $z_1 \leq z_2 \leq \cdots \leq z_{2k+r}$ obtained after rewriting the sequence $(\beta_1, \beta_2, \ldots, \beta_{k+r}, \gamma_1, \gamma_2, \ldots, \gamma_k)$ in non-decreasing order.

Remark 1 - Note that the sequence $z'(\Lambda)$ determines the symbol Λ, contrarily to the sequence $z(\Lambda)$. However, $z(\Lambda)$ determines completely $|\Lambda|$ thanks to the formula $|\Lambda| = \sum_{z \in z(\Lambda)} z - r(r+1)/2 - (k+r)(k+r+1)/2$. □
We say that two symbols $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ and $\Lambda' = \begin{pmatrix} \beta' \\ \gamma' \end{pmatrix}$ in $\text{Sym}_k(r)$ are in the same family if $z(\Lambda) = z(\Lambda')$. Note that this is equivalent to say that $\beta \cap \gamma = \beta' \cap \gamma'$ and $\beta \cup \gamma = \beta' \cup \gamma'$. If \mathcal{F} is the family of Λ, we set $X_{\mathcal{F}} = \beta \cap \gamma$ and $Z_{\mathcal{F}} = \beta \cup \gamma$: note that $X_{\mathcal{F}}$ and $Z_{\mathcal{F}}$ depend only on \mathcal{F} (and not on the particular choice of $\Lambda \in \mathcal{F}$).

If ι is an r-admissible involution of $Z_{\mathcal{F}}$, we denote by \mathcal{F}_{ι} the set of symbols $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ in \mathcal{F} such that $|\beta \cap \omega| = 1$ for all ι-orbits ω.

1.E. Lusztig families, constructible characters. — Let $\Lambda \in \text{Sym}_k(r)$ be such that $|\Lambda| = n$. Let $\text{Bip}(n)$ be the set of bipartitions of n. We set

$$\lambda_1(\Lambda) = (\beta_{k+r} - (k + r) \geq \cdots \geq \beta_2 - 2 \geq \beta_1 - 1),$$

$$\lambda_2(\Lambda) = (\gamma_{k} - k \geq \cdots \geq \gamma_2 - 2 \geq \gamma_1 - 1)$$

and

$$\lambda(\Lambda) = (\lambda_1(\Lambda), \lambda_2(\Lambda)).$$

Then $\lambda(\Lambda)$ is a bipartition of n. We denote by χ_{λ} the irreducible character of W denoted by $\chi_{\lambda(\Lambda)}$ in [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3]

(♦)

$$b_{\chi_{\lambda}} = b(\Lambda).$$

With these notations, Lusztig described the φ-constructible characters in [Lu3, Proposition 22.24], from which the description of Lusztig φ-families follows by using [Lu3, Lemma 22.22]:

Theorem 2 (Lusztig). Let \mathcal{F}_{Lus} be a Lusztig φ-family and let $\gamma \in \text{Cons}_{\varphi}^{\text{Lus}}(\mathcal{F}_{\text{Lus}})$. If we choose k sufficiently large, then:

(a) There exists a family \mathcal{F} of symbols in $\text{Sym}_k(r)$ such that

$$\mathcal{F}_{\text{Lus}} = \{ \chi_{\Lambda} \mid \Lambda \in \mathcal{F} \}.$$

(b) There exists an r-admissible involution ι of $Z_{\mathcal{F}}$ such that

$$\gamma = \sum_{\Lambda \in \mathcal{F}_{\iota}} \chi_{\Lambda}.$$

If $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix}$, we set $\Lambda' = \begin{pmatrix} \beta \setminus (\beta \cap \gamma) \\ \gamma \setminus (\beta \cap \gamma) \end{pmatrix}$.

Definition 3. The symbol Λ is said special if $z(\Lambda') = z(\Lambda')$.

Remark 4. According to Remark 1, there is a unique special symbol in each family. It will be denoted by $\Lambda_{\mathcal{F}}$. Finally, note that, if Λ, Λ' belong to the same family, then $|\Lambda| = |\Lambda'|$. □
Now, Theorem L follows from Theorem 2, Formula (◇) and the following next Theorem:

Theorem 5. Let \mathcal{F} be a family of symbols in $\text{Sym}_k(r)$, let ι be an r-admissible involution of $Z_\mathcal{F}$ and let $\Lambda \in \mathcal{F}$. Then:

(a) $b(\Lambda) \geq b(\Lambda_{\mathcal{F}})$ with equality if and only if $\Lambda = \Lambda_{\mathcal{F}}$.

(b) There is a unique symbol $\Lambda_{\mathcal{F},i}$ in \mathcal{F}_i such that, if $\Lambda \in \mathcal{F}_i$, then $b(\Lambda) \geq b(\Lambda_{\mathcal{F},i})$, with equality if and only if $\Lambda = \Lambda_{\mathcal{F},i}$.

The rest of this section is devoted to the proof of Theorem 5.

1.F. First reduction. — First, assume that $X_\mathcal{F} \neq \emptyset$. Let $b \in X_\mathcal{F}$ and let $\Lambda = \begin{pmatrix} \beta \\ \gamma \end{pmatrix} \in \mathcal{F}$. Then $b \in \beta \cap \gamma = X_\mathcal{F}$ and we denote by $\beta(b)$ the sequence obtained by removing b to β. Similarly, let $\Lambda[b] = \begin{pmatrix} \beta(b) \\ \gamma[b] \end{pmatrix}$.

Then $\Lambda[b] \in \text{Sym}_{k-1}(r)$ and

\[
\text{(◇)} \quad b(\Lambda) = b(\Lambda[b]) + \nabla_{k,r} - \nabla_{k-1,r} + b\left(4k + 2r + 1 - \sum_{z \in \mathcal{Z}(\Lambda), z \neq b} 2\right) + \sum_{z \in \mathcal{Z}(\Lambda), z < b} z.
\]

Proof of (◇). Let i_0 and j_0 be such that $\beta_{i_0} = b$ and $\gamma_{j_0} = b$. Then

\[
b(\Lambda) - b(\Lambda[b]) = \nabla_{k,r} - \nabla_{k-1,r} + (2k + 2r - 2i_0)b + \sum_{i=1}^{i_0-1} 2\beta_i + (2k + 1 - 2j_0)b + \sum_{j=1}^{j_0-1} 2\gamma_j.
\]

But the numbers $\beta_1, \beta_2, \ldots, \beta_{i_0}, \gamma_1, \gamma_2, \ldots, \gamma_{j_0}$ are exactly the elements of the sequence $\mathcal{Z}(\Lambda)$ which are $\leq b$. So

\[
i_0 + j_0 = \sum_{z \in \mathcal{Z}(\Lambda), z \leq b} 1
\]

and

\[
\sum_{i=1}^{i_0-1} \beta_i + \sum_{j=1}^{j_0-1} \gamma_j = \sum_{z \in \mathcal{Z}(\Lambda), z < b} z.
\]

This shows (◇). ■

Now, the family of $\Lambda[b]$ depends only on the family of Λ (and not on Λ itself): indeed, $\mathcal{Z}(\Lambda[b])$ is obtained from $\mathcal{Z}(\Lambda)$ by removing the two entries equal to b. We will denote by $\mathcal{F}[b]$ the family of $\Lambda[b]$. Moreover, $Z_{\mathcal{F}[b]} = Z_\mathcal{F}$ and the map $\Lambda \mapsto \Lambda[b]$ induces a bijection between \mathcal{F} and $\mathcal{F}[b]$, and also induces a bijection between \mathcal{F}_i and $\mathcal{F}[b]_i$.

On the other hand, the formula (\(\triangledown\)) shows that the difference between \(b(\Lambda)\) and \(b(\Lambda[b])\) depends only on \(b\) and \(\mathcal{F}\), so proving Theorem 5 for the pair \((\mathcal{F}, \iota)\) is equivalent to proving Theorem 5 for the pair \((\mathcal{F}[b], \iota)\). By applying several times this principle if necessary, this means that we may, and we will, assume that \(X_{\mathcal{F}} = \emptyset\).

1.G. Proof of Theorem 5(a). — First, note that \(\mathbf{z}(\Lambda) = \mathbf{z}(\Lambda_{\mathcal{F}}) = \mathbf{z}'(\Lambda_{\mathcal{F}})\) (the last equality follows from the fact that \(\Lambda_{\mathcal{F}}\) is special and \(X_{\mathcal{F}} = \emptyset\)). As \(\mathbf{z}(\Lambda)\) is a permutation of the non-decreasing sequence \(\mathbf{z}'(\Lambda_{\mathcal{F}})\), we have

\[
\sum_{j=1}^{i} z'_j(\Lambda) \geq \sum_{j=1}^{i} z'_j(\Lambda_{\mathcal{F}})
\]

for all \(i \in \{1, 2, \cdots, 2k + r\}\). So, it follows from (\(\spadesuit\)) that

\[
b(\Lambda) - b(\Lambda_{\mathcal{F}}) = \sum_{i=1}^{r-1} \left(\sum_{j=1}^{i} (z'_j(\Lambda) - z'_j(\Lambda_{\mathcal{F}})) \right) + \sum_{i=1}^{2k+r-1} \left(\sum_{j=1}^{i} (z'_j(\Lambda) - z'_j(\Lambda_{\mathcal{F}})) \right).
\]

So \(b(\Lambda) \geq b(\Lambda_{\mathcal{F}})\) with equality only whenever \(\sum_{j=1}^{i} z'_j(\Lambda) = \sum_{j=1}^{i} z'_j(\Lambda_{\mathcal{F}})\) for all \(i \in \{1, 2, \cdots, 2k + r\}\). The proof of Theorem 5(a) is complete.

1.H. Proof of Theorem 5(b). — We denote by \(f_1 < \cdots < f_r\) the elements of \(Z_{\mathcal{F}}\) which are fixed by \(\iota\). We also set \(f_{r+1} = 0\) and \(f_0 = \infty\). As \(\iota\) is \(r\)-admissible, the set \(Z_{\mathcal{F}}^{(d)} = \{z \in Z_{\mathcal{F}} \mid f_{d+1} < z < f_d\}\) is \(\iota\)-stable and contains no \(\iota\)-fixed point (for \(d \in \{0, 1, \cdots, r\}\)). Let \(k_d = |Z_{\mathcal{F}}^{(d)}|/2\) and let \(\iota_d\) be the restriction of \(\iota\) to \(Z_{\mathcal{F}}^{(d)}\). Then \(\iota_d\) is a 0-admissible involution of \(Z_{\mathcal{F}}^{(d)}\).

If \(\Lambda = \left(\begin{array}{c} \beta \\ \gamma \end{array}\right) \in \mathcal{F}_r\), we set \(\beta^{(d)} = \beta \cap Z_{\mathcal{F}}^{(d)}, \gamma^{(d)} = \gamma \cap Z_{\mathcal{F}}^{(d)}\) and \(\Lambda^{(d)} = \left(\begin{array}{c} \beta^{(d)} \\ \gamma^{(d)} \end{array}\right)\). Then \(\Lambda^{(d)} \in \text{Sym}_{k_d}(0)\) and, if \(\mathcal{F}^{(d)}\) denotes the family of \(\Lambda^{(d)}\), then \(\Lambda^{(d)} \in \mathcal{F}^{(d)}_d\).

Now, if \(\Lambda' = \left(\begin{array}{c} \beta' \\ \gamma' \end{array}\right) \in \text{Sym}_{k_d}(0)\), we set

\[
b_d(\Lambda') = \sum_{i=1}^{k'-r} (2k' + 2d - 2i) \beta'_i + \sum_{j=1}^{k'-r} (2k' + 1 - 2j) \gamma'_j.
\]

The number \(b_d(\Lambda')\) is called the \(b_d\)-invariant of \(\Lambda'\). It then follows from the definition of \(b\) and \(\nabla_{k,r}\) that

\[(\spadesuit) \quad b(\Lambda) = \sum_{d=0}^{r} b_d(\Lambda^{(d)}) - \nabla_{k,r} + \sum_{d=1}^{r} 2(k_0 + k_1 + \cdots + k_{d-1})(f_d + \sum_{z \in Z^{(d)}} z).
\]
Since the map
\[\mathcal{F}_t \longrightarrow \prod_{d=0}^r \mathcal{F}_{t_d}^{(d)} \]
\[\Lambda \longrightarrow (\Lambda^{(0)}, \Lambda^{(1)}, \ldots, \Lambda^{(d)}) \]
is bijective and since \(b(\Lambda) - \sum_{d=0}^r b(\Lambda^{(d)}) \) depends only on \((\mathcal{F}, t)\) and not on \(\Lambda \) (as shown by the formula (♠)), Theorem 5(b) will follow from the following lemma:

Lemma 6. There exists a unique symbol in \(\mathcal{F}_{t_d}^{(d)} \) with minimal \(b_d \)-invariant.

The proof of Lemma 6 will be given in the next section.

2. Minimal \(b_d \)-invariant

For simplifying notation, we set \(Z = Z^{(d)}_\mathcal{F} \), \(l = k_d \), \(\mathcal{G} = \mathcal{F}^{(d)} \) and \(j = t_d \). Let us write \(Z = \{z_1, z_2, \ldots, z_{2l}\} \) with \(z_1 < z_2 < \cdots < z_{2l} \). Recall from the previous section that \(j \) is a 0-admissible involution of \(Z \).

2.A. Construction. — We will define by induction on \(l \geq 0 \) a symbol \(\Lambda_j^{(d)}(Z) \in \mathcal{G}_j \). If \(l = 0 \), then \(\Lambda_j^{(d)}(Z) \) is obviously empty. So assume now that, for any set of non-zero integers \(Z' \) of order \(2(l-1) \), for any 0-admissible involution \(j' \) of \(Z' \) and any \(d' \geq 0 \), we have defined a symbol \(\Lambda_{j'}^{(d')}(Z') \). Then \(\Lambda_j^{(d)}(Z) = \left(\beta_j^{(d)}(Z) \right) \right) \) is defined as follows: let \(Z' = Z \setminus \{z_1, i(z_1)\} \), \(j' \) the restriction of \(j \) to \(Z' \) and let

\[
\begin{align*}
 d' &= \begin{cases}
 d - 1 & \text{if } d \geq 1, \\
 1 & \text{if } d = 0.
 \end{cases}
\end{align*}
\]

Then \(|Z'| = 2(l - 1) \) and \(j' \) is 0-admissible. So \(\Lambda_{j'}^{(d')}(Z') = \left(\beta_{j'}^{(d')}(Z') \right) \) is well-defined by the induction hypothesis. We then set

\[
\begin{align*}
 \beta_j^{(d)}(Z) &= \begin{cases}
 \beta_{j'}^{(d')}(Z') \cup \{z_1\} & \text{if } d \geq 1, \\
 \beta_{j'}^{(d')}(Z') \cup j(z_1) & \text{if } d = 0,
 \end{cases}
\end{align*}
\]

and

\[
\begin{align*}
 \gamma_j^{(d)}(Z) &= \begin{cases}
 \gamma_{j'}^{(d')}(Z') \cup j(z_1) & \text{if } d \geq 1, \\
 \gamma_{j'}^{(d')}(Z') \cup \{z_1\} & \text{if } d = 0.
 \end{cases}
\end{align*}
\]

Then Lemma 6 is implied by the next lemma:

Lemma 6+. Let \(\Lambda \in \mathcal{G}_j \). Then \(b_d(\Lambda) \geq b_d(\Lambda_j^{(d)}(Z)) \) with equality if and only if \(\Lambda = \Lambda_j^{(d)}(Z) \).
The rest of this section is devoted to the proof of Lemma 6^+. We will first prove Lemma 6^+ whenever $d \in \{0, 1\}$ using Lusztig's Theorem. We will then turn to the general case, which will be handled by induction on $l = |Z|/2$. We fix $\Lambda = \left(\begin{array}{c} \beta \\ \gamma \end{array} \right) \in \mathfrak{g}_j$.

2.B. **Proof of Lemma 6^+ whenever $d = 1$.** — Let z be a natural number strictly bigger than all the elements of Z. Let $\tilde{\Lambda} = \left(\begin{array}{c} \beta \cup \{z\} \\ \gamma \end{array} \right) \in \text{Sym}_k(1)$. Then $b_1(\Lambda) = b(\tilde{\Lambda}) + C$, where C depends only on Z. Let $\tilde{\Lambda}_0 = \left(\begin{array}{c} z_1, z_3, \ldots, z_{2l-1}, z \\ z_2, \ldots, z_{2l} \end{array} \right)$. Since l is 0-admissible, it is easily seen that, if $j(z_i) = z_j$, then $j - i$ is odd. So $\tilde{\Lambda}_0 \in \mathfrak{g}_j$. But, by [Lu1, §5], $b(\tilde{\Lambda}) \geq b(\tilde{\Lambda}_0)$ with equality if and only if $\tilde{\Lambda} = \tilde{\Lambda}_0$. So it is sufficient to notice that $\Lambda^{(1)}_j(Z) = \tilde{\Lambda}_0$, which is easily checked.

2.C. **Proof of Lemma 6^+ whenever $d = 0$.** — Assume in this subsection, and only in this subsection, that $d = 0$ or 1. We denote by $\Lambda^\text{op} = \left(\begin{array}{c} \gamma \\ \beta \end{array} \right) \in \mathfrak{g}_j$. It is readily seen from the construction that $\Lambda^{(0)}_j(Z)^\text{op} = \Lambda^{(1)}_j(Z)$ and that

$$b_1(\Lambda) = b_0(\Lambda^\text{op}) + \sum_{z} z.$$

So Lemma 6^+ for $d = 0$ follows from Lemma 6^+ for $d = 1$.

2.D. **Proof of Lemma 6^+ whenever $d \geq 2$.** — Assume now, and until the end of this section, that $d \geq 2$. We will prove Lemma 6^+ by induction on $l = |Z|/2$. The result is obvious if $l = 0$, as well as if $l = 1$. So we assume that $l \geq 2$ and that Lemma 6^+ holds for $l' \leq l - 1$. Write $j(z) = z_{2m}$, where $m \leq l$ (note that $j(z_1) \notin \{z_1, z_3, z_5, \ldots, z_{2l-1}\}$ since j is 0-admissible).

Assume first that $m < l$. Then Z can be written as the union $Z = Z^+ \cup Z^-$, where $Z^+ = \{z_1, z_3, \ldots, z_{2m}\}$ and $Z^- = \{z_{2m+1}, z_{2m+3}, \ldots, z_{2l}\}$ are j-stable (since j is 0-admissible). If $\varepsilon \in \{+,-\}$, let j^ε denote the restriction of j to Z^ε, let $\beta^\varepsilon = \beta \cap Z^\varepsilon$, $\gamma^\varepsilon = \gamma \cap Z^\varepsilon$ and $\Lambda^\varepsilon = \left(\begin{array}{c} \beta^\varepsilon \\ \gamma^\varepsilon \end{array} \right)$, and let $\mathfrak{g}_j^\varepsilon$ denote the family of Λ^ε. Then it is easily seen that $\Lambda^\varepsilon \in \mathfrak{g}_j^\varepsilon$, that $b_d(\Lambda) - \left(b_d(\Lambda^+) + b_d(\Lambda^-) \right)$ depends only on $(\mathfrak{g}_j^\varepsilon, j)$ and that $\Lambda^{(d)}_j(Z)^\varepsilon = \Lambda^{(d)}_j(Z^\varepsilon)$. By the induction hypothesis, $b_d(\Lambda^\varepsilon) \geq b_d(\Lambda^{(d)}_j(Z^\varepsilon))$ with equality if and only if $\Lambda^\varepsilon = \Lambda^{(d)}_j(Z^\varepsilon)$. So the result follows in this case. This means that we may, and we will, work under the following hypothesis:
Hypothesis. From now on, and until the end of this section, we assume that \(j(z_1) = z_{2l} \).

As in the construction of \(\Lambda^{(d)}_j(Z) \), let \(Z' = Z \setminus \{z_1, z_{2l}\} = \{z_2, z_3, \ldots, z_{2l-1}\} \), let \(j' \) denote the restriction of \(j \) to \(Z' \) and let

\[
d' = \begin{cases}
 d - 1 & \text{if } d \geq 1, \\
 1 & \text{if } d = 0.
\end{cases}
\]

Then \(|Z'| = 2(l-1) \) and \(j' \) is 0-admissible. Let \(\Lambda' = \left(\beta', \gamma' \right) \) where \(\beta' = \beta \setminus \{z_1, z_{2l}\} \) and \(\gamma' = \gamma \setminus \{z_1, z_{2l}\} \). Since \(d \geq 2 \), we have \(z_1 \in \beta_j^{(d)}(Z) \) and \(z_{2l} \in \gamma_j^{(d)}(Z) \). This implies that

\[
(\star) \quad \mathbf{b}_d(\Lambda_j^{(d)}(Z)) = \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + z_{2l} + 2(l+d)z_1 + 2 \sum_{z \in Z'} z.
\]

If \(z_1 \in \beta \), then \(\Lambda = \Lambda_j^{(d)}(Z) \) if and only if \(\Lambda' = \Lambda_{j'}^{(d')}(Z') \) and again

\[
\mathbf{b}_d(\Lambda) = \mathbf{b}_{d-1}(\Lambda') + z_{2l} + 2(l+d)z_1 + 2 \sum_{z \in Z'} z.
\]

So the result follows from (\star) and from the induction hypothesis.

This means that we may, and we will, assume that \(z_1 \in \gamma \). In this case,

\[
\mathbf{b}_d(\Lambda) = \mathbf{b}_{d+1}(\Lambda') + 2d z_{2l} + (2l + 1)z_1.
\]

Then it follows from (\star) that

\[
\mathbf{b}_d(\Lambda) - \mathbf{b}_d(\Lambda_j^{(d)}(Z)) = \mathbf{b}_{d+1}(\Lambda') - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + (2d-1)(z_{2l} - z_1) - 2 \sum_{z \in Z'} z.
\]

So, by the induction hypothesis,

\[
\mathbf{b}_d(\Lambda) - \mathbf{b}_d(\Lambda_j^{(d)}(Z)) \geq \mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) + (2d-1)(z_{2l} - z_1) - 2 \sum_{z \in Z'} z.
\]

Since \(z_{2l} - z_1 > z_{2l-1} - z_2 \), it is sufficient to show that

\[
(?) \quad \mathbf{b}_{d+1}(\Lambda_{j'}^{(d+1)}(Z')) - \mathbf{b}_{d-1}(\Lambda_{j'}^{(d-1)}(Z')) \geq -(2d-1)(z_{2l-1} - z_2) + 2 \sum_{z \in Z'} z.
\]

This will be proved by induction on the size of \(Z' \). First, if \(j(z_2) < z_{2l-1} \), then we can separate \(Z' \) into two \(j' \)-stable subsets and a similar argument as before allows to conclude thanks to the induction hypothesis.
So we assume that $f'(z_2) = z_{2l-1}$. Let $Z'' = Z' \setminus \{z_2, z_{2l-1}\}$ and let f'' denote the restriction of f' to Z''. Since $z_2 \in \beta_{j'}(Z')$, we can apply (\star) one step further to get

$$b_{d+1}(\Lambda_{j'}^{d+1}(Z')) - b_{d-1}(\Lambda_{j'}^{d-1}(Z')) = b_d(\Lambda_{j'}^{d}(Z'')) + z_{2l-1} + 2(l + d)z_2 + 2 \sum_{z \in Z''} z \phantom{\sum_{z \in Z''}} - (b_{d-2}(\Lambda_{j''}^{d-2}(Z'')) + z_{2l-1} + 2(l + d - 2)z_2 + 2 \sum_{z \in Z''} z)$$

$$= b_d(\Lambda_{j'}^{d}(Z'')) - b_{d-2}(\Lambda_{j''}^{d-2}(Z'')) + 4z_2.$$

So, by the induction hypothesis,

$$b_{d+1}(\Lambda_{j'}^{d+1}(Z')) - b_{d-1}(\Lambda_{j'}^{d-1}(Z')) \geq -(2d - 3)(z_{2l-2} - z_3) + 2 \sum_{z \in Z''} z + 4z_2$$

$$\geq -(2d - 3)(z_{2l-1} - z_2) + 2 \sum_{z \in Z''} z + 2z_2 - 2z_{2l-1}$$

$$= -(2d - 1)(z_{2l-1} - z_2) + 2 \sum_{z \in Z''} z,$$

as desired. This shows (\star) and completes the proof of Lemma 6*.

3. Complex reflection groups

If \mathcal{W} is a complex reflection group, then R. Rouquier and the author have also defined Calogero-Moser cellular characters and Calogero-Moser families (see [BoRo1] or [BoRo2]). If \mathcal{W} is of type $G(l, 1, n)$ (in Shephard-Todd classification), then Leclerc and Miyachi [LeMi, §6.3] proposed, in link with canonical bases of $U_q(sl_\infty)$-modules, a family of characters that could be a good analogue of constructible characters: let us call them the Leclerc-Miyachi constructible characters of $G(l, 1, n)$. If $l = 2$, then they coincide with constructible characters [LeMi, Theorem 10].

Of course, it would be interesting to know if Calogero-Moser cellular characters coincide with the Leclerc-Miyachi ones: this seems rather complicated but it should be at least possible to check if the Leclerc-Miyachi constructible characters satisfy the analogous properties with respect to the b-invariant.

References

April 8, 2015

CÉDRIC BONNAFÉ, Institut de Mathématiques et de Modélisation de Montpellier (CNRS: UMR 5149), Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 MONTPELLIER Cedex, FRANCE • E-mail: cedric.bonnafe@univ-montp2.fr