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Convergence of a low order non-local

Navier-Stokes-Korteweg system: the order-parameter model

Frédéric Charve∗

Abstract

In the present article we consider a capillary compressible system introduced by
C. Rohde after works of Bandon, Lin and Rogers, called the order-parameter model,
and whose aim is to reduce the numerical difficulties that one encounters in the
case of the classical local Korteweg system (involving derivatives of order three) or
the non-local system (also introduced by Rohde after works of Van der Waals, and
which involves a convolution operator). We prove that this system has a unique
global solution for initial data close to an equilibrium and we precisely study the
convergence of this solution towards the local Korteweg model.

1 Introduction

1.1 Presentation of the systems

In the mathematical study of liquid-vapour mixture, Gibbs first modelled phase transi-
tions thanks to the minimization of an energy functional with a nonconvex energy density
(see [17]). The phases are separated by an hypersurface and there are mainly two ways
to describe it: either we consider that the interface behaves like a discontinuity for the
fluid parameters (this is the Sharp Interface model), either we consider that between the
phases lies a thin region of continuous transition (this is the Diffuse Interface approach,
where the phase changes are seen through the variations of the density and which is much
simpler numerically). Unfortunately the basic models provide an infinite number of solu-
tions (few of them being physically relevant) and this is why authors tried to penalize the
high variations of the density (with capillary terms related to surface tension) in order
to select the physically correct solutions.

In the present paper, we are interested in the local and non-local Korteweg systems
(in the diffuse interface model). These systems are based upon the compressible Navier-
Stokes system with a Van der Waals state law for ideal fluids, and endowed with a
capillary tensor.

Let us recall that the local model was introduced by Korteweg and renewed by Dunn
and Serrin (see [16]) and the non-local model was introduced by Van der Waals and
renewed by F. Coquel, D. Diehl, C. Merkle and C. Rohde. For an in-depth presentation
of the capillary models, we refer to [30] and [11]).
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Let ρ and u denote the density and the velocity of a compressible viscous fluid (ρ is
a non-negative function and u is a vector-valued function defined on Rd). We denote by
A the following diffusion operator

Au = µ∆u+ (λ+ µ)∇div u, with µ > 0 and ν = λ+ 2µ > 0.

The Navier-Stokes equations for compressible fluids endowed with internal capillarity
read: {

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u)−Au+∇(P (ρ)) = κρ∇D[ρ].

The capillary coefficient κ may depend on ρ but in this article it is chosen constant. In
the local Korteweg system (NSK), the capillary term D[ρ] is given by (see [16]):

D[ρ] = ∆ρ,

and, in the non-local Korteweg system (NSRW ) (see [29], [11], and [34]), if φ is an
interaction potential which satisfies the following conditions

(|.| + |.|2)φ(.) ∈ L1(Rd),

∫

Rd

φ(x)dx = 1, φ even, and φ ≥ 0, (1.1)

then D[ρ] is the non-local term given by:

D[ρ] = φ ∗ ρ− ρ.

Comparing the Fourier transform of the capillary terms, we have (φ̂(ξ)−1)ρ̂(ξ) in the
non-local model, and −|ξ|2ρ̂(ξ) in the local model so that a natural question is to study
the closedness of the solutions of these models when φ̂(ξ) is formally ”close” to 1− |ξ|2.
For this, we introduced in [7] a specific interaction potential and considered the following
non-local system:

(NSRWε)

{
∂tρε + div (ρεuε) = 0,

∂t(ρεuε) + div (ρεu⊗ uε)−Auε +∇(P (ρε)) = ρε
κ

ε2
∇(φε ∗ ρε − ρε),

with

φε =
1

εd
φ(
x

ε
) with φ(x) =

1

(2π)d
e−

|x|2

4

For a fixed ξ the Fourier transform of φε is φ̂ε(ξ) = e−ε
2|ξ|2 , and when ε is small,

φ̂ε(ξ)− 1

ε2
is close to −|ξ|2.

Using energy methods, we proved in [7] that this system has a unique global strong
solution for initial data close to an equilibrium state. The functional setting are classical
and hybrid Besov spaces (taylored to the capillary term). We also obtained that when
the small parameter ε goes to zero, the solution tends to the corresponding solution
of the local Korteweg system and we obtained a rate of convergence in terms of ε. In
[9], we provided by Lagrangian methods more precise a priori estimates giving a better
understanding of the convergence and the hybrid Besov setting in terms of the linear
Fourier structures.
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Though, these models are not completely satisfying. On one hand, recalling the re-
sults from [12], [2] (compressible Navier-Stokes system), [14], [8] (local Korteweg model),
and [19], [7] (non-local Korteweg model), we observe that the density in the local cap-
illary model is far more regular than in the non-local model where it shares the same
frequency structure as in the compressible Navier-Stokes model (heat regularization in
low frequencies and only a damping in high frequencies).

On the other hand, from a numerical point of view the local model is difficult to
handle because the capillary term contains third-order derivatives. The non-local model
also presents difficulties in numerical studies: even if the capillary term only contains
derivatives of order one, it involves a convolution operator, whose numerical difficulty is
comparable.

For this reason, C.Rohde presented in [31] a new model, called the order-parameter
model, and inspired by the work of D. Brandon, T. Lin and R. C. Rogers in [5].

This new system consists in introducing in the capillary term α2∇(c − ρ) a new
variable c called the ”order parameter”, which is coupled to the density via the following
relation related to the Euler-Lagrange equation from the variational approach (α controls
the coupling between ρ and c):

ε2∆c+ α2(ρ− c) = 0

so that the new system he considers is the following:

(NSOPα)





∂tρα + div (ραuα) = 0,

∂t(ραuα) + div (ραuα ⊗ uα)−Auα +∇(P (ρα)) = κα2ρα∇(cα − ρα),

ε2∆cα + α2(ρα − cα) = 0.

As emphasized by C. Rohde, from a numerical point of view this system is much more
interesting because now we only have one derivative in the capillary tensor (which is
local), and the additionnal equation for the order parameter is a simple linear elliptic
equation that can be easily and numerically fast solved at least when the mesh is fixed.
Moreover as we will see later, as for the previous non-local capillary model, this system
has the same frequency structure as the classical Navier-Stokes model.

In [31], C. Rohde proves (for ε = λ = µ = 1 in the two-dimensionnal case) that the
system has a unique local classical solution:

Theorem 1 ([31]) Assume that the initial data (ρ0, u0) is independant of α > 0 with
u0 ∈ H4(R2), ρ0 > 0 and ρ0 − ρ̄ ∈ H4(R2) for some constant ρ̄. Let c0 the solution of
the elliptic problem −∆c0 + α2c0 = α2ρ0. There exists a constant T∗ > 0 such that the
initial-value problem (NSOPα) has a unique solution defined on [0, T∗[ satisfying:

ρα − ρ̄, uα ∈ L∞(0, T∗;H
4(R2)), ρα > 0,

cα − ρ̄ ∈ L∞(0, T∗;H
5(R2)).

Moreover, for all t ∈ [0, T∗[ we have

lim
α→∞

‖ρα(t, .)− cα(t, .)‖L2(R2) = 0.

In this paper, C. Rohde also conjectures that when the coupling constant α goes to
infinity, these solutions converge to the solution of the local Korteweg model.
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1.2 Statement of the results

In the present article, following what we did in the whole space for the non-local system
(see [7]) and using lagrangian methods from [9], we will prove that under smallness
conditions, and with less regular initial data, the system has global strong solutions in
the following critical spaces (we refer to the appendix for more details on Besov spaces
and hybrid spaces). We also prove the above conjectured convergence and give an explicit
rate of convergence with respect to α.

Definition 1 The space F sα is the set of functions (q, c, u) in

(
Cb(R+, Ḃ

s−1
2,1 ∩ Ḃs

2,1) ∩ L1(R+, Ḃ
s+1,s−1
α ∩ Ḃs+2,s

α )
)2

×
(
Cb(R+, Ḃ

s−1
2,1 ) ∩ L1(R+, Ḃ

s+1
2,1 )

)d

endowed with the norm ‖(q, c, u)‖F s
α
= ‖(q, c, u)‖F s

α(∞) where for all t we denote (recall
that ν0 = min(µ, ν))

‖(q, c, u)‖F s
α(t)

def
= ‖u‖L̃∞

t Ḃs−1
2,1

+ ‖q‖L̃∞
t Ḃs−1

2,1
+ ν‖q‖L̃∞

t Ḃs
2,1

+ ‖c‖L̃∞
t Ḃs−1

2,1
+ ν‖c‖L̃∞

t Ḃs
2,1

+ ν0‖u‖L̃1
t Ḃ

s+1
2,1

+ ν‖q‖L̃1
t Ḃ

s+1,s−1
α

+ ν2‖q‖L̃1
t Ḃ

s+2,s
α

+ ν‖c‖L̃1
t Ḃ

s+1,s−1
α

+ ν2‖c‖L̃1
t Ḃ

s+2,s
α

(1.2)

Theorem 2 Let α > 0 and assume min(µ, 2µ + λ) > 0. There exist two positive con-
stants ηOP and C only depending on d, µ, λ, κ, and P ′(ρ) such that for all η ≤ ηOP , if

ρ0 − ρ ∈ Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2
2,1, u0 ∈ Ḃ

d
2
−1

2,1 , c0 is defined by −∆c0 + α2c0 = α2ρ0 and

‖ρ0 − ρ‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ η

then system (NSOPα) has a unique global solution (ρα, cα, uα) with (ρα−ρ, cα−ρ, uα) ∈
F

d
2
α such that:

‖(ρα − ρ, cα − ρ, uα)‖
F

d
2
α

≤ C0 def= C(‖ρ0 − ρ‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

).

Moreover we have the global in time results:





‖cα − ρα‖
L̃∞(R+,Ḃ

d
2−1

2,1 )
+ ν‖cα − ρα‖

L̃∞(R+,Ḃ
d
2
2,1)

−→
α→∞

0,

ν‖cα − ρα‖
L1(R+,Ḃ

d
2−1

2,1 )
+ ν2‖cα − ρα‖

L1(R+,Ḃ
d
2
2,1)

≤ C0α−2.

The following result deals with the convergence in α: when the initial data are small
enough (so that we have global solutions for (NSK) and (NSOPα)) the solution of
(NSOPα) goes to the solution of (NSK) when α goes to infinity.

Theorem 3 With the same assumptions as before, there exists 0 < η0 ≤ min(ηK , ηOP )
such that for all η ≤ η0, if

‖ρ0 − ρ‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ η,

4



then systems (NSK) and (NSOPα) both have global solutions and ‖(ρα−ρ, cα−ρ, uα−
u)‖

F
d
2
α

goes to zero as α goes to infinity. Moreover, with the same notations as before,

there exists a constant C = C(η, κ, ρ, P ′(1)) > 0 such that for all h ∈]0, 1[ (if d = 2) or
h ∈]0, 1] (if d ≥ 3)

‖(ρα − ρ, cα − ρ, uα − u)‖
F

d
2−h
α

≤ Cα−h,

Remark 1 We can assume that ε = 1 without loss of generality. If not we just have to
replace κ by ε2 and α by α/ε.

Remark 2 As the order parameter cα goes to ρα, we formally get that when α goes to
infinity, the capillary term goes to κρ∇∆ρ.

1.3 outline of the paper

The article is structured the following way: section 2 is devoted to the proof of theorem
2. We first introduce an interaction potential φα that allows us to rewrite the system
into a non-local shape. As we want precise estimates we follow the methods from [9]:
we first obtain estimates on the linearized system and then on the advected linear sys-
tem thanks to a Lagrangian change of variable. The rest of the proof is classical, we
define approximated solutions thanks to the Friedrichs’ scheme and obtain existence and
uniqueness like in [7]. In section 3 we prove theorem 3 and in the appendix, we first re-
call basic properties of Besov spaces, then we provide estimates for the flow of a smooth
vectorfield. The last part of the appendix is devoted to Bessel functions that are needed
for the expression of our new interaction potential.

2 Proof of theorem 2

2.1 Interaction potential

As announced in the introduction, we first rewrite the system in a non-local shape. Let
us focus on the last equation, we can write that (for more clarity we drop the subscripts
with α):

−ε2∆(ρ− c) + α2(ρ− c) = −ε2∆ρ
which leads to:

α2(ρ− c) = −α2(−∆+
α2

ε2
)−1∆ρ = −(

−∆

α2
+

1

ε2
)−1∆ρ

So that in Fourier variable:

̂α2(ρ− c)(ξ) =
|ξ|2

|ξ|2
α2 + 1

ε2

ρ̂(ξ) = ε2 · α
2

ε2
(1− 1

ε2

α2 |ξ|2 + 1
)ρ̂(ξ).

Then up to choose κ = ε2 and replace α by α/ε, from now on we assume that ε = 1 and
then if we introduce:

D[ρ] = α2(c− ρ),
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we have

D̂[ρ](ξ) =
−|ξ|2
|ξ|2
α2 + 1

ρ̂(ξ) = α2(
1

|ξ|2
α2 + 1

− 1)ρ̂(ξ). (2.3)

As a consequence, when α is large, α2(ρ − c) formally goes to ∆ρ as for the non-local
capillary term from [9], and the object of this article is to prove that the solutions of
this system will go to the solutions of the local Korteweg model. Let us now define the
interaction potential φα by:

φ̂α(ξ) =
1

|ξ|2
α2 + 1

. (2.4)

We have
∫
R
φα(x)dx = 1 and D[ρ] = α2(φα ∗ ρ− ρ). If we put φ = φ1 then

φ̂(ξ) =
1

|ξ|2 + 1
, φ̂α = φ̂(·/α), and φα = αdφ(α·). (2.5)

In some cases we have explicit expressions for this inverse Fourier transform: for all x,

φ(x) = Ce−|x| when d = 1, φ(x) = C ′ e−|x|

|x| when d = 3 (we refer to [33]). In the other
cases the expression of φ involves Bessel functions. Let us begin by recalling that the
fourier transform of a radial function is also radial, more precisely (see for example [33]
page 213) there exists a constant Cd such that if f(x) = f0(|x|) for all x ∈ Rd, then its
Fourier transform satisfies for all ξ ∈ Rd, f̂(ξ) = F0(|ξ|) where for all ρ > 0

F0(ρ) =
Cd

ρ
d
2
−1

∫ ∞

0
J d

2
−1(ρr)f0(r)r

d
2 dr,

where Jν denotes the general Bessel function of real index ν. This formulation is related
to the Hankel transform, we refer to the appendix for more details and properties on
Bessel functions. Coming back to our problem, we then obtain that for all x ∈ Rd,

φ(x) =
Cd

|x| d2−1

∫ ∞

0
J d

2
−1(r|x|)

r
d
2

1 + r2
dr. (2.6)

And thanks to the Hankel-Nicholson integrals (we refer for example to [27] page 330 or
[36] page 434), under the following assumptions:

a > 0, Re(z) > 0, −1 < Re(ν) < 2Re(µ) +
3

2
,

we have the identity:

∫ ∞

0

tν+1Jν(at)

(t2 + z2)µ+1
dt =

aµzν−µ

2µΓ(µ+ 1)
Kν−µ(az),

whereKν denotes the modified Bessel function of the second kind and index ν (also called
Hankel, Schläfti or Weber function). This allows us to finally write that for all x ∈ Rd

provided that d ∈ {1, 2, 3, 4} (from the previous conditions with ν = d
2 − 1, µ = 0, z = 1,

a = |x|),
φ(x) =

Cd

|x| d2−1
K d

2
−1(|x|). (2.7)
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Remark 3 Another way to understand the limitation on the dimension consists in ob-
serving in the integral (2.6), that if we roughly approximate the Bessel function by
cos(r)r−1/2 at infinity, then the integrated function has the following asymptotic expan-
sion at infinity: cos(r)rd/2−5/2 (|x| = 1 for more simplicity).

In fact (2.7) is also valid for dimensions d ≥ 5 (Like the Fourier transform, the Hankel
transform can be generalized for tempered distributions). Let us compute the Fourier
transform: for all ξ ∈ Rd

∫

Rd

e−ix·ξ
K d

2
−1(|x|)

|x| d2−1
dx =

∫ ∞

0
r

d
2K d

2
−1(r)

(∫

Sd−1

e−irω·ξdω

)
dr,

and thanks to the radial symmetry:
∫

Sd−1

e−irω·ξdω =

∫

Sd−1

e−ir|ξ|ω·e1dω.

Performing a d-dimensional spherical change of variable we obtain that (with λ = r|ξ|):
∫

Sd−1

e−iλω·e1dω =

∫ π

0

∫ 2π

0
...

∫ 2π

0
e−iλ cos θ1 sind−2 θ1 sin

d−3 θ2... sin θd−2dθ1...dθd−1

= Cd

∫ π

0
e−iλ cos θ1 sind−2 θ1dθ1. (2.8)

Using the following integral representation of function Iν (for Re(ν) > −1/2 see the
appendix for modified Bessel functions Iν and Kν)

Iν(z) =
zν

2νπ
1
2Γ(ν + 1

2)

∫ π

0
e−z cos t sind−2 tdt.

Then thanks to the following identity (here a = i|ξ| and b = 1):

∫
zIν(az)Kν(bz)dz =

z

a2 − b2
(aIν+1(az)Kν(bz) + bIν(az)Kν+1(bz)) ,

we obtain that: ∫

Rd

e−ix·ξ
K d

2
−1(|x|)

|x| d2−1
dx =

2
d
2
−1Γ(d2 )

1 + |ξ|2 .

so that in (2.7), Cd = (2
d
2
−1Γ(d2 ))

−1, Considering the asymptotics of function K d
2
−1, φ is

continuous on Rs − {0}. Near 0, and for d ≥ 3, we have φ(x) ∼ Cd|x|2−d so that |x|φ(x)
is a L1 function on Rd.

2.2 Reformulation of the system

We are now able to write the system into a non-local form:
(NSOPα){

∂tρα + div (ραuα) = 0,

∂t(ραuα) + div (ραu⊗ uα)−Auα +∇(P (ρα)) = ρακα
2∇(φα ∗ ρα − ρα),

7



with

φα = αdφ(α·) with φ(x) =
Cd

|x| d2−1
K d

2
−1(|x|).

Remark 4 From the previous computations, we immediately get that

cα − ρα = (−∆+ αId)
−1∆ρα = φα ∗ ρα − ρα

that is cα = φα∗ρα. This is why we cannot choose any initial data for the order parameter
and take c0 = φα ∗ ρ0.

As we consider initial data close to an equilibrium state (ρ, 0) we begin with the
classical change of function ρ = ρ(1 + q). For simplicity we take ρ = 1. The previous
system becomes (also denoted by (NSOPα)):
(NSOPα){
∂tqα + uα.∇qα + (1 + qα)div uα = 0,

∂tuα + uα.∇uα −Auα + P ′(1).∇qα − κα2∇(φα ∗ qα − qα) = K(qα).∇qα − I(qα)Auα,

where K and I are the real-valued functions defined on R given by:

K(q) =

(
P ′(1)− P ′(1 + q)

1 + q

)
and I(q) =

q

q + 1
.

The functional spaces we will really use are the following:

Definition 2 The space Esα is the set of functions (q, u) in

(
Cb(R+, Ḃ

s−1
2,1 ∩ Ḃs

2,1) ∩ L1(R+, Ḃ
s+1,s−1
α ∩ Ḃs+2,s

α )
)
×
(
Cb(R+, Ḃ

s−1
2,1 ) ∩ L1(R+, Ḃ

s+1
2,1 )

)d

endowed with the norm ‖(q, u)‖Es
α
= ‖(q, u)‖Es

α(∞) where for all t we denote (recall that
ν0 = min(µ, ν))

‖(q, u)‖Es
α(t)

def
= ‖u‖

L̃∞
t Ḃs−1

2,1
+ ‖q‖

L̃∞
t Ḃs−1

2,1
+ ν‖q‖

L̃∞
t Ḃs

2,1

+ ν0‖u‖L̃1
t Ḃ

s+1
2,1

+ ν‖q‖L̃1
t Ḃ

s+1,s−1
α

+ ν2‖q‖L̃1
t Ḃ

s+2,s
α

(2.9)

Remark 5 Due to obvious simplifications we slightly changed the notations for Esα and
Ḃs+2,s
α : with the notations from [9] these spaces would have been respectively denoted

by Es1/α and Ḃs+2,s
1/α .

We will now follow the tracks of [7] and [9] to prove the results. Classically in the study
in critical spaces of compressible Navier-Stokes-type systems (see [12, 6, 18]), the proofs
of theorems 2 and 3 (see [7] section 2) rely on key a priori estimates on the following
advected linear system (α > 0 is fixed and for more simplicity we write (q, u) instead of
(qα, uα)):

(LOPα)

{
∂tq + v.∇q + div u = F,

∂tu+ v.∇u−Au+ p∇q − κα2∇(φα ∗ q − q) = G.

8



With
Au = µ∆u+ (λ+ µ)∇div u.

Although the potential function is different from the gaussian from [7], we can easily
adapt the energy methods and results from this paper. Here we will directly focus on
more refined estimates as in [9] and use them in the proof of the last theorem: we can
prove that the estimates are similar up to slight changes in the constants:

Theorem 4 Let α > 0, −d
2 +1 < s < d

2 +1, I = [0, T [ or [0,+∞[ and v ∈ L1(I, Ḃ
d
2
+1

2,1 )∩
L2(I, Ḃ

d
2
2,1). Assume that (q, u) is a solution of System (LOPα) defined on I. There exists

α0 > 0, a constant C > 0 depending on d, s such that if α ≥ α0, for all t ∈ I (denoting
ν = µ+ 2λ and ν0 = min(ν, µ)),

‖u‖L̃∞
t Ḃs−1

2,1
+ ‖q‖L̃∞

t Ḃs−1
2,1

+ ν‖q‖L̃∞
t Ḃs

2,1
+ ν0‖u‖L̃1

t Ḃ
s+1
2,1

+ ν‖q‖L̃1
t Ḃ

s+1,s−1
α

+ ν2‖q‖L̃1
t Ḃ

s+2,s
α

≤ C
p, ν

2

4κ

e

C
p, ν

2

4κ

Cvisc

∫ t

0
(‖∇v(τ)‖

Ḃ
d
2
2,1

+ ‖v(τ)‖2
Ḃ

d
2
2,1

)dτ

×
(
‖u0‖Ḃs−1

2,1
+ ‖q0‖Ḃs−1

2,1
+ ν‖q0‖Ḃs

2,1
+ ‖F‖L̃1

t Ḃ
s−1
2,1

+ ν‖F‖L̃1
t Ḃ

s
2,1

+ ‖G‖L̃1
t Ḃ

s−1
2,1

)
. (2.10)

where 



C
p, ν

2

4κ

= Cmax(
√
p,

1√
p
)max(

4κ

ν2
, (
ν2

4κ
)2),

Cvisc =
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
).

Remark 6 The coefficient Cvisc satisfies:

Cvisc =

{
1+2ν
µ +max(1, 1

ν3 ) If λ+ µ > 0,
1+2µ
ν +max(1, 1

ν3 ) If λ+ µ ≤ 0

and when both viscosities are small, we simply have Cvisc ≤ max(1, 1
ν30
).

2.3 Linear estimates

As in [6] and [9] the first step to prove theorem 4 is to obtain estimates for the following
linearized system:

(OPα)

{
∂tq + div u = F,

∂tu−Au+ p∇q − κα2∇(φα ∗ q − q) = G.

With
Au = µ∆u+ (λ+ µ)∇div u.

In this article, we will use the following frequency-localized estimate:
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Proposition 1 Let α > 0, s ∈ R, I = [0, T [ or [0,+∞[. Assume that (q, u) is a solution
of System (Oε) defined on I. There exists α0 > 0, a constant C > 0 depending on d, s,
c0 and C0 such that if α ≥ α0, for all t ∈ I (we recall that ν0 and C

p, ν
2

4κ

are defined in

the previous theorem), and for all j ∈ Z,

‖∆̇ju‖L∞
t L2 + ν02

2j‖∆̇ju‖L1
tL

2 + (1 + ν2j)
(
‖∆̇jq‖L∞

t L2 + νmin(α2, 22j)‖∆̇jq‖L1
tL

2

)

≤ C
p, ν

2

4κ

(
(1 + ν2j)‖∆̇jq0‖L2 + ‖∆̇ju0‖L2 + (1 + ν2j)‖∆̇jF‖L1

tL
2 + ‖∆̇jG‖L1

tL
2

)
(2.11)

Remark 7 Let us precise that these linear estimates are valid for all dimension, the
limitation d ≤ 4 only appears in the advected case.

2.3.1 Eigenvalues and eigenvectors

In this article, since the methods are very close to [7] and [9] we will only point out
what is different and refer to these articles for details. As in [12] or [6] we first introduce
the Helmholtz decomposition of u. Defining the pseudo-differential operator Λ by Λf =
F−1(|.|f̂(.)), we set: {

v = Λ−1div u,

w = Λ−1curlu
(2.12)

then u = −Λ−1∇v + Λ−1divw and the system turns into:

(L′
α)





∂tq + Λv = F,

∂tv − ν∆v − pΛq + κα2Λ(φα ∗ q − q) = Λ−1divG,

∂tw − µ∆w = Λ−1curlG.

The last equation is a decoupled heat equation, easily estimated in Besov spaces (see
[2] chapter 2). Moreover, as the external forces appear through homogeneous pseudo-
differential operators of degree zero, we can compute the estimates in the case F = G = 0
and deduce the general case from the Duhamel formula. So we can focus on the first
two lines and compute the eigenvalues and eigenvectors of the matrix associated to the
Fourier transform of the system:

∂t

(
q̂
v̂

)
= A(ξ)

(
q̂
v̂

)
with A(ξ) :=




0 −|ξ|
|ξ|(p + κ |ξ|2

|ξ|2

α2 +1
) −ν|ξ|2


 .

The discriminant of the characteristic polynomial of A(ξ) is:

∆(ξ) = |ξ|2
(
ν2|ξ|2 − 4(p + κ

|ξ|2
|ξ|2
α2 + 1

)

)
,

and thanks to the variations of function

fα : x 7→ ν2x− 4(p + κ
x

x
α2 + 1

) = ν2x− 4(p + κα2) +
4κα2

x
α2 + 1

,

10



we obtain the existence of a unique threshold xα > 0 such that

∆(ξ)

{
< 0 if |ξ|2 < xα,

> 0 if |ξ|2 > xα.

We emphasize that this function has the same variations as in the case of [9]: when
ν2

4K ≥ 1, fα is an increasing function on R+, and when ν2

4K < 1, fα is decreasing in

[0, α2(2
√
K
ν − 1)] and then increasing.

Proposition 2 Under the same assumptions, we have:

xα ∼
α→∞





4p

ν2 − 4κ
if ν2

4κ > 1,

α

√
p

κ
if ν2

4κ = 1,

(
4κ

ν2
− 1)α2 if ν2

4κ < 1.

Proof: It is simpler than in [9] because here we have explicit expressions for the
threshold: if we put A = ν2 − κ− 4p/α2, then

xα =
α2

2ν2

(
−A+

√
16p

ν2

α2
+A

)
.

Next introducing the following function, we obtain the expressions of q̂ and v̂ exactly as
in [9]:

gα(x) =
fα(x)

ν2x
= 1− 4

ν2x
(p+ κ

x
x
α2 + 1

) (2.13)

-For the low frequencies (∆ < 0), when |ξ| < √
xα, we have:





q̂(ξ) = 1
2

(
(1 + i

S(ξ))e
tλ+ + (1− i

S(ξ))e
tλ−
)
q̂0(ξ)− ie

tλ+−etλ−
ν|ξ|S(ξ) v̂0(ξ),

v̂(ξ) = i

(
p+ κ |ξ|2

|ξ|2

α2 +1

)
etλ+−etλ−
ν|ξ|S(ξ) q̂0(ξ) +

1
2

(
(1− i

S(ξ))e
tλ+ + (1 + i

S(ξ))e
tλ−
)
v̂0(ξ),

with:

S(ξ) =
√
−gα|ξ|2) =

√
4

ν2|ξ|2 (p + κ
|ξ|2

|ξ|2
α2 + 1

)− 1 (2.14)

and

λ± = −ν|ξ|
2

2
(1± iS(ξ)).

-For the high frequencies (∆ > 0), when |ξ| > √
xα, we have:





q̂(ξ) = 1
2

(
(1− 1

R(ξ))e
tλ+ + (1 + 1

R(ξ))e
tλ−
)
q̂0(ξ) +

etλ+−etλ−
ν|ξ|R(ξ) v̂0(ξ),

v̂(ξ) = −
(
p+ κ |ξ|2

|ξ|2

α2 +1

)
etλ+−etλ−
ν|ξ|R(ξ) q̂0(ξ) +

1
2

(
(1 + 1

R(ξ))e
tλ+ + (1− 1

R(ξ))e
tλ−
)
v̂0(ξ),
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with:

R(ξ) =
√
gα(|ξ|2) =

√
1− 4

ν2|ξ|2 (p+ κ
|ξ|2

|ξ|2
α2 + 1

) (2.15)

and

λ± = −ν|ξ|
2

2
(1±R(ξ)).

Remark 8 As in [9] it is crucial for the time integration to observe that

p+ κ
|ξ|2

|ξ|2
α2 + 1

=
ν2|ξ|2
4

(1−R(ξ))(1 +R(ξ)).

2.3.2 Thresholds

As in [9] we can find another threshold frequency yα > xα of size α2 (in each case for
ν2

4κ) that will enable us to push the parabolic regularization until frequencies of size α.
In the present paper we will have explicit expressions. Let us first remark that rewriting
function gα into the following form immediately implies that this is an increasing function
from [0,∞[ to ]−∞, 1[:

gα(x) = 1− 4p

ν2
1

x
− α2

M

1

x+ α2
with M

def
=

ν2

4κ
(2.16)

If β ∈ [0, 1[ we easily compute that there is a unique positive solution of the equation
gα(x) = β given by:

xα,β =
1

2

(
−A+

√
16p

(1− β)ν2
α2 +A2

)
where A =

1

M
α2(M − 1

1− β
)− 1

1− β

4p

ν2
.

so that we immediately have the following asymptotics when α is large:

xα,β ∼





(
1

M(1− β)
− 1

)
α2 if M < 1

1−β ,

2

ν

√
p

1− β
α if M = 1

1−β ,

4p

ν2
M

(1− β)M − 1
if M > 1

1−β .

Remark 9 The previous proposition is obviously a particular case of this result.

We are now able to define the second threshold yα:

gα(yα) =





1

2
if M ≤ 1,

1− 1

2M
≥ 1

2
if M ≥ 1,

where M =
ν2

4κ
. (2.17)

Using the previous result for β = 1
2 or 1− 1

2M according to the case for M , we obtain

12



Proposition 3 With the same notations we have that:

• If M ≥ 1, yα ∼
α→∞

α2 and for all α,

α2 ≤ yα ≤ 2α2.

• If M ≤ 1, yα ∼
α→∞

( 2
M − 1)α2 and for all α,

α2 ≤ (
2

M
− 1)α2 ≤ yα ≤ (

2

M
− 1

2
)α2.

2.3.3 Pointwise estimates

Now that we have defined the frequency thresholds xα and yα we have the following
estimates. Up to the values of m and the second exponential from the density in the
second case, they are the same as in [9] to where we refer for details or proofs:

Proposition 4 Under the previous notations, there exists a constant C, such that for
all j ∈ Z and all ξ ∈ 2jC where C is the annulus {ξ ∈ Rd, c0 = 3

4 ≤ |ξ| ≤ C0 = 8
3}, we

have the following estimates (we denote by fj = ∆̇jf and we refer to the appendix for
details on the Littlewood-Paley theory):

• If |ξ| < √
xα:





(1 + ν2j)|q̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
(1 + ν2j)|q̂0,j(ξ)|+ (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
(1 + ν2j)(1 +

√
p)(1 + 4κ

ν2 )|q̂0,j(ξ)|+ |v̂0,j(ξ)|
)
.

• If
√
xα < |ξ| < √

yα:





(1 + ν2j)|q̂j(ξ)| ≤ C
1−me

− νtc202
2j

4
(1−m)

(
(1 + ν2j)|q̂0,j(ξ)| + (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ C
1−me

− νtc202
2j

4
(1−m)

(
ν2j |q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
,

where m =
√
gα(yα) =

1√
2
if M = ν2

4κ ≤ 1, m =
√

1− 1
2M if M ≥ 1.

• If |ξ| > √
yα >

√
xα:





(1 + ν2j)|q̂j(ξ)| ≤ C

(
e−

νt|ξ|2

2 + e−
κ
2ν
α2t

)(
(1 + ν2j)|q̂0,j(ξ)|+ (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ C

(
e−

νtc202
2j

4 +
(
1−

√
gε(c202

2j)
)
e−

νtc202
2j

2

(
1−
√
gε(C2

02
2j )
)) (

ν2j|q̂0,j(ξ)|+ |v̂0,j(ξ)|
)
.
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2.3.4 Time estimates

As in [9], due to the choice c0 = 3/4 and C0 = 8/3 (see the appendix), we can observe
that there exist at most two indices j

α
= jα − 1 or j

α
= jα such that

√
yα ∈ 2j [c0, C0]

for j ∈ {j
α
, jα}.

We refer to [9] for the proof of the following proposition that implies Proposition 1.

Proposition 5 Under the same assumptions as in Proposition 1, there exists a constant
C such that for all j ∈ Z (denoting M = ν2

4κ):

• For all j ≤ jα,

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 + (1 + ν2j)

(
‖qj‖L∞

t L2 + ν22j‖qj‖L1
tL

2

)
≤

Cmax(
1

M
,M2)

(
(1 + ν2j)(1 +

√
p)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
,

(2.18)

• For all j > jα,

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 + (1 + ν2j)

(
‖qj‖L∞

t L2 +
ν

ε2
‖qj‖L1

tL
2

)
≤

Cmax(1,M)

(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
.

(2.19)

2.4 Advected linear estimates

The difficulties and methods exposed here are the same as in [9], so we will roughly
explain them and focus on what is new.

In order to prove Theorem 4, a natural idea is to use Proposition 1 and put the
advection terms as external forces. Unfortunately, there are some obstacles: the main
problem is that in v ·∇q, the term Ṫv∇q can be estimated in Ḃs−1

2,1 but not in Ḃs
2,1 because

it is not enough regular in high frequencies.
A direct use of the linear estimates will be useful only for the low frequencies (j ≤ 0),

and in the high frequency regime (j > 0), we will perform a Langrangian change of
variable (as in [22], [23], [15], [6], [9]) in order to get rid of v · ∇q. We then aim to
use on the new system our linear estimates but we have to be careful with the external
force terms introduced by the change of variable. Most of the work in [9] was to provide
estimates on the commutator of the non-local operator from the capillarity term and the
Lagrangian change of variable.

For all j ∈ Z and t ∈ I, we introduce:

Uj(t) = ‖∆̇ju‖L∞
t L2+ν02

2j‖∆̇ju‖L1
tL

2+(1+ν2j)

(
‖∆̇jq‖L∞

t L2 + νmin(
1

ε2
, 22j)‖∆̇jq‖L1

tL
2

)

(2.20)
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and

U(t) = ‖u‖
L̃∞
t Ḃs−1

2,1
+‖q‖

L̃∞
t Ḃs−1

2,1
+ν‖q‖

L̃∞
t Ḃs

2,1
+ν0‖u‖L̃1

t Ḃ
s+1
2,1

+ν‖q‖
L̃1
t Ḃ

s+1,s−1
ε

+ν2‖q‖
L̃1
t Ḃ

s+2,s
ε

.

(2.21)

2.4.1 Low frequencies

For the low frequencies, we obtain (see [9] section 3.1 for details) that there exists a
nonnegative summable sequence whose sum is 1, denoted by (cj(t))j∈Z such that for all
j ≤ 0, K > 0 (to be chosen later), and if α ≥ N1/ log 2 (we refer to [9] section 3.1
for this, and to the appendix for N1 which is a constant related to c0 and C0 in the
Littlewood-Paley decomposition, such that if |j− l| > N1 then ∆̇j ◦ ∆̇l = 0, in our choice
of c0 and C0, N1 = 1).

Uj(t) ≤ C
p, ν

2

4κ

[
Uj(0) + (1 + ν2j)‖∆̇jF‖L1

tL
2 + ‖∆̇jG‖L1

tL
2

+
1

2K
2−j(s−1)

∫ t

0
cj(τ)

(
ν0‖u‖Ḃs+1

2,1
+ ν‖q‖

Ḃs+1,s−1
α

+ ν2‖q‖
Ḃs+2,s

α

)
dτ

+ C2K

2
2−j(s−1)

∫ t

0
cj(τ)

(
(
max(1,

1

ν3
) +

1

ν0

)
‖v(τ)‖2

Ḃ
d
2
2,1

+C‖v(τ)‖
Ḃ

d
2+1

2,1

)
U(τ)dτ

]
.

(2.22)

Remark 10 As pointed out in [9] (remark 29) using the linear estimates for the low
frequency case, allows us to get rid of another difficulty introduced by the change of
variables: in low frequencies some of the additional external force terms have too much
regularity to be absorbed by the left-hand side, and not enough regularity to be controlled
with a view to apply the Gronwall lemma. The only way to control them would be to
use interpolation arguments that would introduce linear time dependant coefficients, and
prevent us to get global in time results.

2.4.2 Lagrangian change of coordinates

As explained, in order to get rid of the advection terms involved in system (LOPα) the
first step is to consider the following localized equations (as usual we set fj = ∆̇jf ...):

{
∂tqj + Ṡj−1v.∇qj + div uj = fj,

∂tuj + Ṡj−1v.∇uj −Auj + p∇qj − κα2∇(φα ∗ qj − qj) = gj ,

where the external force terms are defined by:

fj = Fj +
(
Ṡj−1v.∇qj − ∆̇j(v.∇q)

)
and gj = Gj +

(
Ṡj−1v.∇uj − ∆̇j(v.∇u)

)
.

Both of these terms can be estimated thanks to the following commutator estimate from
[15] (we refer to lemma B.1 from appendix B):
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Lemma 1 ([15]) There exists a sequence (cj)j∈Z ∈ l1(Z) such that ‖c‖l1(Z) = 1 and a
constant C = C(d, σ) such that for all j ∈ Z,

‖Ṡj−1v.∇hj − ∆̇j(v.∇h)‖L2 ≤ Ccj2
−jσ‖∇v‖

Ḃ
d
2
2,∞∩L∞

‖h‖Ḃσ
2,1

In order to perform the change of variable we define ψj,t as the flow associated to Ṡj−1v:

{
∂tψj,t(x) = Ṡj−1v(t, ψj,t(x))

ψj,0(x) = x.
(2.23)

we can also write:

ψj,t(x) = x+

∫ t

0
Ṡj−1v(τ, ψj,τ (x))dτ.

Thanks to propositions 8 and 9 from the appendix (we refer to [15] or [6]), there exists
a constant C such that:

‖g ◦ ψj,t‖Lp ≤ eCV ‖g‖Lp for all function g in Lp,

‖Dψ±
j,t‖L∞ ≤ eCV ,

‖Dψ±
j,t − Id‖L∞ ≤ eCV − 1,

‖Dkψ±
j,t‖L∞ ≤ C2(k−1)j

(
eCV − 1

)
for k ≥ 2,

(2.24)

where

V (t)
def
=

∫ t

0
‖∇v(τ)‖L∞dτ. (2.25)

As explained in [9], considering some of the additionnal external force terms at the
point ψ−1

j,t (x) instead of x will help getting uniform estimates with respect to α, so the
jacobian determinant of the change of variable will play a crucial role in our computations
(contrary to the case of lemma 2.6 from [2] where it produces a term that we are not
able to sum here).

{
det(Dψj,t(x)) = e

∫ t
0 (div Ṡj−1v)(τ,ψj,τ(x))dτ ,

det(Dψ−1
j,t (x)) = e−

∫ t
0 (div Ṡj−1v)(τ,Xj (τ,t,x))dτ = e−

∫ t
0 (div Ṡj−1v)(τ,ψj,τ ◦ψ−1

j,t (x))dτ ,
(2.26)

where Xj(τ, t, x)) denotes the two parameter flow associated to Ṡj−1v (we refer to (4.88)
in the appendix).

Let us now perform the lagrangian change of variable, for a function h, we define
h̃ = h ◦ ψj,t = h(t, ψj,t). Then we have ∂tq̃j(t, x) = (∂tqj + Ṡj−1v.∇qj)(t, ψj,t(x)), which
provides the following system:

{
∂tq̃j + div ũj = f̃j +R1

j ,

∂tũj −Aũj + p∇q̃j − κα2∇(φα ∗ q̃j − q̃j) = g̃j +R2
j +R3

j + κRj ,
(2.27)
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where the remainder terms R1
q , R

2
q and R3

q are exactly the same as in [6] and [9] (with

the same convention: if f : Rd → Rm is a differentiable function then Df denotes the
Jacobian matrix of f, and ∇f is the transposed matrix of Df.):

R1
j (t, x) := Tr

(
∇ũj(t, x) · (Id −∇ψ−1

j,t (ψj,t(x)))
)
,

R2
j (t, x) := ∇q̃j(t, x) · (∇ψ−1

j,t (ψj,t(x))− Id)

and R3
j := µR4

j + (λ+ µ)R5
j with

R4,i
j (t, x) := Tr

(
(∇ψ−1

j,t (ψj,t(x)) − Id) · ∇Dũij(t, x) ·Dψ−1
j,t (ψj,t(x))

+∇Dũij(t, x) · (Dψ−1
j,t (ψj,t(x))− Id)

)
+∇ũij(t, x) ·∆ψ−1

j,t (ψj,t(x))

R5,k
j (t, x) := Tr

(
Dũj(t, x) · ∂kDψ−1

j,t (ψj,t(x))
)

+
∑

a,b,c,b6=a,c 6=k
∂2bcũ

i
j(t, x) · ∂kψ−1,c

j,t (ψj,t(x)) · ∂aψ−1,b
j,t (ψj,t(x))

+

d∑

i=1

∂2kiũ
i
j(t, x) ·

(
∂kψ

−1,k
j,t (t, ψj,t(x))− Id) · ∂iψ−1,i

j,t (t, ψj,t(x)) + (∂iψ
−1,i
j,t (ψj,t(x))− Id)

)
.

As in [9], the only difference with [6] is the following additionnal remainder term:

Rj = α2(φα ∗ ∇qj −∇qj) ◦ ψj,t − α2(φα ∗ ∇q̃j −∇q̃j). (2.28)

Thanks to the definition of φα and φ we can also write that:

Lα(f)
def
= α2(φα ∗ f − f) = α2

∫

Rd

φ(z)
(
f(x− z

α
)− f(x)

)
dz. (2.29)

As in [9] most of the work consists in obtaining bounds in L1
tL

2 that are uniform with
respect to α, and go to zero when t is small and dealing with Rj is the object of the rest
of this section.

2.4.3 Precisions on the capillary term

Let us first go back to the convolution term written in (2.29): for a function f ,

α2 ̂(φε ∗ f − f)(ξ) = − |ξ|2

1 + |ξ|2
α2

f̂(ξ).

Similarly to [9] we obtain the following equivalence, giving a smooth interpretation of
the hybrid norm. Here again, instead of a fixed frequency threshold there is a continu-
ous transition from the parabolically regularized low frequencies and the damped high
frequencies:

Proposition 6 For any suitable function f and any s ∈ R, we have:

‖f‖
Ḃs+2,s

α
=
∑

j∈Z
min(α2, 22j)2js‖∆̇jf‖L2

∼
∑

j∈Z

22j

1 + 22j

α2

2js‖∆̇jf‖L2 ∼ ‖α2(φε ∗ f − f)‖Ḃs
2,1

(2.30)
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Proof: Thanks to the monotonicity of function x 7→ x/(1 + x), we easily obtain that for
all j ∈ Z:

1

2
min(α2, 22j) ≤ 22j

1 + 22j

α2

≤ min(α2, 22j).

We refer to [9] for details.

Remark 11 In the Lr-setting, we can prove that for all j ∈ Z:

‖α2(φε ∗ ∆̇jf − ∆̇jf)‖Lr ≤ Cmin(α2, 22j)‖∆̇lf‖Lr .

2.4.4 Estimates on the capillary remainder Rj

This section is devoted to giving estimates on the capillary term introduced in (2.28). As

∇q̃j = ∇(qj ◦ ψj,t) = ∇qj ◦ ψj,t ×Dψj,t = ∇qj ◦ ψj,t × (Dψj,t − Id) +∇qj ◦ ψj,t,

we obtain the following decomposition: Rj = Ij + IIj with




Ij = α2(φε ∗ gj − gj) where gj = ∇qj ◦ ψj,t × (Id −Dψj,t),

IIj = α2(φε ∗ ∇qj −∇qj) ◦ ψj,t − α2
(
φε ∗ (∇qj ◦ ψj,t)−∇qj ◦ ψj,t

)
.

(2.31)

So that as in [9], we need to estimate (locally in frequency) the commutator between the
Lagrangian change of variable and the non-local operator Lα defined in (2.29). For a
function f , and all j ∈ Z we set fj = ∆̇jf and:

II ′j = II ′j(f) = α2(φα ∗ fj − fj) ◦ ψj,t − α2
(
φα ∗ (fj ◦ ψj,t)− fj ◦ ψj,t

)
. (2.32)

Theorem 5 Let σ ∈ R. There exists a constant C = Cσ,d such that for all f ∈ Ḃσ+2,σ
α ,

there exists a summable positive sequence (cj(f))j∈Z whose sum is 1 such that for all t
so small that

e2CV − 1 ≤ 1

2
. (2.33)

and for all j ∈ Z,

‖II ′j(f)‖L2 ≤ CeCV (V + e2CV − 1)cj(f)2
−jσ‖α2(φα ∗ f − f)‖Ḃσ

2,1
,

where V (t) =
∫ t
0 ‖∇v(τ)‖L∞dτ .

Remark 12 As a by-product we obtain that under the previous assumptions, if t is
small enough,

α2‖(φε∗∆̇jf)◦ψj,t−φε∗(∆̇jf◦ψj,t)‖L2 ≤ CeCV (V +e2CV −1)cj(f)2
−jσ‖α2(φε∗f−f)‖Ḃσ

2,1
.

Remark that neither of the left-hand side terms are spectrally localized.
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Proof: we refer to [9] for details and here we will only focus on what changes. The first
step is to obtain pointwise estimates and then L2 estimates: as in the works of T. Hmidi,
S. Keraani, H. Abidi and M. Zerguine ([22], [23], [24] and [25]) we wish to retrieve the
desired Besov norm thanks to an equivalent expression of II ′j as an integral formulation
involving finite differences of f of order 1 (that is expressions of the type τ−yf − f where
τ−yf(x) = f(x + y)) or order 2. Like in [9] we need to directly consider II ′j(ψ

−1
j,t (x))

instead of simply II ′j(x) and we obtain:

II ′j(ψ
−1
j,t (x)) = α2

∫

Rd

φ(z)
(
fj(x− z

α
)− fj(x)

)
×


1−

φ
(
α
(
ψ−1
j,t (x)− ψ−1

j,t (x− z
α)
))

φ(z)
e
−
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x− z

α
))dτ


 dz. (2.34)

Remark 13 We emphasize here that the previous quotient is well defined near zero and
we refer to section (2.1).

We have to face the same problem as in [9]: as we want to estimate the L2 norm of this
quantity, that is a Besov norm with integer regularity index s = 0, the finite difference of
order 1 will not be sufficient for our need, and we will have to introduce finite differences
of order 2 (this is a classical problem for integer indices). Indeed, using the present
quantity would only involve a term in |y|/α and when estimating in low frequencies,
there would be either an extra multiplicative coefficient α or an extra derivative term
2−j (that would prevent any convergence when −j is large). To be able to do a correct
estimate we need at least |y|2/α2.

For this, we simply write II ′j = 1
2 (II

′
j + II ′j), and perform the change of variable

z = −y in the second integral. If we set:





R− =
φ
(
α
(
ψ−1
j,t (x)− ψ−1

j,t (x− z
α )
))

φ(z)
,

R+ =
φ
(
α
(
ψ−1
j,t (x)− ψ−1

j,t (x+ z
α )
))

φ(z)
,

B− =

∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x− z

α
))dτ,

B+ =

∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x+

z

α
))dτ,

(2.35)

then

II ′j(ψ
−1
j,t (x)) =

α2

2

∫

Rd

φ(z)
(
fj(x− z

α
)− fj(x)

)
[1−R−e

−B− ]dz

+
α2

2

∫

Rd

φ(z)
(
fj(x+

z

α
)− fj(x)

)
[1−R+e

−B+ ]dz = IIIj(x) + IVj(x). (2.36)
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where




IIIj(x) =
α2

2

∫

Rd

φ(z)
(
fj(x− z

α
) + fj(x+

z

α
)− 2fj(x)

)
[1−R−e

−B− ]dz,

IVj(x) =
α2

2

∫

Rd

φ(z)
(
fj(x+

z

α
)− fj(x)

)
[R−e

−B− −R+e
−B+ ]dz.

(2.37)

Taking L2 norms we have:

‖II ′j ◦ ψ−1
j,t ‖L2 ≤ ‖IIIj‖L2 + ‖IVj‖L2 , (2.38)

and thanks to estimates on the Jacobian determinant of the flow (see 2.24), theorem 5
is immediately implied by the following proposition:

Proposition 7 Under the previous assumptions, there exist a positive constant C = Cσ,d
and a nonnegative sequence (cj = cj(f))j∈Z whose sum is 1, such that if t is so small
that e2CV (t) − 1 ≤ 1

2 , we have:

‖IIIj‖L2 + ‖IVj‖L2 ≤ C(V + e2CV − 1)eCV 2−jσcj‖α2(φα ∗ f − f)‖Ḃσ
2,1
.

To prove this result we will successively prove the following lemmas:

Lemma 2 There exists a constant C only depending on the dimension d such that for
all j ∈ Z, f , and all t is so small that e2CV (t) − 1 ≤ 1

2 ,

‖IIIj‖L2 ≤ CeCV (V + e2CV − 1)

× α2

∫

Rd

e−
|z|
8
1 + |z|− 1

2

|z|d− 3
2

‖fj(.−
z

α
) + fj(.+

z

α
)− 2fj(.)‖L2dz, (2.39)

and

‖IVj‖L2 ≤ CeCV (V + e2CV − 1)

× α2

∫

Rd

e−
|z|
8
1 + |z|− 1

2

|z|d− 3
2

min(1,
2j |z|
α

)‖fj(.+
z

α
)− fj(.)‖L2dz, (2.40)

where V is defined in (2.25).

Lemma 3 For all σ ∈ R there exists a constant Cσ,d such that for any f ∈ Ḃσ
2,1, there

exists a nonnegative summable sequence (cj(f))j∈Z with ‖cj(f)‖l1(Z) = 1, such that

α2

∫

Rd

e−
|z|
8
1 + |z|− 1

2

|z|d− 3
2

‖fj(.−
z

α
) + fj(.+

z

α
)− 2fj(.)‖L2dz

+ α2

∫

Rd

e−
|z|
8
1 + |z|− 1

2

|z|d− 3
2

min(1,
2j |z|
α

)‖fj(.+
z

α
)− fj(.)‖L2dz

≤ Cσ,d2
−jσcj(f)‖α2(φα ∗ f − f)‖Ḃσ

2,1
. (2.41)
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Proof of lemma 2: A direct estimate gives:

‖IIIj‖L2 ≤ α2

2

∫

Rd

φ(z)‖fj(· −
z

α
) + fj(·+

z

α
)− 2fj(·)‖L2

x
‖1−R−e

−B−‖L∞
x
dz,

and

‖IVj‖L2 ≤ α2

2

∫

Rd

φ(z)‖fj(·+
z

α
)− fj(·)‖L2

x
‖R−e

−B− −R+e
−B+‖L∞

x
dz,

So that we first have to focus on the L∞ norms:

Lemma 4 Under the same assumptions, for all η ∈]0, 1[, there exists three constants C,
Cd and Cd,η such that for all j ∈ Z, all f , and all t > 0 so small that e2CV (t) − 1 ≤ 1

2 , we
have:

‖1 −R−e
−B−‖L∞

x
≤ Cd,ηe

CdV (t)(e2CV − 1 + V )e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1
2 ).

‖R−e
−B− −R+e

−B+‖L∞
x

≤ Cd,ηe
CdV (t)(e2CV − 1 + V )min(1,

2j |z|
α

)e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1
2 ). (2.42)

Proof of Lemma 4: as in [9] every term is close to 1 when t is small and we obtain the
result by carefully estimating the differences between these terms. For this we write:

{
Q1 = 1−R−e−B− = 1−R− +R−(1− e−B−),

Q2 = R−e−B− −R+e
−B+ = (R− −R+)e

−B− +R+(e
−B− − e−B+).

(2.43)

Thanks to the following elementary consequence of the mean-value theorem:

Lemma 5 For any x, y ∈ R, |ex − ey| ≤ |x− y|emax(x,y).

we obtain (we refer to [9] for details) that there exists a constant C > 0 such that (we
refer to theorem 5 for the definition of V ):





|1− e−B− | ≤ CV (t)eCV (t),

|e−B− | ≤ eCV (t),

|e−B− − e−B+ | ≤ 2CV (t)e2CV (t) min(1,
|z|2j
α

).

(2.44)

We now turn to the estimates involving R±. As obtained in (2.7), the interaction potential
can be expressed thanks to the modified Bessel function of second kind K d

2
−1:

φ(x) =
Cd

|x| d2−1
K d

2
−1(|x|),

so that if we denote by Y± the variation ratio of the flow:

Y±
def
=

∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z
α)
∣∣

|z|
α

(2.45)
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we have the expression:

R± =

(
1

Y±

) d
2
−1 K d

2
−1(α

∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z
α)
∣∣)

K d
2
−1(|z|)

=

(
1

Y±

) d
2
−1 K d

2
−1(|z|Y±)

K d
2
−1(|z|)

. (2.46)

We bound the first factor thanks to the following estimates on the variation ratio:

Lemma 6 ([9] section 3.4) Under the general previous assumptions, for all x, z ∈ Rd

with z 6= 0, we have:
e−CV (t) ≤ Y± ≤ eCV (t)

and

|Y± − 1| ≤ e2CV (t) − 1,

∣∣∣∣
1

Y±
− 1

∣∣∣∣ ≤ e2CV (t) − 1.

Using the upper and lower bounds for φ given by proposition 11, we can write that for a
fixed η ∈]0, 1[ (to be precised later) there exists a constant Cd,η such that:

R± ≤ Cd,ηe
C(d

2
−1)V (t) e−(1−η)α

∣∣ψ−1
j,t (x)−ψ

−1
j,t (x±

z
α
)
∣∣

(
α
∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z
α)
∣∣
) d−1

2

e|z| ·
{
|z| d2−1 if d > 2,

(1 + |z| 12 ) if d = 2.
.

that is, with the previous notations:

R± ≤ Cd,ηe
C(d

2
−1)V (t)e|z|(1−(1−η)Y±)

(
1

Y±

) d−1
2 1

|z| d−1
2

·
{
|z| d2−1 if d > 2,

(1 + |z| 12 ) if d = 2.
.

and then
R± ≤ Cd,ηe

C(d− 3
2
)V (t)eη|z|e(1−η)|z|(1−Y±)(1 + |z|− 1

2 ).

Thanks again to lemma 6, we finally obtain:

R± ≤ Cd,ηe
CdV (t)e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1

2 ). (2.47)

There two terms left to estimate: 1−R− and R− −R+. Again, we simply write that:

1−R± = P1+P2 =

[
1−

(
1

Y±

) d
2
−1
]
+

(
1

Y±

) d
2
−1
[
1−

K d
2
−1(α

∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z
α)
∣∣)

K d
2
−1(|z|)

]
.

An elementary use of the mean-value theorem to the function h(y) = y
d
2
−1 gives that

(we recall that in lemma 6, we proved e−CV (t) ≤ Y± ≤ eCV (t)):

|h(1) − h(
1

Y±
)| ≤ |1− 1

Y±
|(d
2
− 1) sup

y∈[e−CV (t),eCV (t)]

y
d
2
−2 ≤ Cd|1−

1

Y±
|eC| d

2
−2|V (t), (2.48)

that is:
|P1| ≤ Cd(e

2CV (t) − 1)eCdV (t) (2.49)
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Moreover, the second term is bounded by:

|P2| ≤
eCdV (t)

K d
2
−1(|z|)

∣∣∣K d
2
−1(|z|) −K d

2
−1(α

∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z

α
)
∣∣)
∣∣∣

Similarly, we can write that:

∣∣∣K d
2
−1(|z|) −K d

2
−1(α

∣∣ψ−1
j,t (x)− ψ−1

j,t (x± z

α
)
∣∣)
∣∣∣

≤ |z||Y± − 1|
∫ 1

0

∣∣∣K ′
d
2
−1

(
|z|(1 + u(|Y± − 1|)

)∣∣∣ du

≤ (e2CV (t) − 1)|z| · sup
y∈

[
|z|
(
1−(e2CV (t)−1)

)
,|z|
(
1+(e2CV (t)−1)

)]
∣∣∣K ′

d
2
−1

(y)
∣∣∣ . (2.50)

If t is so small that e2CV (t)−1 ≤ 1
2 , then thanks to the bound for K ′

d
2
−1

from proposition

11 we obtain that:

∣∣∣K d
2
−1(|z|)−K d

2
−1(α

∣∣ψ−1
j,t (x)−ψ−1

j,t (x±
z

α
)
∣∣)
∣∣∣ ≤ (e2CV (t)−1)|z| · sup

y∈[ 12 |z|,
3
2
|z|]
Cd,η

e−(1−η)y

y
d+1
2

≤ Cd,η(e
2CV (t) − 1)

e−(1−η)|z|
(
1−(e2CV (t)−1)

)

|z| d−1
2

. (2.51)

Gathering this with the lower bound for K d
2
−1 from proposition 11, we finally bound P2:

|P2| ≤ eCdV (t)Cd,η(e
2CV (t) − 1)

e−(1−η)|z|
(
1−(e2CV (t)−1)

)

|z| d−1
2

· e|z| ·
{
|z| d2−1 if d > 2,

(1 + |z| 12 ) if d = 2

≤ Cd,ηe
CdV (t)(e2CV (t) − 1)eη|z|e(1−η)|z|(e

2CV (t)−1)(1 + |z|− 1
2 ). (2.52)

Finally together with (2.49), we finally obtain the estimate:

|1−R±| ≤ Cd,ηe
CdV (t)(e2CV (t) − 1)e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1

2 ). (2.53)

Let us finally turn to the last term: R− −R+. Using the notations, we can write:

R− −R+ =

(
1

Y−

) d
2
−1 K d

2
−1(|z|Y−)

K d
2
−1(|z|)

−
(

1

Y+

) d
2
−1 K d

2
−1(|z|Y+)

K d
2
−1(|z|)

=

[(
1

Y−

) d
2
−1

−
(

1

Y+

) d
2
−1
]
K d

2
−1(|z|Y−)

K d
2
−1(|z|)

+

(
1

Y+

)d
2
−1 K d

2
−1(|z|Y−)−K d

2
−1(|z|Y+)

K d
2
−1(|z|)

= P ′
1 + P ′

2. (2.54)

As we did in (2.48), if k(y) = y−(d
2
−1), we can write:

|k( 1

Y−
)− k(

1

Y+
)| ≤ Cd|Y− − Y+|eCdV (t),
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The other term in P ′
1 has already been estimated when estimating R±:

K d
2
−1(|z|Y−)

K d
2
−1(|z|)

≤ Cd,ηe
CdV (t)e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1

2 ),

and we get that:

|P ′
1| ≤ Cd,ηe

CdV (t)|Y− − Y+|e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1
2 ) (2.55)

For P ′
2, as in (2.50), we can write:

∣∣∣K d
2
−1(|z|Y−)−K d

2
−1(|z|Y+)

∣∣∣ ≤ |z||Y− − Y+|
∫ 1

0

∣∣∣∣K ′
d
2
−1

(
|z|
(
(1− u)Y+ + uY−

))∣∣∣∣ du

≤ |z||Y− − Y+|
∫ 1

0

∣∣∣∣K ′
d
2
−1

(
|z|+ |z|

(
(1− u)(Y+ − 1) + u(Y− − 1)

))∣∣∣∣ du

≤ |z||Y− − Y+| · sup
y∈

[
|z|
(
1−(e2CV (t)−1)

)
,|z|
(
1+(e2CV (t)−1)

)]
∣∣∣K ′

d
2
−1

(y)
∣∣∣

≤ Cd,η|Y− − Y+|
e−(1−η)|z|

(
1−(e2CV (t)−1)

)

|z| d−1
2

. (2.56)

Using once again the lower bound for K d
2
−1 implies that:

|P ′
2| ≤ Cd,ηe

CdV (t)|Y− − Y+|e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1
2 ).

and together with (2.55), this implies that:

|R− −R+| ≤ Cd,ηe
CdV (t)|Y− − Y+|e|z|[η+(1−η)(e2CV (t)−1)](1 + |z|− 1

2 ). (2.57)

Thanks to lemma 6, we get:

|Y− − Y+| ≤ eCV (t)(e2CV (t) − 1). (2.58)

Unfortunately, as explained, this will not be sufficient: this estimate is useful for high
frequencies j, but after integration in z, the result is not summable when j goes to −∞.
This is why, as in [9], we need a much more precise estimate on |Y− − Y+|:

|Y− − Y+| =
α

|z|
(∣∣ψ−1

j,t (x)− ψ−1
j,t (x− z

α
)
∣∣−
∣∣ψ−1
j,t (x)− ψ−1

j,t (x+
z

α
)
∣∣
)

=
α

|z|

∣∣ψ−1
j,t (x)− ψ−1

j,t (x− z
α )
∣∣2 −

∣∣ψ−1
j,t (x)− ψ−1

j,t (x+ z
α)
∣∣2

∣∣ψ−1
j,t (x)− ψ−1

j,t (x− z
α)
∣∣+
∣∣ψ−1
j,t (x)− ψ−1

j,t (x+ z
α)
∣∣ =

α

|z|
Nj

Dj
(2.59)

As in the proof of lemma 8 from [9], we simply use the identity |a|2 − |b|2 = (a+ b|a− b)
and write:

Nj =
(
2ψ−1

j,t (x)− ψ−1
j,t (x− z

α
)− ψ−1

j,t (x+
z

α
)
∣∣∣ψ−1
j,t (x− z

α
)− ψ−1

j,t (x+
z

α
)
)

≤
∣∣2ψ−1

j,t (x)− ψ−1
j,t (x− z

α
)− ψ−1

j,t (x+
z

α
)
∣∣ ·
∣∣ψ−1
j,t (x− z

α
)− ψ−1

j,t (x+
z

α
)
∣∣ (2.60)
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Thanks to the mean value theorem (used twice for the first factor and once for the
second), we can write:

Nj ≤ (
|z|
α
)2‖D2ψ−1

j,t ‖L∞ × (
|z|
α
)‖Dψ−1

j,t ‖L∞ ,

and using the estimates for the flow (see (2.24)), we obtain that

Nj ≤ eCV (eCV − 1)
2j |z|3
α3

.

On the other hand,

Dj =
|z|
α
(Y+ + Y−) ≥ 2e−CV (t) |z|

α
.

From these estimates, we easily conclude that:

|Y− − Y+| ≤
α

|z| × eCV (eCV − 1)
2j |z|3
α3

× 1

2
eCV

α

|z| ≤ e2CV (eCV − 1)
2j |z|
α

.

Then, combined with (2.58), we obtain:

|Y− − Y+| ≤ e2CV (e2CV − 1)min(1,
2j |z|
α

). (2.61)

and then, thanks to (2.57), we obtain that:

|R−−R+| ≤ Cd,ηe
CdV (t)(e2CV −1)min(1,

2j |z|
α

)e|z|[η+(1−η)(e2CV (t)−1)](1+ |z|− 1
2 ). (2.62)

Gathering (2.44), (2.47), (2.53) and (2.62), we obtain the result from lemma 4. �

End of the proof of lemma 2. Thanks to lemma 4, and proposition 11 (with the
same η), all that remains is to estimate the following function:

φ(z)e|z|[η+(1−η)(e2CV (t)−1)] ≤ Cd,η
e−(1−η)|z|

|z|d− 3
2

e|z|[η+(1−η)(e2CV (t)−1)]

≤ Cd,η
1

|z|d− 3
2

e|z|[−1+2η+(1−η)(e2CV (t)−1)] (2.63)

Using that e2CV (t) − 1 ≤ 1
2 , we have

−1 + 2η + (1− η)
(
e2CV (t) − 1

)
≤ −1

2
+

3

2
η ≤ −1

8

if we choose η = 1
4 (in fact we need η < 1

3). �

Proof of lemma 3: as fj = ∆̇jf , we can write that for all x and z,

fj(x− z

α
) + fj(x+ ε

z

α
)− 2fj(x) =

(
τ− z

α
∆̇jf + τ z

α
∆̇jf − 2∆̇jf

)
(x)

and we refer to [9] (proof of lemma 5) for the following result which is adapted from [2]
(theorems 2.36 and 2.37):
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Lemma 7 Under the same assumtptions, there exists a nonnegative summable sequence
of summation 1, that we will also denote by (cj)j∈Z, such that:

‖τ− z
α
∆̇jf + τ z

α
∆̇jf − 2∆̇jf‖L2

≤ Cσ2
−jσcj max(α−2, 2−2j)‖α2(φα ∗ f − f)‖Ḃσ

2,1
min(1,

22j |z|2
α2

) (2.64)

‖τ z
α
∆̇jf − ∆̇jf‖L2

≤ Cσ2
−jσcj max(α−2, 2−2j)‖α2(φα ∗ f − f)‖Ḃσ

2,1
min(1,

2j |z|
α

) (2.65)

It appears then clearly that both integrals are bounded by:

Cσ2
−jσcj‖α2(φα∗f−f)‖Ḃσ

2,1
max(α−2, 2−2j)α2×I = Cσ2

−jσcj‖α2(φα∗f−f)‖Ḃσ
2,1

max(1,
α2

22j
)×I,

where we define:

I
def
=

∫

Rd

e−
|z|
8
1 + |z|− 1

2

|z|d− 3
2

min(1,
22j |z|2
α2

)dz = Cd

∫ ∞

0
e−

r
8
1 + r−

1
2

rd−
3
2

min(1,
22jr2

α2
)rd−1dr

= Cd

∫ ∞

0
e−

r
8 (1 + r

1
2 )min(1,

22jr2

α2
)dr = Cd(I1 + I2), (2.66)

where we have splitted the integral into:

I1 =
22j

α2

∫ α

2j

0
e−

r
8 r2(1 + r

1
2 )dr and I2 =

∫ ∞

α

2j

e−
r
8 (1 + r

1
2 )dr.

As in [9], the second integral is easily bounded: as there exists a constant C > 0 such

that for all x > 0, (1 + r
1
2 )e−

r
8 ≤ Ce−

r
16 , we have

I2 ≤ C

∫ ∞

α

2j

e−
r
16 dr ≤ 16Ce−

1
16

α

2j .

For the second integral, if we use the same argument, we get the estimate:

I1 ≤ C
22j

α2

∫ α

2j

0
e−

r
16 dr ≤ 16C

22j

α2
min(1,

α

2j
) (2.67)

which, multiplied by max(1, α
2

22j
) gives a resulting term in max(1, 2

j

α ) that is not summable
for high frequencies. To overcome this difficulty we simply write that there is a constant
C ′ > 0 such that for all r ∈ [0, α

2j
],

r2(1 + r
1
2 )e−

r
8 ≤ α

2j
r(1 + r

1
2 )e−

r
8 ≤ C ′ α

2j
e−

r
16 .

and then we obtain:

I1 ≤ C ′ 2
2j

α2

α

2j

∫ α

2j

0
e−

r
16 dr,
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which is obviously interesting only when α
2j

≤ 1 that is for high frequencies: in this case

it cancels the diverging max(1, 2
j

α ). But in low frequencies this new term is much bigger
that the one from (2.67), so that we have to combine both estimates and finally get that:

I1 ≤ C
22j

α2
min(1,

α

2j
)

∫ α

2j

0
e−

r
16 dr ≤ 16C

22j

α2
min(1,

α2

22j
).

We are now able to estimate I:

I ≤ Cd

(
22j

α2
min(1,

α2

22j
) + e

− 1
16

α

2j

)
,

and then

Cσ2
−jσcj‖α2(φα ∗ f − f)‖Ḃσ

2,1
max(1,

α2

22j
)× I ≤

Cσ2
−jσcj‖α2(φα ∗ f − f)‖Ḃσ

2,1

(
max(1,

α2

22j
)
22j

α2
min(1,

α2

22j
) + max(e

− 1
16

α

2j ,
α2

22j
e
− 1

16
α

2j )

)

≤ Cσ2
−jσcj‖α2(φα ∗ f − f)‖Ḃσ

2,1
, (2.68)

which concludes the proof of lemma 3. �

2.4.5 End of the proof of theorem 4

As this part is strictly the same as in [9] (section 3.5) we will not give details (in particular

we refer to [6] or [9] for estimates on R
1(2,3)
j and to [35]). Going back to system (2.27), we

use the linear estimates from proposition 1: for all l ∈ Z, as q̃j(0) = qj(0, ψj,0(.)) = qj(0),

‖∆̇lũj‖L∞
t L2 + ν02

2l‖∆̇lũj‖L1
tL

2 + (1 + ν2l)

(
‖∆̇lq̃j‖L∞

t L2 + νmin(
1

ε2
, 22l)‖∆̇j q̃j‖L1

tL
2

)

≤ C
p, ν

2

4κ

[
(1 + ν2l)‖∆̇lqj(0)‖L2 + ‖∆̇luj(0)‖L2 + (1 + ν2l)‖∆̇lf̃j + ∆̇lR

1
j‖L1

tL
2

+ ‖∆̇lg̃j + ∆̇lR
2
j + ∆̇lR

3
j + κ∆̇lRj‖L1

tL
2

]
. (2.69)

Thanks to (2.22), all we need is to estimate the high frequencies, that is (qj , uj) for j ≥ 0.
For this, we define some N0 ∈ Z (that will be fixed later), and write:

‖qj‖L2 = ‖q̃j ◦ ψ−1
j,t ‖L2 ≤ eCV ‖q̃j‖L2 ≤ eCV


‖Ṡj−N0 q̃j‖L2 +

∑

l≥j−N0

‖∆̇lq̃j‖L2


 .

We refer to [2] lemma 2.6, or [15], lemma A.1) for the following classical estimates:

‖Ṡj−N0 q̃j‖L2 ≤ CeCV
(
eCV − 1 + 2−N0eCV

)
‖qj‖L2 ,
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so that going back to Uj (we refer to (2.20) for the definition), we can write that for all
j ≥ 0,

Uj(t) ≤ CeCV

[
(
eCV − 1 + 2−N0eCV

)
Uj(t) + max(1, 22N0)C

p, ν
2

4κ

×
∑

l≥j−N0

(
(1 + ν2l)‖∆̇lqj(0)‖L2 + ‖∆̇luj(0)‖L2 + (1 + ν2l)

(
‖∆̇lf̃j‖L1

tL
2 + ‖∆̇lR

1
j‖L1

tL
2

)

+ ‖∆̇lg̃j‖L1
tL

2 + ‖∆̇lR
2
j‖L1

tL
2 + ‖∆̇lR

3
j‖L1

tL
2 + κ‖∆̇lRj‖L1

tL
2

)
]
, (2.70)

We refer to [9] for the estimates on the remainder terms R
1(2,3)
j . Recall that the previous

section is needed to estimate Rj . If we fix N0 > 0 large enough and t so that:





9

4
C · 2−N0 ≤ 1

8
,

9

4
C(eCV − 1)

(
1 + 25N0C

p, ν
2

4κ

(
1 + |λ+ µ|+ µ+ ν

ν0
+

1

ν2
)

)
≤ 1

8

(2.71)

we obtain that for all j ≥ 0,

Uj(t) ≤ 3C25N0C
p, ν

2

4κ

(
(1 + ν2j)‖qj(0)‖L2 + ‖uj(0)‖L2

+ (1 + ν2j)‖Fj‖L1
tL

2 + ‖Gj‖L1
tL

2 +

∫ t

0
2−j(s−1)cj(τ)‖∇v(τ)‖

Ḃ
d
2
2,1

U(τ)dτ

+
κ

ν2
(V + e2CV − 1)

∫ t

0
cj(τ)2

−j(s−1)ν2‖φε ∗ ∇q −∇q
ε2

‖Ḃs−1
2,1

dτ

)
. (2.72)

Now, if t is so small that:

3C25N0C
p, ν

2

4κ

(V + e2CV − 1) ≤ 1

2

ν2

κ
, (2.73)

and if we take K = (2C
p, ν

2

4κ

)−1 in (2.22), then sum over j ∈ Z, we end up with

U(t) ≤ U(t)

2
+C

p, ν
2

4κ

(
U(0) + ‖F‖L1

t Ḃ
s−1
2,1

+ ν‖F‖L1
t Ḃ

s
2,1

+ ‖G‖L1
t Ḃ

s−1
2,1

+ (
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
))

∫ t

0
W ′(τ)U(τ)

)
(2.74)

where

V (t)
def
=

∫ t

0
‖∇v(τ)‖L∞dτ ≤W (t)

def
=

∫ t

0
(‖∇v(τ)‖ ˙

B
d
2
2,1

+ ‖v(τ)‖2 ˙
B

d
2
2,1

)dτ. (2.75)
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and thanks to the Gronwall lemma, we obtain that for t small enough (satisfying condi-
tions (2.33), (2.71) and (2.73)),

U(t) ≤ 2C
p, ν

2

4κ

(
U(0) + ‖F‖L1

t Ḃ
s−1
2,1

+ ν‖F‖L1
t Ḃ

s
2,1

+ ‖G‖L1
t Ḃ

s−1
2,1

)

× e
2C

p, ν
2

4κ

(
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
))W (t)

(2.76)

Then we globalize the result as in [9]. �

2.5 Proof of theorem 2

2.6 Existence and uniqueness

As explained in the introduction, once we have defined the interaction potential φα, we
can follow the very same methods as in [7]: using energy methods gives apriori estimates
on the advected linear system. then the proof for existence and uniqueness is classical
and follows the lines of [2] (section 10.2.3) for the compressible Navier-Stokes system
(see also [14], [12]). In order to use the classical Friedrichs approximation, we define the
frequency truncation operator Jn by: for all n ∈ N and for all g ∈ L2(Rd),

Jng = F−1
(
12−n≤|ξ|≤C02n(ξ)ĝ(ξ)

)
,

and the following approximated system (we omit the dependency in α for more simplic-
ity):

{
∂tqn + Jn (Jnun.∇Jnqn) + Jndiv un = Fn,

∂tun + Jn (Jnun.∇Jnun)−AJnun + P ′(ρ).∇Jnqn − κα2∇(φα ∗ Jnqn − Jnqn) = Gn,

where {
Fn = −Jn

(
Jnqn.div Jnun

)

Gn = Jn
(
K(Jnqn).∇Jnqn − I(Jnqn)AJnun

)

It is easy to check that it is an ordinary differential equation in L2
n × (L2

n)
d, where

L2
n = {u ∈ L2(Rd), Jnu = u}. Getting uniform estimates implies global lifespan if the

initial data is small enough. Then classical compactness arguments give existence of a
global solution.

Remark 14 Let us emphasize that the precise estimates proven in the present paper
cannot be used in the proof of the existence: indeed the term Jn (un.∇qn) is an obtacle for
the lagrangian method to give bounded constants (with respect to n). So for the existence
we simply use the rough apriori estimates given by the classical energy methods (as they
rely on inner products in L2, here Jn has no effect).

To obtain uniqueness for a fixed α, using (2.10) the computations are close to those for
the compressible Navier-Stokes system. As in [2] we need to separate the cases d ≥ 3 and
d = 2 (the case d = 2 is more difficult because of endpoints for the remainder estimates
in the Littlewood-Paley paradecomposition).
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2.6.1 Uniform estimates

Using estimate (2.10) with s = d
2 , we obtain that for all t ∈ R+ (we refer to [7] for the

expressions of the external force terms F and G):

g(t) = ‖(qα, uα)‖
E

d
2
α (t)

≤ C
p, ν

2

4κ

e

C
p, ν

2

4κ

Cvisc

∫ t

0
(‖∇uα(τ)‖

Ḃ
d
2
2,1

+ ‖uα(τ)‖2
Ḃ

d
2
2,1

)dτ

×
(
h(0) + ‖F‖

L̃1
t Ḃ

d
2−1

2,1

+ ν‖F‖
L̃1
t Ḃ

d
2
2,1

+ ‖G‖
L̃1
t Ḃ

d
2−1

2,1

)
(2.77)

Let η > 0 be small (it will be fixed later) and assume that:

g(0)
def
= ‖u(0)‖

Ḃ
d
2−1

2,1

+ ‖q(0)‖
Ḃ

d
2−1

2,1

+ ν‖q(0)‖
Ḃ

d
2
2,1

≤ η.

Let us now define
T = sup{t ∈ R+, g(t) ≤ 2C

p, ν
2

4κ

g(0)}.

As g(0) ≤ η, we have T > 0 (C > 1) and the aim is to prove by contradiction that
T = ∞. Assume that T < ∞, then we obtain that for all t ≤ T , denoting by C = C ′

p, ν
2

4κ

and C ′
visc = Cvisc/ν0

g(t) ≤ Ce2C
2C′

viscη(1+2Cη+e2C
2C′

viscη(1+2Cη))g(0).

So that if η = η(p, ν
2

4κ , Cvisc/ν0) > 0 is small enough then for all t ≤ T , g(t) < 2C
p, ν

2

4κ

g(0)

which contradicts the fact that T is maximal. It then implies that T = ∞.

Remark 15 When for example λ = 0 we have µ = ν = ν0 and for a small ν, C ′
visc ∼ ν−4,

so that the previous condition simply implies that r = η/ν4 ≤ 1 must be small enough

so that e2C
2r(1+2C+e2C

2
) < 2. A sufficient condition is that r satisfies e6rC

2e2C
2

< 2.

2.7 Order parameter estimates

As already explained (see remark 4), we have cα = φα ∗ ρα, so that cα − 1 = φα ∗ qα and
for all s ∈ R, ‖cα − 1‖Ḃs

2,1
≤ ‖qα‖Ḃs

2,1
. Moreover:

‖cα − ρα‖Ḃs
2,1

= ‖φα ∗ qα − qα‖Ḃs
2,1

=
1

α2
‖qα‖Ḃs+2,s

α
=
∑

l∈Z
2lsmin(1,

22l

α2
)‖∆̇lqα‖L2 .

On one hand, thanks to the Lebesgue theorem (for series), for s ∈ {d2 −1, d2} this involves
that:

‖cα − ρα‖
L̃∞(R+,Ḃ

d
2−1

2,1 )
+ ν‖cα − ρα‖

L̃∞(R+,Ḃ
d
2
2,1)

−→
α→∞

0,

and on the other hand, thanks again to the energy estimates, we end up with:

ν‖cα − ρα‖
L1(R+,Ḃ

d
2−1

2,1 )
+ ν2‖cα − ρα‖

L1(R+,Ḃ
d
2
2,1)

≤ C0

α2
.

This concludes the proof of theorem 2. �
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3 Rate of convergence (Theorem 3)

In this section we prove that the solution of (NSOPα) goes to the solution of (K), and
we give estimates of the rate of convergence as α goes to infinity. Here we follow what
we did in [7]: everything relies on Theorem 4. As already explained, if the initial data
satisfy

‖q0‖
Ḃ

d
2−1

2,1

+ ν‖q0‖
Ḃ

d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ η ≤ min(ηK , ηOP ),

then systems (K) and (NSOPα) both have global solutions (q, u) and (qα, uα), and with
the same notations as before, denoting C = C

p, ν
2

4κ

then for all t ∈ R we have,

g
d
2
α (t)

def
= ‖(qα, uα)‖

E
d
2
α (t)

def
= ‖u‖

L̃∞
t Ḃ

d
2−1

2,1

+ ‖q‖
L̃∞
t Ḃ

d
2−1

2,1

+ ν‖q‖
L̃∞
t Ḃ

d
2
2,1

+ ν0‖u‖
L̃1
t Ḃ

d
2+1

2,1

+ ν‖q‖
L̃1
t Ḃ

d
2+1, d2−1
α

+ ν2‖q‖
L̃1
t Ḃ

d
2+2, d2
α

≤ Cη, (3.78)

and

g
d
2 (t)

def
= ‖u‖

L̃∞
t Ḃ

d
2−1

2,1

+ ‖q‖
L̃∞
t Ḃ

d
2−1

2,1

+ ν‖q‖
L̃∞
t Ḃ

d
2
2,1

+ ν0‖u‖
L1
t Ḃ

d
2+1

2,1

+ ν‖q‖
L1
t Ḃ

d
2+1

2,1

+ ν2‖q‖
L1
t Ḃ

d
2+2

2,1

≤ Cη. (3.79)

As in [7], up to an additional forcing term, let us rewrite system (K) with a capillary
term as in system (NSOα):

(K)

{
∂tq + u.∇q + (1 + q)div u = 0,

∂tu+ u.∇u−Au+ P ′(1).∇q − κα2∇(φα ∗ q − q) = K(q).∇q − I(q)Au+Rα,

where the remainder Rα
def
= κ∇

(
∆q − α2(φα ∗ q − q)

)
and K and I are defined in the

introduction. Let us now write the system satisfied by the difference (δq, δu) = (qα −
q, uα − u):

{
∂tδq + uα.∇δq + div δu = δF,

∂tδu + uα.∇δu−Aδu+ P ′(1).∇δq − κα2∇(φα ∗ δq − δq) = δG−Rα,
(3.80)

where




δF

def
=
∑3

i=1 δFi

δG
def
=
∑5

i=1 δGi
with





δF1 = −δu.∇q
δF2 = −δq.div uα
δF3 = −q.div δu

and





δG1 = −δu.∇u
δG2 = (K(qα)−K(q)) .∇qα
δG3 = K(q).∇δq
δG4 = (I(qα)− I(q))Auα
δG5 = −I(q)Aδu.

Except Rα, all these additionnal terms are exactly the same as in [7], so we refer to this
article for details on their estimates and we will only focus on what changes. As η is
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small, we can additionnally assume η ≤ 1, let us denote once again by C a constant only
depending on ν2

4κ and d (that may change from line to line). If we introduce for h ∈ [0, 1[

fα(t)
def
= ‖(δq, δu)‖

E
d
2−h
α (t)

,

then using (2.10), we obtain that for all t ∈ R (see [7] for details),

fα(t) ≤ Ce
2C

Cvisc
ν0

η

×
[∫ t

0
fα(τ)F (τ)dτ +

∫ t

0
‖δu‖

Ḃ
d
2−h+1

2,1

(
‖q‖

Ḃ
d
2−1

2,1

+ (1 + ν)‖q‖
Ḃ

d
2
2,1

)
dτ + ‖Rα‖

L1
t Ḃ

d
2−h−1

2,1

]

≤ Ce
2C

Cvisc
ν0

η

[∫ t

0
fα(τ)F (τ)dτ + η

1

ν0
(1 +

1

ν
)fα(t) + ‖Rα‖

L1
t Ḃ

d
2−h−1

2,1

]
. (3.81)

where

F (t) = ‖q‖
Ḃ

d
2+1

2,1

+ ν‖q‖
Ḃ

d
2+2

2,1

+ ‖u‖
Ḃ

d
2+1

2,1

+ (1 +
1

ν
)‖uα‖

Ḃ
d
2+1

2,1

.

Remark 16 We recall that, due to endpoints in the Littlewood-Paley remainder term
estimates, as in [7] we have the condition h < d − 1, which is why we impose h < 1 in
order to work for any dimension d ≥ 2.

If η is so small that ηCe
2C

Cvisc
ν0

η
max(1, 1

ν0
)(1 + 1

ν ) ≤ 1
2 , then we obtain thanks to the

Gronwall lemma,

fα(t) ≤ Ce
2C

Cvisc
ν0

η‖Rα‖
L1
t Ḃ

d
2−h−1

2,1

eCe
2C

Cvisc
ν0

η ∫ t
0 F (τ)dτ .

Thanks to (3.78) and (3.79) we have,
∫ t

0
F (τ)dτ ≤

(
1

ν
+

1

ν0
(2 +

1

ν
)

)
Cη

so that using the condition on η, we end up with:

fα(t) ≤ C(
Cvisc
ν0

,
ν2

4κ
, d)‖Rα‖

L1
t Ḃ

d
2−h−1

2,1

. (3.82)

Remark 17 For small viscosities, in the case λ = 0, the previous condition on η is

roughly C η
ν2
eC

η

ν4 ≤ 1
2 which is obviously implied by the condition required in the existence

result (see remark 15).

To estimate the remainder in the case h ∈]0, 1[, we simply write that:

R̂α(ξ) = −iκξ |ξ|4
α2 + |ξ|2 q̂(ξ),

which allows us to write:

‖Rα‖
Ḃ

d
2−h−1

2,1

= κ
∑

j∈Z
2j(

d
2
−h−1) 25j

α2 + 22j
‖qj‖L2 = κ

∑

j∈Z
2j(

d
2
+2)‖qj‖L2

2j(2−h)

α2 + 22j

We now consider two cases:
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• If 2j ≥ α then
2j(2−h)

α2 + 22j
= 2−jh

22j

α2 + 22j
≤ α−h,

• If 2j ≤ α then as h ∈ [0, 1[

2j(2−h)

α2 + 22j
=

2j(2−a)

α2
≤ α(2−a)

α2
≤ α−h.

We conclude that:
‖Rα‖

Ḃ
d
2−h−1

2,1

≤ α−h‖q‖
Ḃ

d
2+2

2,1

,

and then

fα(t) ≤ C(
Cvisc
ν0

,
ν2

4κ
, d)‖q‖

L1
t Ḃ

d
2+2

2,1

α−h ≤ C(
Cvisc
ν0

,
ν2

4κ
, d)α−h.

To complete the proof of the theorem, all that remains is to estimate

cα − ρ = φα ∗ ρα − ρ = φα ∗ (ρα − ρ) + φα ∗ ρ− ρ = φα ∗ (qα − q) + φα ∗ q − q

Thanks to what precedes only the last term has to be estimated, and similarly we have

‖φα∗q−q‖
Ḃ

d
2−h−1

2,1

=
∑

j∈Z
2j(

d
2
−h−1) 22j

α2 + 22j
‖qj‖L2 =

∑

j∈Z
2j(

d
2
−1)‖qj‖L2

2j(2−h)

α2 + 22j
≤ α−h‖q‖

Ḃ
d
2−1

2,1

and
‖φα ∗ q − q‖

Ḃ
d
2−h

2,1

≤ α−h‖q‖
Ḃ

d
2
2,1

For the hybrid norms, we do the same :

‖φα ∗ q − q‖
Ḃ

d
2−h+1, d2−h−1
α

≤
∑

j∈Z
2j(

d
2
−h−1)min(α2, 22j)min(1,

22j

α2
)‖qj‖L2

=
∑

j∈Z
2j(

d
2
+1)‖qj‖L2α22−j(h+2)min(1,

22j

α2
)2 ≤ α−h‖q‖

Ḃ
d
2+1

2,1

(3.83)

so that we finally obtain that if h ∈]0, 1[:

‖(ρα − ρ, cα − ρ, uα − u)‖
F

d
2−h
α

≤ C(
Cvisc
ν0

,
ν2

4κ
, d)α−h.

Coming back to (3.82) in the case h = 0, we simply write that:

‖Rα‖Ḃs
2,1

≤ κ
∑

j∈Z
2js23j min(1,

22j

α2
)‖qj‖L2 ,

and thanks to the Lebesgue theorem for series we obtain that the norm ‖(ρα − ρ, cα −
ρ, uα−u)‖

F
d
2−h
α

goes to zero when α goes to infinity, which ends the proof of the theorem.

�
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4 Appendix

The first part is devoted to a quick presentation of the Littlewood-Paley theory and
specific properties for hybrid Besov norms used in this paper. The second section to
general considerations on flows.

4.1 Besov spaces

4.1.1 Littlewood-Paley theory

As usual, the Fourier transform of u with respect to the space variable will be denoted by
F(u) or û. In this section we will briefly state (as in [6]) classical definitions and properties
concerning the homogeneous dyadic decomposition with respect to the Fourier variable.
We will recall some classical results and we refer to [2] (Chapter 2) for proofs (and more
general properties).

To build the Littlewood-Paley decomposition, we need to fix a smooth radial function
χ supported in (for example) the ball B(0, 43), equal to 1 in a neighborhood of B(0, 34) and
such that r 7→ χ(r.er) is nonincreasing over R+. So that if we define ϕ(ξ) = χ(ξ/2)−χ(ξ),
then ϕ is compactly supported in the annulus {ξ ∈ Rd, c0 = 3

4 ≤ |ξ| ≤ C0 = 8
3} and we

have that,

∀ξ ∈ R
d \ {0},

∑

l∈Z
ϕ(2−lξ) = 1. (4.84)

Then we can define the dyadic blocks (∆̇l)l∈Z by ∆̇l := ϕ(2−lD) (that is ̂̇∆lu = ϕ(2−lξ)û(ξ))
so that, formally, we have

u =
∑

l

∆̇lu (4.85)

As (4.84) is satisfied for ξ 6= 0, the previous formal equality holds true for tempered
distributions modulo polynomials. A way to avoid working modulo polynomials is to
consider the set S ′

h of tempered distributions u such that

lim
l→−∞

‖Ṡlu‖L∞ = 0,

where Ṡl stands for the low frequency cut-off defined by Ṡl := χ(2−lD). If u ∈ S ′
h, (4.85)

is true and we can write that Ṡlu =
∑

k≤l−1

∆̇qu. We can now define the homogeneous

Besov spaces used in this article:

Definition 3 For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃs
p,r

:=

(∑

l

2rls‖∆̇lu‖rLp

) 1
r

if r <∞ and ‖u‖Ḃs
p,∞

:= sup
l

2ls‖∆̇lu‖Lp .

We then define the space Ḃs
p,r as the subset of distributions u ∈ S ′

h such that ‖u‖Ḃs
p,r

is

finite.
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Once more, we refer to [2] (chapter 2) for properties of the inhomogeneous and homoge-
neous Besov spaces.

In this paper, we mainly work with functions or distributions depending on both the
time variable t and the space variable x. We denote by C(I;X) the set of continuous
functions on I with values in X. For p ∈ [1,∞], the notation Lp(I;X) stands for the set
of measurable functions on I with values in X such that t 7→ ‖f(t)‖X belongs to Lp(I).

In the case where I = [0, T ], the space Lp([0, T ];X) (resp. C([0, T ];X)) will also be
denoted by LpTX (resp. CTX). Finally, if I = R+ we alternately use the notation LpX.

The Littlewood-Paley decomposition enables us to work with spectrally localized
(hence smooth) functions rather than with rough objects. We naturally obtain bounds for
each dyadic block in spaces of type LρTL

p. Going from those type of bounds to estimates
in LρT Ḃ

s
p,r requires to perform a summation in ℓr(Z). When doing so however, we do

not bound the LρT Ḃ
s
p,r norm for the time integration has been performed before the ℓr

summation. This leads to the following notation (after J.-Y. Chemin and N. Lerner in
[10]):

Definition 4 For T > 0, s ∈ R and 1 ≤ r, ρ ≤ ∞, we set

‖u‖L̃ρ
T
Ḃs

p,r
:=
∥∥2js‖∆̇qu‖Lρ

T
Lp

∥∥
ℓr(Z)

.

It is then possible to define the space L̃ρT Ḃ
s
p,r as the set of tempered distributions u over

(0, T ) × Rd such that limq→−∞ Ṡqu = 0 in Lρ([0, T ];L∞(Rd)) and ‖u‖L̃ρ
T
Ḃs

p,r
< ∞. The

letter T is omitted for functions defined over R+. The spaces L̃ρT Ḃ
s
p,r may be compared

with the spaces LρT Ḃ
s
p,r through the Minkowski inequality: we have

‖u‖
L̃ρ
T
Ḃs

p,r
≤ ‖u‖Lρ

T
Ḃs

p,r
if r ≥ ρ and ‖u‖

L̃ρ
T
Ḃs

p,r
≥ ‖u‖Lρ

T
Ḃs

p,r
if r ≤ ρ.

All the properties of continuity for the product and composition which are true in Besov
spaces remain true in the above spaces. The time exponent just behaves according to
Hölder’s inequality.

Let us now recall a few nonlinear estimates in Besov spaces. Formally, any product
of two distributions u and v may be decomposed into

uv = Tuv + Tvu+R(u, v), where (4.86)

Tuv :=
∑

l

Ṡl−1u∆̇lv, Tvu :=
∑

l

Ṡl−1v∆̇lu and R(u, v) :=
∑

l

∑

|l′−l|≤1

∆̇lu ∆̇l′v.

The above operator T is called a “paraproduct” whereas R is called a “remainder”.
The decomposition (4.86) has been introduced by J.-M. Bony in [3]. We refer to [2] for
properties, and also to [7] or [9] for paraproduct and remainder estimates for external
force terms.

4.1.2 Complements for hybrid Besov spaces

As explained, in the study of the compressible Navier-Stokes system with data in critical
spaces, the density fluctuation has two distinct behaviours in low and high frequencies,
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separated by a frequency threshold. This leads to the notion of hybrid Besov spaces and
we refer to R. Danchin in [12] or [2] for general hybrid spaces . In this paper we only will
use the following hybrid norms:

‖f‖Ḃs+2,s
α

def
=
∑

j∈Z
min(α2, 22j)2js‖∆̇jf‖L2

=
∑

j≤log2 α

2j(s+2)‖∆̇jf‖L2 +
∑

j>log2 α

α22js‖∆̇jf‖L2 . (4.87)

In this formulation, we obviously remark the threshold frequency log2 α which separates
low (parabolically regularized) and high (damped with coefficient α2) frequencies. But
as we prove in (2.30), the frequency transition is in fact continuous and the following
equivalent formulations show that these norms are completely tailored to our capillary
term:

‖f‖Ḃs+2,s
α

∼
∑

j∈Z

22j

1 + 22j

α2

2js‖∆̇jf‖L2 ∼ ‖α2(φε ∗ f − f)‖Ḃs
2,1
.

Exactly as in [9], the non-local capillary term α2(φα ∗∇qα−∇qα) has the same regularity

as the capillary term from the local model∇∆q: both of them belong to L1
t (Ḃ

d
2
−2

2,1 ∩Ḃ
d
2
−1

2,1 ).

4.2 Estimates for the flow of a smooth vector-field

In this section, we recall classical estimates for the flow of a smooth vector-field with
bounded spatial derivatives. We refer to [15] or [6] for more details. We also refer to [22]
for the incompressible Navier-Stokes case.

Proposition 8 Let v be a smooth globally Lipschitz time dependent vector-field. Let
W (t) :=

∫ t
0 ‖∇v(t′)‖L∞ dt′. Let ψt satisfy

ψt(x) = x+

∫ t

0
v(t′, ψt′(x)) dt

′.

Then for all t ∈ R, the flow ψt is a smooth diffeomorphism over Rd and one has if t ≥ 0,

‖Dψ±1
t ‖L∞ ≤ eW (t),

‖Dψ±1
t − Id‖L∞ ≤ eW (t) − 1,

‖D2ψ±1
t ‖L∞ ≤ eW (t)

∫ t

0
‖D2v(t′)‖L∞eW (t′)dt′,

‖D3ψ±1
t ‖L∞ ≤ eW (t)

∫ t

0
‖D3v(t′)‖L∞e2W (t′)dt′ + 3

(
eV (t)

∫ t

0
‖D2v(t′)‖L∞eW (t′)dt′

)2

.

As in [6] we also introduce the two-parameter flow (t, t′, x) 7→ X(t, t′, x) which is (uniquely)
defined by

X(t, t′, x) = x+

∫ t

t′
v
(
t′′,X(t′′, t′, x)

)
dt′′. (4.88)
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Uniqueness for Ordinary Differential Equations entails that

X(t, t′′,X(t′′, t′, x)) = X(t, t′, x).

Hence ψt = X(t, 0, ·) and ψ−1
t = X(0, t, ·).

Proposition 9 Under the previous notations, the jacobian determinant of X satisfies:

det(DX(t, t′, x)) = e
∫ t

t′
(div v)(τ,X(τ,t′,x))dτ , (4.89)

and {
det(Dψt(x)) = e

∫ t
0 (div v)(τ,ψτ (x))dτ ,

det(Dψ−1
t (x)) = e−

∫ t

0
(div v)(τ,X(τ,t,x))dτ = e−

∫ t

0
(div v)(τ,ψτ ◦ψ−1

t (x))dτ .

Proof: differentiating (4.88) with respect to x, one gets by virtue of the chain rule,

DX(t, t′, x) = Id +

∫ t

t′
Dv(τ,X(τ, t′, x)) ·DX(τ, t′, x) dτ. (4.90)

This immediately implies that:

∂t(DX)(t, t′, x) = Dv(t,X(t, t′, x)) ·DX(t, t′, x),

and
∂tdet(DX(t, t′, x)) = tr

(
Dv(t,X(t, t′, x))

)
· det(DX(t, t′, x)),

so that we obtain the result. �.

4.3 Bessel functions

In (2.7) we obtained that the interaction potential can be written the following way:

φ(x) =
Cd

|x| d2−1
K d

2
−1(|x|),

where K is the modified Bessel function of the second kind. In this section we will give
specific properties for this Bessel function.

Remark 18 We refer the reader to [1],[4], [27] or [36] (among a very rich litterature)
for a profusion of results and refinements for the Bessel functions. In this paper we will
restrict to a very limited number of properties of function Kν that will be used in section
2.4.4.

Let us begin with general facts on Bessel functions. If n is an integer, the Bessel function
Jn represents the n-th Fourier coefficient of the function θ 7→ eix sin θ:

∀x ∈ R, Jn(x) =
1

2π

∫ 2π

0
e−inθeix sin θdθ =

1

π

∫ π

0
cos(nθ − x sin θ)dθ.

Alternatively, Jn(x) can be seen as the coefficient of tn in the development of the function

x 7→ e
x
2
(t− 1

t
) into powers of t.
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Remark 19 This function can be extended into Jν(z) with z ∈ C and for Re(ν) > −1
2

but in this paper we will restrict to real variable and an index ν ∈ Z or 1
2 + Z.

For a general index ν, Jν solves the following differential equation:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0.

If ν /∈ Z, a basis of the space of solutions of this differential equation is given by (Jν , J−ν).
If ν = n is an integer, we have J−n(x) = (−1)n(x), so that one introduced, as a second
element of a basis of solutions, the following function (also called the Bessel function of
the second kind) :

Yn(x) = lim
ν→n

Jν(x)− (−1)nJ−ν(x)
ν − n

.

In physics, many functions arise which are similarly constructed from the general Bessel
function. Let us now consider the case of the modified Bessel functions of the first and
second kind: for a general real index ν > −1

2 and a complex variable z we define

Iν(z) = e−
1
2
νiπJν(iz), and Kν(z) =

π

2

I−ν(z)− Iν(z)

sin(νπ)
.

We can prove that (Iν ,Kν) is a basis of the space of solutions of the following differential
equation:

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = 0.

We will now focus on Kν and recall some important properties (we refer to the cited
books):

Proposition 10 ([1],[4] or [36]) The function Kν satisfies the following properties:

1. K± 1
2
(x) =

√
π

2

e−x

x
1
2

.

2. For all x > 0, Kν(x) > 0.

3. Kν(x) ∼
x→0




− lnx if ν = 0,

Γ(ν)

2

(
2

x

)ν
if ν > 0.

4. Kν(x) ∼
x→∞

√
π

2

e−x

x
1
2

.

5. For all x ∈ R∗
+,

Kν(x) = Kν+2(x)−
2(ν + 1)

x
Kν+1(x) = Kν−2(x)−

2(ν − 1)

x
Kν−1(x).

6. Kν is decreasing from R∗
+ to R∗

+: for all x ∈ R∗
+, K

′
0(x) = −K1(x) and

K ′
ν(x) = −1

2
(Kν−1(x) +Kν+1(x)) = −Kν−1(x)−

ν

x
Kν(x) =

ν

x
Kν(x)−Kν+1(x).
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7. For all x > 0 and ν > 0,

Kν(x) =

∫ ∞

0
e−xchtch(νt)dt,

which implies that Kν(x) is increasing with respect to ν > 0 (see [28]).

We are now able to state the following estimates that will be needed in section 2.4.4.

Proposition 11 Assume that d ≥ 2.

1. There exists a constant Cd > 0 such that for all x > 0 we have:

K d
2
−1(x) ≥





Cd
e−x

x
d
2
−1

if d > 2,

C
e−x

1 +
√
x

if d = 2.

2. For all η ∈]0, 1[, there exists a constant Cd,η > 0 such that for all x > 0 we have:

K d
2
−1(x) ≤ Cd,η

e−(1−η)x

x
d−1
2

, and |K ′
d
2
−1

(x)| ≤ Cd,η
e−(1−η)x

x
d+1
2

.

Proof: For the first point, in the case ν = d
2 − 1 > 0 (d ≥ 3) let us study the following

positive function f : x ∈ R∗
+ 7→ f(x) = exxνKν(x). Thanks to point 3 from proposition

10, we have
f(x) →

x→0
Γ(ν)2ν−1 > 0,

and for the limit at infinity,

f(x) ∼
x→∞

√
π

2
xν−

1
2 →
x→∞





∞ if ν > 1
2 ,√

π

2
if ν = 1

2 ,

0 if ν < 1
2 .

Using points 1, 5, 6 and 7 from proposition 10, we compute the derivative of f : which is
positive :

∀x > 0, f ′(x) = exxν(Kν(x)−Kν−1(x))





> 0 if ν > 1
2 ,

= 0 if ν = 1
2 ,

< 0 if ν < 1
2 .

Thus if ν ≥ 1
2 , for all x ≥ 0, f(x) ≥ Γ(ν)2ν−1, that is when d ≥ 3,

K d
2
−1(x) ≥ Γ(

d

2
− 1)2

d
2
−2 e

−x

x
d
2
−1
.
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Obviously when ν = 0 (that is d = 2) the previous study is useless and we need to
consider g : x ∈ R∗

+ 7→ g(x) = ex(1 +
√
x)K0(x). For all x > 0, g(x) > 0 and from the

previous results, we have: 


g(x) →

x→0
+∞,

g(x) →
x→∞

√
π
2 .

So that either the lower bound m of g satisfies m ≥
√

π
2 , either we have m <

√
π
2 and

then m is reached in some segment so that as g(x) > 0, we have m > 0. In any case we
are sure that m > 0, which ends the proof of point 1.

The proof of point 2 is also very elementary: for a fixed η ∈]0, 1[, we introduce the

function h : x ∈ R∗
+ 7→ f(x) = e(1−η)xxν+

1
2Kν(x). For any ν ≥ 0, we have:




h(x) →

x→0
0,

h(x) →
x→∞

0,

and h is then a bounded function, which implies the first estimate for ν = d
2 − 1. For the

last point, writing:

K ′
ν(x) =

ν

x
Kν(x)−Kν+1(x).

and using what precedes, immediately implies that for all x > 0,

|K ′
ν(x)| ≤ Cd,η

e−(1−η)x

xν+
3
2

,

and the proof is complete. �

The author wishes to thank Raphaël Danchin, Nicolas Fournier, and François Vi-
gneron for useful discussions.
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