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Dynamics modeling of a Two-wheeled vehicle using Jourdain’s principle

L. Nehaoua and L. Nouvellière and S. Mammar

Abstract— This paper describes a modeling technique for de-
veloping the motion equation of a motorcycles vehicle. Based on
the Jourdain’s principle approach, the derived model presents
a nice analytical formulation with recursive Jacobian matrices
computation. The synthesized model takes in consideration
the main forces and moments affecting the behavior of the
motorcycle and allowing the simulation of 11DOF.

Index Terms— Motorcycle dynamics, Jourdain’s principle.

I. INTRODUCTION

Riding a two-wheeled vehicle is not simple and intuitive

like driving a car vehicle. Involved accelerations, critical

equilibrium, aerodynamic effects, trajectory anticipation are,

among others, many points that make driving a motorbike to

be a complicated exercise.

To predict the behavior of such a system, one method is

to model it. In the study of mechanical systems, modeling

usually leads to a set of differential algebraic equations

(DAE) derived from laws of mechanics. In this field, two

approaches are proposed: the analytical approach and the

numerical one. In this later, many tools were developed

such MSC ADAMS [1], simMechanics [2], Dymola [3], etc..

The alternative approach is the development of symbolic

equations of motion. It is very time consuming method,

however, it offers more flexibilities in the system description.

In this case, using a dedicated packages implemented in a

computer algebra software, like TsiProPac [4] or MBsymba

[5], is highly recommended.

Many works have been addressed the modeling of the two-

wheeled vehicles. Indeed, the first study on the stability and

balance of a bicycle vehicle were performed by Whipple

[6]. This bicycle is represented by two bodies linked via

the steering mechanism. Wheels are modeled as circular thin

disks where the gyroscopic effect is taken into account. After

Whipple, other work has been undertaken [7], [8], [9]. In all

these studies, the tire-road interaction has been neglected. In

1971, Sharp integrated tires’ efforts [10]. The objective of

this study is to examine the effect on stability of a variation

in the vehicle’s parameters. His model is represented as a set

of two rigid bodies connected by the steering mechanism,

which can simulate 4 Degrees of Freedom (DOF).

So far, in all these models, the longitudinal velocity

was assumed to be constant and the vehicle suspension

movements were ignored. It was interesting to examine

how these factors influenced the frequency characteristics

of the different stability modes. These aspects have been

investigated in a further work of Sharp in 1974 [11]. In 1978,
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Weir made the first approach to stabilize a motorcycle by

including a human in the simulation loop [12]. In 1994 Sharp

published a paper, in which, the motorcycle is represented by

a set of four rigid bodies to simulate 8DOF. The originality

of this model lies in the integration of flexibilities and the

rider tilting motion [13].

In the same vein, a model incorporating the suspension

travels and a more complex representation of the tire-road

interaction is presented in [14]. The advances made by this

model have allowed to explore the dynamics of such a

vehicle for a large motion around equilibrium. In this case,

the interaction between the in-plane and the out-of-plane

motion is best described. More recently, the project FastBike

presents a nonlinear model of a motorcycle described as

a set of 6 bodies and simulating 11DOF. Each body is

identified by its natural coordinates and the assembly is

done by introducing the geometric constraints [15]. Finally,

a modeling technique based on the recursive Newton-Euler

approach is adapted to derive a motorcycle dynamics model

intended for a two-wheeled simulator application [16].

In the present paper, a modeling technique based on the

Jourdain’s principle is used to develop the motion equation

of a motorcycles vehicle.

II. JOURDAIN’S PRINCIPLE

A. Preliminaries

Consider a mechanical system of n bodies described by

m natural coordinates. We assume that the system dynamics

will be expressed into a moving reference frame ℜv . The

configuration of the moving reference ℜv with respect to

(w.r.t) the inertial reference ℜo is given by the position vector

r̄ov = [w, y, z]T and orientation vector q̄v = [ϕ, θ, ψ]T . The

position of a body i w.r.t the inertial reference ℜo expressed

in this latter is given by:

r̄ooi = r̄oov + r̄ovi (1)

where, r̄ovi = Ro→v r̄
v
vi. In this equation, Ro→v is the

rotation transformation matrix and r̄vvi is the position of the

body i w.r.t the moving reference ℜv . Its linear velocity is

obtained by a direct differentiation v̄ooi = d
dt
r̄ooi as following:

v̄ooi = v̄oov + ω̄oov × r̄ovi + ˙̄rovi (2)

Again, a second differentiation yields to the body accel-

eration āooi = d
dt
v̄ooi like:

āooi = āoov + ǭoov × r̄ovi + ω̄oov × (ω̄oov × r̄ovi + 2̇̄rovi) + ¨̄rovi (3)

In the other hand, the body angular velocity is defined by:
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ω̄ooi = ω̄oov + Ro→vω̄
v
vi (4)

and its angular acceleration as:

ǭooi =
d

dt
ω̄ooi = ǭoov + ω̄oov ×Ro→vω̄

v
vi + ˙̄ωovi (5)

Since we aim to express the vehicle dynamics in ℜv

reference, one can characterize the kinematics of the moving

reference by its velocities expressed in the moving reference

frame [v̄vov, ω̄
v
ov] instead of the inertial basis [v̄oov, ω̄

o
ov]. For

this, let writing:

v̄oov = Ro→v v̄
v
ov → āvov = ω̄vov × v̄vov + ˙̄vvov (6)

and:

ω̄oov = Ro→vω̄
v
ov → ǭvov = ˙̄ωvov (7)

By projecting equations (3) and (5) into the ℜv reference

and by using (6) and (7) we can define the linear and angular

acceleration of the each body i as following:

āvoi = ˙̄vvov + ˙̄ωvov × r̄vvi + ¨̄rvvi + ω̄vov × ( ˙̄rvvi + v̄voi) (8)

and:

ǭvoi = ˙̄ωvov + ω̄vov × ω̄vvi + ˙̄ωvvi (9)

Equation (8) and (9) are useful to deduce Jacobian matri-

ces, as it will be demonstrated in the next sub-section.

B. Jourdain’s principle

Suppose that the kinematics of the mechanical system is

characterized by k generalized speeds ϑ̄ = [v̄vov, ω̄
v
ov, ˙̄qs]

corresponding to m natural coordinates χ̄ = [r̄oov, q̄v, q̄s].
Consequently, the linear and angular velocity of each body

can be expressed as followings (henceforth, all vectors are

expressed in ℜv reference unless otherwise stated):

v̄oi = v̄oi(ϑ̄, χ̄) ω̄oi = ω̄oi(ϑ̄, χ̄)

Then, the linear acceleration is expressed by:

āoi =
∂v̄oi(ϑ̄, χ̄)

∂ϑ̄
˙̄ϑ+

∂v̄oi(ϑ̄, χ̄)

∂χ
˙̄χ

and the same equation for ω̄oi can be deduced. The partial

derivatives are called Jacobian matrices. Let the position and

the angular rates of the i-th body w.r.t the ℜv to be:

˙̄rvvi = ᾱi ˙̄qs ω̄vvi = β̄i ˙̄qs (10)

Now, it is easy to construct the i-th Jacobian matrix as

shown in the following two equations:

∂v̄oi
∂ϑ̄

=
[

I3 −r̃vi ᾱi
]

(11)

∂ω̄oi
∂ϑ̄

=
[

03 I3 β̄i
]

Now, all kinematics quantities are defined, then we intro-

duce the principle of the virtual power called also Jourdain’s

principle. Jourdain’s principle states that the virtual power

done by motion compatible constraint efforts F̄i,c/M̄i,c is

null [17], then:

∑

n

{

δv̄ToiF̄i,c + δω̄ToiM̄i,c

}

= 0 (12)

Next, the Newton/Euler dynamics principle allows to

express the constraint efforts w.r.t to the external applied

efforts F̄i,e/M̄i,e as:

miāoi = F̄i,c + F̄i,e

Iiǭoi + ω̄oi × Iiω̄oi = M̄i,c + M̄i,e

By replacing this equations into (12), and after some

algebraic manipulations, we deduce the dynamics motion

expression as following:

M
˙̄ϑ = Q̄ (13)

where M is the mass matrix obtained by the direct

calculation of Jacobian matrices:

M =
∑

{

mi

∂v̄Toi
∂ϑ̄

∂v̄oi
∂ϑ̄

+
∂ω̄Toi
∂ϑ̄

Ii
∂ω̄oi
∂ϑ̄

}

(14)

and the vector Q̄ of the generalized efforts can be split

into two parts Q̄ = Q̄e − Q̄r, Q̄e is the generalized efforts

vector associated to the external applied efforts and Q̄r is

the generalized efforts vector associated to the acceleration

residual terms in acceleration equations (8,9). Hence:

Q̄r =
∑

mi

∂v̄Toi
∂ϑ̄

(

∂v̄oi
∂χ̄

˙̄χ

)

(15)

+
∂ω̄Toi
∂ϑ̄

(

∂ω̄oi
∂χ̄

˙̄χ+ ω̄oi × Iiω̄oi

)

(16)

Q̄e =
∑

{

∂v̄Toi
∂ϑ̄

F̄i,e +
∂ω̄Toi
∂ϑ̄

M̄i,e

}

(17)

III. VEHICLE KINEMATICS

In this section, a direct application of the Jourdain’s

principle (section II) to the motorcycle modeling is exposed.

For this, the kinematics of each body w.r.t the moving

reference ℜv is demonstrated.

At first, we highlight the different motion reference frames

used in the current modeling work. As shown in figure (1),

the moving reference ℜv is obtained after two successive

rotations w.r.t the inertial reference ℜO. First, a yaw rotation

ψ around ℜo z-axes is done to give an intermediate reference

ℜψ . Next, ℜv is obtained by a roll rotation ϕ around ℜψ x-

axes. The origin v of ℜv is defined by χ̄v = [r̄oov, q̄v].
The motorcycle is considered as a set of six bodies (Fig.1).

The main body Gr, the front assembly Gf including the

handlebar, steering column and the higher fork part, the

unsprung front assembly Gu, the rear swing arm Gs and
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the two wheels GRf , GRr. The mass of the front wheel is

included in the unsprung front assembly, only its rotation

will be considered as an independent DOF. The rider motion

is not taken into account and is considered to be rigidly

attached to the main body Gr.
In order to completely define the configuration of the

motorcycle, a set of 11DOF has been considered. A full

characterization of motorcycle’s kinematics includes :

• the longitudinal, lateral and vertical position (x, y, z) of

the main body,

• the roll, pitch and yaw orientation (ϕ, θ, ψ) of the main

body,

• the steering angle δ,

• the front suspension travel λf and the swing arm

rotation µ,

• and finally, the front and rear tires spinning, ξf and ξr.

Fig. 1. The motorcycle geometrical description

In the following subsections, the kinematics of each body

is presented.

A. Main body Gr

The main body Gr has 1DOF w.r.t ℜv which represents

the vertical displacement z. Then, its position vector is:

r̄vvGr
=

[

0 0 z + hr
]T

→ ˙̄rvvGr
= żēz

From equation (10), we conclude that:

ᾱGr
=

[

ēz 03,6

]

β̄Gr
= 03,7

B. Front body Gf

The front body Gf is belonging to the fixed-body refer-

ence frame ℜb and has 2DOF w.r.t the main body Gr. ℜb
frame is obtained by a three successive rotations namely,

pitch θ about the y-axis of ℜv , caster ǫ about the same axes

and the steer δ about the ℜb z-axis. The position vector of

the front body w.r.t ℜv is:

r̄vvGf
= r̄vvGr

+ Rv→g(r̄
v
GrB

+ Rg→br̄
b
BGf

)

Knowing that vectors r̄bBGf
and r̄vGrB

are constant, we

can write :

˙̄rvvGf
= ˙̄rvvGr

+ ω̄vvg × r̄vGrGf
+ ω̄vgb × r̄vBGf

where ω̄vvg = θ̇ēy and ω̄vgb = δ̇ēδ . In this case, ᾱGf
=

ᾱGr
+ ᾱ′

Gf
where:

ᾱ′

Gf
=

[

03,1 ēy × r̄vGrGf
ēδ × r̄vBGf

03,4

]

In the other hand, the angular rates is ω̄vvGf
= ω̄vvg + ω̄vgb,

and hence:

β̄Gf
=

[

03,1 ēy ēδ 03,4

]

It can be seen that the advantage of this method, is that

the computation of Jacobian matrices can be obtained recur-

sively. At each step, only the contribution of the considered

body is calculated.

C. Front unsprung body Gu

The front unsprung body has 1DOF w.r.t Gf representing

the suspension travel λf . Its position vector is:

r̄vvGu
= r̄vvGf

+ Rv→gRg→br̄
b
GfGu

Herein, r̄bGfGu
= (λf + λf0)ēz where λf0 is the initial

fork suspension length. By differentiation of the position

equation, we can write :

˙̄rvvGu
= ˙̄rvvGf

+ (ω̄vvg + ω̄vgb)r̄
v
GfGu

+ λ̇f ēδ

Consequently, ᾱGu
= ᾱGf

+ ᾱ′

Gu
, where:

ᾱ′

Gu
=

[

03,1 ēy × r̄vGfGu
ēδ × r̄vGfGu

ēδ 03,4

]

Finally, since there is no rotation between the two front

bodies: β̄Gu
= β̄Gf

.

D. Swing arm body Gs

The swing arm body is belonging to the fixed-body

reference frame ℜp and has 2DOF w.r.t the main body Gr.
ℜp frame is obtained by two successive rotations, pitch θ
and swing arm pitch µ around the y-axis of ℜv . Its position

vector is expressed by::

r̄vvGs
= r̄vvGr

+ Rv→g(r̄
g
GrP

+ Rg→pr̄
p
PGs

)

and the corresponding position rate is :

˙̄rvvGs
= ˙̄rvvGr

+ ω̄vvg × r̄vGrGs
+ ω̄vgp × r̄vPGs

where ω̄vgp = µ̇ēy . Then, ᾱGs
= ᾱGr

+ ᾱ′

Gs
, where:

ᾱ′

Gs
=

[

03,1 ēy × r̄vGrGs
03,2 ēy × r̄vPGs

03,2

]

In the other hand, the angular rates is ω̄vvGs
= ω̄vvg + ω̄vgp,

and hence:

β̄Gs
=

[

03,1 ēy 03,2 ēy 03,2

]

3



E. Front and rear wheels body

The two wheels has one independent generalized velocity

w.r.t to their respective previous body (it means Gu for the

front wheel and Gs for the rear one), which consist simply

on tire rotation around wheel spin axes ēyR. It follows that

ω̄vvGRr
= ω̄vvGs

+ ξ̇r ēy this leads to :

β̄GRr
= β̄Gs

+
[

03,6 ēyR,r
]

The same reasoning can be followed for the front wheel:

β̄GRf
= β̄Gu

+
[

03,5 ēyR,f 03,5

]

At now, the whole motorcycle kinematics is defined.

Matrix mass M and the first part of generalized efforts Q̄r
(equations 14, 15) are fully defined. In the next section, we

look for the development of the generalized efforts vector

associated to external applied efforts.

IV. VECTOR OF GENERALIZED EFFORTS

To express generalized efforts vector associated to external

applied efforts, one can make use of equation (16). First,

it is essential two establish the set of all efforts exerted on

each body. This method may be a tedious one especially one

the number of applied efforts is much high. So, it is most

convenient to find the virtual power done by each effort and

find the associated generalized effort.

As an example, consider a body i under a force vector F̄e
applied at a point j ∈ i and a moment vector F̄e around an

axes belonging to this body. The resulting virtual power can

be expressed as:

δP = δv̄TojF̄e + δω̄Ti M̄e = δϑ̄T Q̄

By replacing δv̄oj and δω̄i by their Jacobians, we obtain

the following equation:

Q̄ =

(

∂v̄oj
∂ϑ̄

)T

F̄e +

(

∂ω̄oi
∂ϑ̄

)T

M̄e (18)

The only difference w.r.t equation (16) is the use of the

Jacobian related to the force point application velocity (v̄oj)
instead of that of the body center of mass v̄oi. In the follow-

ing, we use equation (17) for each external force/moment

exerted on the motorcycle vehicle.

A. Front and rear suspension

The front suspension force F̄sf is applied between the

the front body Gf and the front unsprung body Gu. The

contribution of this force in the total generalized effort is

given by using equation (17), like following:

Q̄sf =
∂

∂ϑ̄

(

v̄oGf
− v̄oGu

)T
F̄sf (19)

By replacing each Jacobian by its expression and after

some algebraic manipulations we get:

Q̄sf =





03,3

(λf + λf0)ẽ
T
δ

−ᾱ′T



 F̄sf (20)

Fig. 2. Suspensions configuration, (a) front, (b) rear

Knowing that the force suspension vector can be written

as F̄sf = Fsf ūsf , where, ūsf = ēδ is the unit vector, then:

Q̄sf = −Fsf
∂λ̇f
∂ϑ

(21)

Doing the same for the rear suspension, we conclude :

Q̄sr =





08,1

(ēy × r̄vPsl
)T ūsr

02,1



Fsr (22)

Equation (21) shows that the rear suspension force can be

viewed as a stiffness torque about the swing arm pivot P .

B. Gravity forces

Each body is subject to the gravity force created by its

own mass. The contribution of this force in Q̄ is directly

given by:

Qg =
∑

n

mi

(

∂voi
∂ϑ

)T

ḡ (23)

C. Rider action

The rider’s torque τr exerted on the motorcycle’s han-

dlebar is considered to be the most important input for the

vehicle driving. This torque acts around the steering axis and

hence jointly on the main body Gr and front body Gf . The

contribution of this torque in Q̄ is defined by:

Q̄τr
=

∂

∂ϑ̄

(

ω̄Gf
− ω̄Gr

)T
τr ēδ =





08,1

τr
04,1



 (24)

D. Propulsion and braking torques

For the front wheel, braking force acts between the wheel

rim and unsprung assembly Gu which contains braking disk.

For the rear wheel, the braking torque is exerted between the

rear wheel body and the swing arm assembly. In addition to

the propulsive torque, the contribution of these torques is

expressed by:

Q̄DB =
∂

∂ϑ̄

(

ω̄GRf
− ω̄Gu

)T
τbf ēyR,f +

∂

∂ϑ̄
(ω̄GRr

− ω̄Gs
)
T

(τbr + τD)ēyR,r

After simplification we get:Gu 
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Q̄DB =





011,1

τbf
τbr + τD



 (25)

In the next section, we expose the tire-road interaction to

fully defining the vector of the generalized efforts Q.

V. TIRES KINEMATICS AND DYNAMICS

A. Tires kinematics

To describe the tire motion, a new reference frame

ℜT (C, ēxT , ēyT , ēzT ) is introduced at the contact point C.

ēzT is the normal vector to the road surface. Vector ēxT
is obtained as ēxT = ēyR × ēzT and ēyT completes the

reference axis.

Fig. 3. Tire reference frame and camber

As shown in figure 3, the camber angle is an important

variable in the motorcycle safety studies. This variable is

expressed by the following equation:

sin γ = ēTyRēzT (26)

The position of the contact point w.r.t the inertial frame is

expressed by:

r̄ooC = r̄ooGR
−Rrmē

o
zR −Rcr ē

o
zT (27)

Where, Rrm is the wheel rim radius, Rcr is the dynamic

tire crown radius and ēzR = ēxT × ēyR. By differentiating

this equation, one obtains the contact point velocity vector,

as:

v̄ooC = v̄ooGR
−Rrm ˙̄eozR − Ṙcr ē

o
zT (28)

Knowing that the contact point C is belonging always to

the road surface (Fig.4) then, Rcr et Ṙcr are obtained by

performing a product scalar of equations (26,27) by ēozT .

Once the tire’s kinematics is established, the equivalent tire

forces/moments wrench at the center of each wheel is given

by the following expressions:

F̄T = FxēxT + Fy ēyT + Fz ēzT

M̄T = MxēxT +My ēyT +Mz ēzT + F̄T × r̄CGR

where Fx = Fx(κ) is the longitudinal force, Fy =
Fy(ζ, γ) is the lateral force and Fz = Fz(δz) is the vertical

force. Mx is the tire torque about ēxT , My is the rolling re-

sistance torque and Mz = Mz(ζ, γ) is the alignment torque.

This forces and torques are obtained from the longitudinal

slip κ, the lateral slip ζ and δz is the vertical tire deformation.

Fig. 4. Wheel and tire geometry: rim and crown

Applying equation(17), we can deduce the contribution of

tires efforts as expressed in the following equation:

Q̄T =
∑

j

(

∂v̄oGRj

∂ϑ̄

)T

F̄T +

(

∂ω̄oGRj

∂ϑ̄

)T

M̄T (29)

With Q̄T , the vector of the generalized efforts Q̄e is fully

defined, and:

Q̄e = Q̄sf + Q̄sr + Q̄g + Q̄τr
+ Q̄DB + Q̄T (30)

VI. SIMULATION

To test the behavior of the developed motorcycle model, a

linear PID controller is synthesized for the longitudinal speed

regulation. This controller acts like an acceleration/braking

torque directly applied on the rear wheel. The control torque

is saturated by the maximum torque admissible by the engine

at the rear tire axis. For this test, we drive the motorcycle

from an initial speed of 10 km/h to a desired velocity

of 72 km/h. Figure (5) shows the control driving torque

as computed by the PID controller and the longitudinal

speed profile. Figure (6) describes the resulting longitudinal

acceleration and the front and rear suspension travels. Finally,

figure (7) represents the vertical force Fz applied at the

contact point of each tire. the two hiccups in the speed vs

time curve (and in the other figures) are due to the gear
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changes introduced by a simple logic switching (transmission

model is not described in this paper).
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Although we have no experimental data, these simulations

seems to be very correct in comparison with a previously

published work in literature. The lateral dynamics simulation

is very hard to carried out. Indeed, the motorcycle vehicle is

highly unstable and a suitable controller must be synthesized.

VII. CONCLUSION

Based on the virtual power principle, called also Jourdain’s

principle, a motorcycle dynamic model is proposed. The

development method is chosen for its simplicity and its fine

analytical derivation with an acceptable calculation burden.

A first test is presented to show the ability of the proposed

model to simulate the longitudinal/vertical motion.Future

works will focus on the lateral mode simulation by im-

plementing a suitable controller especially for trajectory

tracking like cornering, slalom and lane changes.
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IX. APPENDIX

• ē variables with over bar are vectors.

• M calligraphic variables are matrices.

• ēx = [1, 0, 0], ēy = [0, 1, 0], ēz = [0, 0, 1],
• for an arbitrary rotation φ, we have:

• Rφ,x =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ





• Rφ,y =





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ





• Rφ,z =





cosφ − sinφ 0
sinφ cosφ 0

0 0 1





• Rv→g = Rθ,y,

• Rg→b = Rǫ,yRδ,z ,

• ēδ = Rv→gRg→bez ,

• ēvyR,f = Rv→gRg→bēy ,

• if x̄ = [x, y, z]T , x̃ =





0 −z y
z 0 −x
−y x 0




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