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Abstract ���

The surface properties of the icy bodies in the saturnian system have been investigated by means of �
�

the CASSINI- VIMS (Visual Infrared Mapping Spectrometer) hyperspectral imager which operates ���

in the 0.35-5.1 �m wavelength range. In particular, we have analyzed 111 full disk hyperspectral ���

images of Rhea ranging in solar phase between 0.08° and 109.8°. These data have been previously ���

analyzed by Filacchione et al. (2007, 2010) to study, adopting various “spectral indicators” (such as ���

spectral slopes, band depth, continuum level, etc.), the relations among various saturnian satellites. ���

As a further step we proceed in this paper to a quantitative evaluation of the physical parameters ���

determining the spectrophotometric properties of Rhea’s surface. To do this we have applied Hapke ���
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(1993) IMSA model (Isotropic Multiple Scattering Approximation) which allow us to model the ���

phase function at  VIS-IR (visible-infrared) wavelengths as well as the  spectra taking into account ���

various types of mixtures of surface materials. Thanks to this method we have been able to �
�

constrain the size of water ice particles covering the surface, the amount of organic contaminants, ���

the large scale surface roughness and the opposition effect surge. From our analysis it appears that ���

wavelength dependent parameters, e.g. opposition surge width (h) and single-particle phase function ���

parameters (b,v), are strongly correlated to the estimated single-scattering albedo of particles. For ���

Rhea the  best fit solution is obtained  by assuming:1) an intraparticle mixture of crystalline water ���

ice and a small amount (0.4%) of Triton tholin; 2) a monodisperse grain size distribution having a ���

particle diameter am= 38 µm; and 3) a surface roughness parameter value of 33°. The study of phase ���

function shows that both Shadow Hiding and Coherent Backscattering contribute to the opposition ���

surge. This study represents the first attempt, in the case of Rhea, to join the spectral and the ���

photometric analysis. The surface model we derived gives a good quantitative description of both �
�

spectrum and phase curve of the satellite. The same approach and model, with appropriate ���

modifications, shall be applied to VIMS data of the other icy satellites of Saturn, in order to reveal ���

similarities and differences in the surface characteristics to understand how these bodies interact ���

with their environment.    ���

1. Introduction and Rationale ���

The Cassini spacecraft completed its initial four-year mission to explore the saturnian system in ���

June 2008. Since then it entered in the extended mission phase (Cassini-Huygens Equinox Mission), ���

which will last until September 2010. During all these years the VIMS (Visual and Infrared ���

Mapping Spectrometer) instrument on board Cassini extensively observed the saturnian moons. The ���

VIMS experiment consists of two imaging spectrometers observing the same field of view in two �
�

spectral ranges (Brown et al., 2004; McCord et al., 2004): VIMS-V spectrometer covering the 0.35 - ���

1.05 µm range in 96 spectral channels with a spectral sampling of ∆� = 7.3 nm/band and spatial ���



  

��

�

resolutions of 500×500 (nominal) or 166×166 (high resolution) µrad×µrad /pixel; VIMS-IR channel ���

covering the 0.885 - 5.1 µm range with 256 bands, a spectral sampling of ∆� � 16 nm/band and ���

spatial resolutions of 500×500 (nominal) or 250×500 (high resolution) µrad×µrad /pixel (Miller et ���

al., 1996).  ���

VIMS collected both resolved and disk-integrated spectra of the moons in a wide range of ���

observing conditions (solar phase angle and hemispheric coverage). While high spatial resolution ���

observations of the satellites are essential to obtain compositional maps of the objects, the disk ���

integrated observations are very useful to study the global properties of the surfaces and to point out �
�

correlations as well as differences among the various satellites. ���

The full disk observations constitute of a huge database with more than 1400 observations, obtained 
��

over a wide range of phase angles, for a total of 126000 spectra, covering the full VIMS spectral 
��

range. For a detailed description of the database see Filacchione et al. (2007, 2010)  (in the 
��

following referred to as F2007 and F2010 respectively).  
��

Spectrophotometry is a very powerful diagnostic tool in remote sensing to study the composition 
��

and the physical properties of the surfaces of objects under investigation. The amount of solar 
��

radiation, as a function of the wavelength,  scattered from a surface towards the observer under 
��

varying observing conditions (incidence, emergence and phase angles) is a nonlinear function of 
��

several parameters such as the composition of the materials making up the surface, their grain size, 

�

the porosity and surface roughness of the interacting surface layers.  
��

To retrieve quantitative information on these fundamental parameters of the surfaces, we need a ���

multiple scattering model which provide approximate solutions to the radiative transfer in a ���

particulate medium. The Hapke IMSA model (Hapke, 1993, 2002, 2008; Hapke et al. 2009) is one ���

of several models developed  to study the scattering properties of packed media (Lumme and ���

Bowell, 1981; Drossart 1993; Shkuratov et al., 1999). It is an analytic two stream approximate ���
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solution to the radiative transfer equation and it has been applied successfully to perform ���

photometric corrections of  imaging data (Hudson and Ostro, 1999; Domingue et al., 2009), to ���

investigate physical properties of regoliths (Mallama et al., 2002; Buratti et al., 2004) and to ���

estimate surface compositions of planetary surfaces (Cruikshank et al., 2001; Cruikshank et al., �
�

2005; Poulet et al., 2002).  ���

In F2007 and F2010 the authors have adopted an empirical method of spectral analysis to reduce the ����

dimensionality of the spectra by mapping high dimensional data into a lower dimension while ����

preserving the main features of the original spectra. This led to the definition of a number of ����

“Spectrophotometric Indicators” which are able to synthetically describe the spectrum. For instance ����

spectral slopes in the visible range are a useful indicator of the degree of purity of water ice with ����

respect to the presence of contaminants, thus two of the selected indicators are the slopes in the blue ����

range of the spectrum (350-550nm) and in the NIR (near  infrared) range (550-1000nm). In the IR ����

range the most prominent features are the water ice absorption bands; consequently the authors have ����

selected the depth of the 1.2, 1.5, 2.0 and 3.0µm water ice bands as additional indicators.  ��
�

 ����

The systematic analysis performed in F2007/F2010 on the basis of these indicators indeed pointed ����

out several compositional trends within the satellites system and raised several questions which ����

have not yet received a satisfactory answer. For instance:  ����

• the correlation among Phoebe, Iapetus and Hyperion. The origin of the material that causes ����

the albedo dichotomy of Iapetus has been the subject of a long standing debate (Buratti and ����

Hicks, 2003; Spencer and Denk, 2010; Tosi et al., 2010). However, Clark et al. (2008, ����

2011b),  showed that the visible colors and UV absorber are consistent with a single source ����

with varying abundance of the contaminants. Key to solution of the problem was the ����

discovery of Rayleigh scattering from small particles (Clark et al., 2008). From the VIMS ��
�
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data the spectral behaviour in the VIS-NIR range shows similarities between Iapetus and ����

Hyperion; while the IR spectra point out a strong correlation between the features observed ����

on Iapetus and Phoebe. ����

• The Band Depth at 1.5 µm versus Band Depth at 2.0 µm trend is the result of the combined ����

effect of ice  contamination, due to “darkening agents” as well as variable grain sizes, but ����

the relative contribution of the two effects could not be ascertained. However, Clark et al. ����

(2011a, 2011b) show that the 1.5 and 2.0 µm ice band depth ratio is affected by the amount ����

of sub-micron sized ice grains in the regolith. ����

• The symmetry of the 2-micron ice bands is unusual, being asymmetric toward longer ����

wavelengths in spectra of the icy saturnian satellites (Clark et al., 2008) and in other icy ��
�

objects (see review by Clark et al., 2011a). Clark et al., (2010b) showed that this ����

asymmetry could be due to the presence of sub-micron ice grains and modelled the spectra ����

using Hapke theory modified to include the diffraction component from those particles.  ����

 ����

From this point of view the analysis performed in F2007 and F2010 represent a valuable empirical ����

study to describe the global properties of the surfaces of the moons, however quantitative estimates ����

on the nature (composition and physical properties) of the regolith require a full radiative transfer ����

model. We have then set ourselves to work to this task (Ciarniello et al., 2010a, 2010b), and this ����

paper describes the results we have obtained applying a radiative transfer model to the complete ����

data set of Rhea’s full disk observations.  ��
�

Rhea, with a radius of 764 ± 1.1 km (Thomas et al., 2006), is the second largest moon of Saturn; it ����

orbits in the E ring with mean semimajor axis of 527070 km (see http://ssd.jpl.nasa.gov and ����

reference therein); its mass is M = (2.306481 ± 0.000059)x1021 kg, which corresponds to a density ����
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of 1232.8 ± 5.4 kgm-3 (Iess et al., 2007) and geometric albedo of the satellite is 0.83 at 0.51 µm ����

(Pitman et al., 2010).  ����

We have selected Rhea as the starting point for this analysis as it has the largest coverage in solar ����

phase angle and thus allows to thoroughly test the model. Our approach is based on a two steps ����

analysis: first a spectral fit is performed to retrieve the abundances of contaminants and ice grain ����

size, then these properties are used to compute single-scattering albedo at each wavelength, whose ����

values are adopted in the Rhea’s phase function fit for the whole VIMS spectral range. ��
�

In section 2 we have described the method applied to model the phase curves and the spectra. In ����

section 3 the selected dataset is described as well as the reduction data procedure. In sections 4 and ����

5 spectral and phase function fits respectively are analyzed. Section 6 concerns the feedback of ����

phase function fit to the spectrum fit. Conclusions and suggested future work are given in section 7.  ����

 ����

 ����

.     ����

2. Hapke model ����

Hapke’s IMSA (Isotropic Multiple Scattering Approximation) model has been widely used to ����

describe both solar phase curve and spectral properties of various objects in the solar system ��
�

(Buratti 1985; Bowell et al. 1989; Domingue et al. 1995; Domingue and Verbiscer 1997). In this ����

paper we refer to Hapke (1993) in order to describe the spectrophotometric properties of Rhea. For ����

our analysis we have chosen full-disk images of the satellite and the formula we applied to describe ����

the object full disk reflectance (FDR) as a function of the phase angle g is straightforward derived ����

by Eq. 10.40, p.275 in Hapke (1993): ����
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where   and . ����

The effect of porosity, which has been introduced in Hapke (2008), is not considered here, similarly ��
�

to Warell and Davidsson (2010), in order to reduce the number of free parameters in the following ����

inversion process. An improvement of the IMSA model is given in Hapke (2002). It provides a ����

more accurate analytic expression of the Ambartsumian-Chandrasekhar function H(x) which ����

appears in the definition of the bidirectional reflectance r(i,e,g). However, we adopted a linear ����

expression for H(x) in the derivation of eq. 1 (eq. 8.56, p.212 in Hapke (1993)), since this ����

expression could be easily integrated.  Eq. 1 represents the sum of the reflectances r(i,e,g) of each ����

point on the surface A(i,v), which is both viewed by the instrument and illuminated by the Sun, as a ����

function of the incidence (i), emergence (e) and phase (g) angles. Each term is weighted by the ����

cosine of the emergence angle µ=cos(e) which correctly projects the emitting area on the plane ����

orthogonal to the emission direction, and by the term S(i,e,g) which describes the large scale surface ��
�

roughness (craters, depressions and other reliefs). Two mechanisms contribute to the emission ����

process: single scattering and multiple scattering. The first one depends on the single-particle phase �
��

function p(g), which describes how the light interacting with a particle is scattered. Actually the �
��

single-particle phase function is an average on a small but statistically significant given volume of �
��

particles. We modeled it assuming a double lobed Henyey-Greenstein (Henyey and Greenstein, �
��

1941; Domingue and Verbiscer, 1997) phase function (Eq. 2) which depends on two parameters b  �
��

and v: the first one describes the angular width of both forward and back scattering lobes, while the �
��

second one describes their relative amplitude.   �
��
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Another term which depends on single scattering is the one that accounts for the opposition effect �

�

(OE), B(g). It describes the observed non-linear increase in reflectance towards small phase angles. �
��

In this work we use the mathematical formulation developed to treat shadow hiding opposition ����

effect SHOE, which depends on the parameters B0 and h, respectively the amplitude and the angular ����

width of the effect. Rigorously,  B0 can assume values in the 0-1 range, however  we allowed B0 to ����

be greater than 1 in order to take into account coherent backscattering (CB), which is another ����

mechanism contributing to OE (Roush, 1994). We choose not to model explicitly the CBOE to ����

reduce the number of free parameters. The term K(g,θ ) in (Eq.1) is the full disk correction due to ����

large scale surface roughness. Its value is always less than 1 and decreases with increasing ����

roughness parameter θ 	�which is an average slope of the facets composing the surface. ����

Spectral information is included in the single-scattering albedo w(λ). This parameter represents the ��
�

fraction of light interacting with the particle (light can be absorbed, scattered or diffracted) that ����

undergoes only scattering. It’s value is in the range 0-1 and depends on the medium optical ����

constants n and k ( which are respectively the real and the imaginary part of the refractive index ����

m=n+ik), and on the grain size. Similarly to the case of single-particle phase function, the value of ����

the single-scattering albedo is an average over a small but statistically significant volume of ����

particles, and it is calculated as the ratio of the scattering and extinction efficiencies QS and QE. In ����

close-packed particulate media with spherical grains much larger than the wavelength (which is the ����

assumption we made in our analysis) the IMSA model assumes that diffraction is negligible. In that ����

case the extinction efficiency is 1 (the cross section of the particle is equal to the geometrical cross ����

section) and single-scattering albedo is equal to the scattering efficiency QS, which can be directly ��
�

calculated in the Hapke model once that optical constants of  end-members, type of mixing and ����

grain size are fixed. ����
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We have investigated three types of mixing: areal, intimate and intraparticle. Areal mixing (Fig. 1a) ����

is obtained averaging the reflectance of different patches of surface covered with different ����

materials: ����

�=
i

iitot rpr      (3) ����

where ri is the reflectance of i’th component and pi is the fraction of total surface covered. ����

 Intimate mixing (Fig. 1b) describes a medium in which particles of different composition are mixed ����

together : this kind of mixing is obtained through a weighted average of single-scattering albedos of ����

the different types of grains: ��
�
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where σi  is the geometrical cross section of the i’th particle type and pi is the volume percentage of ����

each component. ����

 Intraparticle mixing (Fig. 1c) describes media in which inclusions of contaminants are embedded ����

in a matrix of different optical properties. This kind of mixing is obtained with the Maxwell-Garnett ����

rule (Maxwell-Garnett, 1904; Mallet et al.2005; Grundy, 2009): ����
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where 1ε  and 2ε  are the complex dielectric constants of the matrix and of the embedded material ����

respectively, 2p   is the fraction of contaminant and effε  is the effective complex dielectric constant ����

of the particle. The dielectric constant is related to optical constants by the following relation: ��
�

iknm +== ε                                 (6) ����
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Once the medium optical constants and particle diameter am are fixed it is possible, following ����

Hapke’s model, to compute single-scattering albedo w for a given type of particles. We do not ����

report the single-scattering albedo derivation but refer to Hapke (1993) for further details and final ����

equations. ����

 ����

[FIGURE 1] ����

 ����

3. Observations and data reduction ����

Our dataset is composed of 140 observations acquired by VIMS in the period January 2005 - ��
�

January 2008. Since Rhea exhibits a marked dichotomy between leading and trailing side ����

(Verbiscer and Veverka, 1989; Buratti et al., 1998) we have selected only images in which the ����

illuminated and observed area was more than 60% on the leading side, in order to study ����

homogeneous regions of the satellite. With this limitation the total number of observations reduces ����

to 111 with solar phase angles ranging from 0.08° to 109.8°.  ����

VIMS collected full disk images of the satellite acquired at different spacecraft-target distance D ����

both in normal and high-resolution modes. Accordingly, the satellite image size in the instrument ����
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field of view can cover from a few tens to some hundreds of pixels. In order to produce phase ����

function curves of the satellite at each wavelength we developed an IDL procedure that sums up the ����

reflectances (I/F) of observed-illuminated pixels in the image, correcting them by the multiplicative ��
�

factor 2Dδε �
2R  (where R is Rhea’s radius and δε is the solid angle subtended by the pixel). This ����

factor represents the solid angle increment on the satellite surface times the emission angle cosine. ����

The relation between observed data and FDR is: ����

                                                                                                        (7) ����

where the subscript j identifies each single pixel. ����

In Fig. 2 Rhea full-disk normalized spectra acquired at various phase angle are plotted (for VIMS ����

calibration uncertainties please refer to McCord et al. (2004)). All the spectra exhibit typical ����

features of water ice (1.51,2.2 and 3.1 µm absorption bands), however towards the UV region the ����

shape of the spectrum strongly departs from the flat behavior of water ice producing a strong ����

reddening. This feature has been traditionally assigned to the presence of organic contaminants as ��
�

suggested by Cruikshank et al. (1998) and Poulet et al. (2002). However there is no clear additional ����

signature in the IR, and this constrains the amount of contaminants to be at most few percent (Clark ����

and Owensby, 1981). Clark et al., 2008 gave alternative explanations, including UV absorption by ����

other compounds and very small grains (nano-phase) of opaque minerals such as hematite.  Clark et ����

al., (2011b) model the shape of the UV absorber with combinations of metallic iron (both large ����

grained and nano-sized particles) and nano-phase hematite. A feature centered at 0.9 µm is present ����

in all the spectra. This seems to be an artifact due to the data calibration process. However, the ����

presence of this feature does not affect the global slope in VIS-IR region and doesn't introduce any ����

offset between the two channels, and thus does not alter the results of the following analysis. The ����

spectra show a certain dependence on observing geometry. The slope in VIS-NIR (around 1 µm) ��
�

region and the band depth at 1.5 and 2.2 µm slowly increase with increasing phase angle, while this ����
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trend is reversed at 3.5 µm. This peculiar behavior can be partially explained by varying the relative ����

contributions of single and multiple scattering at different wavelengths (related to different values ����

of the single-scattering albedo w�as�we will discuss later) and to a variation of single-particle phase ����

function along the spectrum (even in this case related to w). ����

 ����

[FIGURE 2] ����

In Fig. 3 Rhea’s normalized full-disk phase functions at various wavelengths are plotted. The ����

coverage is fairly complete across the whole range, except for the 20°-40° region. The shape of the ����

phase function is not constant with wavelength, which is obvious considering the dependence of the ��
�

spectrum on phase angle mentioned above. In particular, the OE width and reflectance at ����
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intermediate phase angles show a lot of variability while the differences decrease towards larger �
��

phase angles.   �
��

 �
��

[FIGURE 3] �
��

 �
��

4. Spectral fit �
��

The first step of our investigation is the interpretation of Rhea spectra in terms of physical �
��

characteristics of the surface involved in the scattering process. The principal properties that �
��

determine the observed spectral shapes are the composition (in this case water ice + contaminants) �

�

and the grain size. The presence of certain end-members is directly correlated with spectral �
��

signatures (absorption bands), while the grain size basically affects the depth of the bands as well as ����

the IR slope (Clark and Lucey, 1984; Emery et al., 2005). In Hapke’s model the spectral behavior is ����

described by the single-scattering albedo w, whose value at each wavelength can be calculated once ����

the end-members, their relative abundances, mixing mode and grain size distribution have been ����

fixed. The single-scattering albedo cannot be directly compared to the observed spectra, because the ����
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reflectance at each wavelength depends on single scattering, which relies on the single-particle ����

phase function, and multiple scattering, which involves w in a non linear way, as shown in (Eq.1). ����

Moreover, at low phase angle OE must be taken into account, while at high phase angles large scale ����

surface roughness decrease the reflectance.  ��
�

We have chosen to model Rhea’s surface by means of a mixture of crystalline water ice and one ����

organic contaminant. We used separately tholin from Khare et al. (1993), Triton tholin (McDonald ����

et al., 1994; optical constants from Cruikshank, personal communication), Titan tholin (McDonald ����

et al., 1994; Khare et al., 1984; optical constants from Cruikshank, personal communication) and ����

hydrogenated amorphous carbon (ACH2) from Zubko et al. (1996). Optical constants for crystalline ����

water ice are those derived by Warren (1984) (0.35-1.25 µm, 266.15 K), Mastrapa et al. (2008)  ����

(1.25-2.5 µm, 120 K), Mastrapa et al..(2009)  (2.5-3.20 µm, 120 K) and Clark et al. (20110b) (3.20-����

5.12 µm, 120 K). We investigated areal mixing, intimate mixing and intraparticle mixing. In order ����

to investigate spectral behavior of different mixtures without superimposing any grain size effect ����

we studied only monodisperse particle diameter distribution (particles are all equal in size). This ��
�

may lead to a non-unique solution, but as we shall see, provides information on the single particle ����

phase function as a function of single particle albedo. ����

 The other parameter fixed by the fitting procedure is the volume fraction of water ice p, with pc = ����

1-p  being the amount of contaminants. ����

In order to retain a minimum number of parameters we decided to perform the spectral fit at high ����

phase angle (90°) thus avoiding the OE surge. To remove the contribution of large scale surface ����

roughness K we fitted normalized spectra (normalization was performed at 1 µm). This choice also ����

allows to minimize the geometrical effects of single-particle phase function which at this stage is ����

assumed isotropic, but may further reduce the uniqueness of the solution.    ����

4.1 Optical constants ��
�
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 Summary plots of optical constants Vs wavelength used in this work are shown in Fig. 4-5. In the ����

VIS-NIR range optical constants from Warren et al. (1984) pertain to ice at -7 °C, whose ����

temperature is too high if compared to Rhea’s surface at 77 K  (Pitman et al., 2010). However these ����

values match reasonably well with the ones derived by Mastrapa et al. (2008) at 120 K. Optical ����

constants in the 3.2-5.1 µm range are from Clark et al. (2011b) and have been computed starting ����

from Mastrapa’s values at the same wavelengths. The temperature difference between Rhea’s ����

surface and ice for which optical constants are determined introduces a tolerable error in our ����

calculations, because it only minimally affects the results concerning grain size and contamination. ����

The organic compounds, listed above, used to contaminate water ice, all have the effect of ����

producing a red spectrum towards the UV (Fig. 5). Tholin from Khare et al. (1993) have been ��
�

produced by plasma irradiation in an iced 6:1 mixture of H2O and C2H6 at 77 K. Titan and Triton ����

tholin are instead obtained in gaseous phase by irradiation of 0.9:0.1 and 0.999:0.001 N2\CH4 ����

mixtures. ACH2 is obtained by arc discharge between carbon electrodes in H2 atmosphere. ����

 ����

[FIGURE 4] ����
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 ����

[FIGURE 5] ����

 ����

 ����

4.2 Areal mixing ��
�

We fitted observed spectra with different areal mixtures of two components where the main end-����

member is always water ice and the second is one among the selected organic contaminants. In ����

areal mixing, the two different types of surface are characterized by different single-scattering ����

albedo, and a beam of light interacts only with particles of the same composition. The resulting ����

spectrum is a linearly-weighted average of the reflectances relative to the different regions. This ����

kind of mixing is inefficient to produce the observed reddening towards UV. As an example we ����

examine the cases of ACH2 and tholin (Khare et al., 1993). In the case of ACH2 the problem is ����

mainly due to the fact that contaminant spectrum is not red enough to produce a sensible effect. It ����

just reduces the reflectance across the whole spectrum without producing any absorption in the UV ����

region, where water ice is strongly non-absorbing. In the normalized spectra this corresponds to an ��
�

increment of reflectance of the darker wavelengths. This is shown in Fig. 6 (left panel) where the ����
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results of five simulations with different abundances of ACH2 are plotted. The case of tholins (Fig. ����

6, right panel) is different because their spectra are not as flat as ACH2 far from UV region. In ����

order to produce an effective feature towards short wavelengths many unobserved features are ����

introduced in other regions of the spectrum. The outcome of this simulation is that the strong UV ����

downturn observed in the Rhea spectrum it is not compatible with mixtures including compounds ����

expected to be found on its surface. As an example, the best fit obtained with an areal mixture of ����

water ice and Titan tholin is plotted in Fig. 7 (upper left panel). The results are similar using other ����

types of contaminants. The fit, fairly good in IR, is completely lost in UV-VIS where a plateau is ����

formed at the shortest wavelengths, missing the observed spectral downturn. Results for areal ��
�

mixtures fits are summarized in Table 1. ����

 ����

[����

FIGURE 6] ����

 ����

�����

 ����
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 ����

 [FIGURE 7] ����

 ��
�

[TABLE I] ����

4.3 Intimate mixing ����

Similar to the case of areal mixtures we obtained fits to Rhea’s spectrum considering intimate ����

mixtures of water ice and the available contaminants. In an intimate mixture, particles of different ����

composition are in close contact (Clark, 1999), so this kind of mixing is also named “salt and ����

pepper” (Poulet et al., 2003). A single ray of light entering the medium in a given position interacts ����

both with water ice particles and contaminant particles. A small volume containing a statistically ����

significant number of particles behaves as if it had an effective single-scattering albedo given by the ����
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average of the albedo of the single particles. This kind of mixing is expected to be more efficient ����

than areal mixing because at this stage spectral signatures (e.g. reddening) affect the effective ��
�

single-scattering albedo and are stretched in higher order terms (w2, w3…) involved in the resulting ����

reflectance, while in the case of areal mixtures, spectra of contaminants are only linearly combined. �
��

As a result, in intimate mixing, the darker component dominates the spectra signature (Clark, 1999). �
��

However, intimate mixing alone is still unable to reproduce the observed reddening of Rhea’s �
��

spectrum for all the contaminants analyzed. Fig. 7 (upper right panel) shows the best fit obtained �
��

with an intimate mixture of water ice and Titan tholin. As with the result of the areal mixture the fit �
��

is acceptable in the IR but no reddening is produced towards the UV. The results of the fits are �
��

summarized in Table 2. �
��

 �
��

[TABLE II] �

�

 �
��

4.4 Intraparticle mixing  ����

In this approach we consider the surface covered by identical particles of water ice with small ����

inclusion of contaminants. The single particle behaves as if it had effective optical constants derived ����

from a combination, given by the Maxwell-Garnett equation, of optical constants of ice and ����

inclusions. For small amount of contaminants (which is the case of this work) the Maxwell-Garnett ����

equation gives results similar to those obtained by a weighted average of the optical constants ����

(Cuzzi and Estrada, 1998). This kind of mixing is the most efficient means of producing reddening ����

because it exaggerates spectral differences, working directly with the complex refractive indices. As ����

shown in Fig. 7 (bottom left panel), intraparticle mixing produces the required UV reddening with ��
�

every contaminant considered in this work, although the type of reddening change from one ����

contaminant to another. Extremely low concentrations of ACH2 (0.01%) are able to introduce UV ����
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reddening, but the resulting spectrum falls too quickly towards short wavelengths before 1 µm and ����

it is not steep enough below 0.4 µm. Titan tholin produces good fits at the shortest wavelengths but ����

it is not sufficiently absorbing towards 1 µm. Tholin from Khare et al. (1993) shows a good ����

agreement below 0.5 µm but has an unobserved feature at 0.8 µm. The best fit (Fig. 7, bottom right ����

panel) is obtained with Triton tholin which reproduces even the change of slope in the spectrum ����

around 0.5 µm. The particle size varies depending on the chosen contaminant. However, if we ����

discard the results given by Titan tholin which produces the worst fit in the IR where the spectrum ����

is more sensitive to grain size, we find that the particles diameter is limited to the range 40-50 µm. ��
�

This diameter can be considered as an average size of particles, once we assume a monodisperse ����

grain size distribution. Some discrepancies between the final fit and observed spectrum due to ����

particle size are discussed in the next section where the best spectral fit is shown. Results for ����

intraparticle mixtures fits are summarized in Table 3. ����

[TABLE III] ����

4.5 Best spectral fit ����

Considering the results presented in previous sections the best way to reproduce the spectral ����

properties of Rhea is to assume an intraparticle mixture of 99.60±0.05 % water ice and 0.40±0.05 %  ����

Triton tholin, with a grain diameter of 38.0±0.5 µm (Fig. 7, bottom right panel). Uncertainty on the ����

derived values is related to the  procedure we applied to perform the fit, as explained in Appendix ��
�

A. Despite the small number of free parameters and end-members, the simulated spectrum fits well ����

the observed spectrum. With such a low amount of tholin as a contaminant in the ice, other tholin ����

absorption bands have a small effect on the infrared spectrum where ice is more absorbing. VIS ����

reddening as well as water ice bands are very well reproduced. The secondary absorption band of ����

crystalline water ice at 1.65 µm, which is shown in simulated spectrum, cannot be confirmed in ����

VIMS data because in the wavelength range 1.60-1.66 µm the measured signal is affected by the ����

presence of an order sorting filter on the detector. Consequently, the measured signal in that region ����
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is replaced by an interpolated value. One of the stronger discrepancies is in the peak at 2.2 µm. This ����

problem is shown in all the mixtures that have been analyzed so does not depend on the spectral ����

properties of the contaminant but is instead most probably due to the chosen grain size distribution. ��
�

In the case of monodisperse grain size distribution all the particles are equal and the contribution ����

from smaller particles (with particle size similar or smaller than the wavelength), which certainly ����

are present in a real distribution of sizes, is not considered. It must be noted that Hapke’s model is ����

developed in the geometric optics domain, so normally does not deal with grain size smaller than ����

the wavelength. Clark et al. (2011b) have extended the Hapke model to include the diffractive ����

scattering and absorption effects from sub-micron particles. Adopting a distribution of sizes which ����

includes smaller particles it might be possible to reproduce the peak at 2.2 µm. Another part of the ����

spectrum where the fit is lost for all the mixtures we deal with, is given by the absorption band at 3 ����

µm. In simulated spectra the 3.1 µm Fresnel peak is always visible, while in the measured spectra it ����

completely disappears. The absence of the Fresnel peak cannot be completely attributed to the ��
�

relative abundance of amorphous versus crystalline ice, as in amorphous ice the Fresnel peak ����

doesn’t fully disappear as shown by (Mastrapa et al., 2009). Moreover ground-based telescopic ����

spectra of Rhea also attest to the crystalline nature of H2O dominating its surface (Cruikshank et al. ����

2005; Emery et al. 2005). The absence of the Fresnel peak in Rhea’s spectra (as in the case for the ����

others icy bodies of the saturnian system) is probably due again to a grain size effect. In large ����

particles light at 3 µm is almost completely absorbed, given the high value of k and the longer path ����

that light travels inside the grain. This implies that when we deal with big grains the light scattered ����

by the particles is the one coming from surface reflections (that involves n) and which generates the ����

Fresnel peak. Scattered light from smaller particles is the result of both surface reflection and ����

internal reflection, thus the Fresnel peak is minimized. Since in our analysis the grain size is around ��
�

40 µm and the contribution from small particles is neglected, the resulting spectrum exhibits an ����

evident peak at 3.1 µm.  ����
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An intraparticle mixture of water ice and Triton tholin was adopted in Cruikshank et al. (2005)  ����

where a fit of Rhea spectrum was performed applying the Shkuratov model. It is interesting to note ����

that both approaches require a comparable amount of embedded contaminant (0.4% in this work, ����

0.2% in Cruikshank et al. (2005)) and they both reproduces the reddening in the UV, even if the ����

adopted spectral models and the surface modeling are different. It reinforces the idea that ����

intraparticle mixing is the best approach to explain the UV feature and that Triton tholin is a ����

reasonable candidate as the water ice contaminant. ����

 5. Phase function fit ��
�

Results from the spectral fit allow us to determine the mixture (type of contaminant and mixing ����

modality) and the grain size. The knowledge of these two parameters enables us to compute single-����

scattering albedo w which determines the spectral behavior of the observed surface. This quantity is ����

involved in Eq. 1, which in our approach depends on 5 parameters (apart from w). The possibility to ����

fix the single-scattering albedo reduces the complexity of phase function fit procedure and allows ����

the decoupling of spectral effect from photometric ones.  ����

A phase function fit at each wavelength available in VIMS range has been performed, using the ����

surface model given by the best spectral fit that is represented by an intraparticle mixture of water ����

ice and Triton tholin (99.6% - 0.04%), with 38 µm grain size. Parameters relative to the OE (B0, h) ����

are allowed to vary along the spectrum because, as we mention in section 2, we want to take into ��
�

account the CBOE as well which can depend on wavelength. Even the single-particle phase ����

function (b,v) parameters can vary with wavelength because the single-scattering albedo has ����

spectral variation and modifies the scattering properties of the grain. The large-scale surface ����

roughness parameter (θ ) is constant all over the spectrum because it accounts only for geometric ����

effects due to surface structures. Details on the fit procedure are in Appendix. In Table 4 the best ����

phase function fit variables for each VIMS channel are reported.  ����
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As we deal with particles that are in average larger than the wavelength, we do not expect a direct ����

correlation between the values of parameters obtained by the fit and the wavelength itself. On the ����

other hand, the single-scattering albedo, which determines the contribution of scattering in the light ����

extinction process, plays a fundamental role for the photometric properties at a given wavelength.  ��
�

This implies that the estimated parameters should be correlated with the single-scattering albedo ����

rather than with the wavelength.  �
��

 [TABLE IV] �
��

5.1 Residuals �
��

Fits are performed minimizing the residuals that are calculated for each wavelength following the �
��

formula: �
��
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��
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rr

res  ,                                                (8) �
��

where ri
m is the  measured absolute reflectance at i’th phase angle while ri

c is the value computed by �
��

the fit procedure (solar spectrum used to calibrate VIMS data is derived from Thekaekara (1973)). �
��

This kind of choice aims to give equal weight to the head and the tail of the full-disk phase function. �

�

Reconstructed full-disk phase functions for those wavelengths where the albedo is very low are �
��

often dominated by noise, and the corresponding fit parameters values are thought to have no ����

physical meaning. Additionally, they produce high residuals because the model is unable to perform ����

a satisfactory fit. For this reason we have considered for the following analysis only wavelengths ����

with well determined full disk phase function and low value of the residuals. We found that for a ����

residual value of 1 the full disk phase function can be considered well reproduced. From this point ����

to the end of the paper we refer only to results relative to residuals lower than 1, unless explicitly ����

written. ����
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In Fig. 8 (upper left panel) fit residuals for each band are plotted against the value of single-����

scattering albedo computed for the correspondent wavelength. As we can see the accuracy of the ��
�

fits increases with larger values of the single-scattering albedo. This effect is due to two reasons. ����

The first is that for those wavelengths corresponding to a higher value of w the signal to noise ratio ����

is typically higher and reconstructed phase functions are more accurate. The second is that at low ����

values of the single-scattering albedo the dominating process is single scattering. In this regime the ����

full-disk phase function is more sensitive to single-particle phase function and worse regression ����

accuracy indicates that the Heyney-Greenstein expression is not able to completely describe the ����

scattering process.  ����

 ����

[����

FIGURE 8] ��
�
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 ����

 [FIGURE 9] ����

 ����

5.2 Single-particle phase function ����

In fig.10 the distributions of b and v parameters are plotted. In these graphs it is shown how many ����

times a certain value of the parameter occurs in a given range of w values. According to McGuire ����

and Hapke (1995) a clear spherical particle should have b~ 0.5-0.7 and v~ -0.9. Most of our b ����

values are slightly lower (0.3-0.4) as it’s expected for real grains that are not perfectly spherical. ����

Moreover b values  should decrease with increasing absorption and it is what we found, since the ����

fitted values shows a positive correlation with w. Concerning the v values, they are negative for a ��
�

large part but greater than -0.9 (average value is -0.5 ), again as expected for not perfectly spherical ����

particles. ����
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 ����

 ����

 ����

[FIGURE 10] ����

 ����

 ����

 ����

  In order to show any relation between single-particle phase function and single-scattering albedo is ��
�

useful to investigate the final shape of p(g). In Fig. 8 (upper right panel), the ratio p(20°)/p(90°) vs ����

w is shown. This choice aims to point out the trend of the single-particle phase function at ����

intermediate phase angles, avoiding the phase angle regions where the contribution of the OE and ����

large scale roughness become relevant. The p(20°)/p(90°) ratio increases with single-scattering ����

albedo meaning that reflectance increases at intermediate phase angles (10°-60°) for more ����

transparent particles. This behavior can be explained by the possibility for a light ray to undergo ����

multiple internal reflections in a non-absorbing particle, producing an higher backscattering lobe ����

respect to a darker particle, where surface reflection dominates and produces a quite flat single-����

particle phase function at phases < 90° (Hapke, 1993, p. 77, Fig. 5.7a). This result is better shown in ����
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Fig. 9, where normalized full disk phase functions are plotted ordered according to increasing ��
�

values of single-scattering albedo (listed along with their relative wavelengths).  ����

 ����

 ����

5.3 Opposition effect ����

As anticipated in previous sections we choose to model the opposition effect following the results ����

developed in Hapke (1993) which consider only shadow hiding (SHOE). This model depends on ����

two parameters (B0, h) which describes respectively the amplitude and angular width. Nonetheless, ����

another mechanisms, coherent backscattering opposition effect (CBOE), has been recognized as ����

contributing to the OE (Hapke et al., 1998; MacKintosh and Sajeev, 1998; Shkuratov et al. 1999b; ����

Hapke, 2002). Given these reasons the interpretation of results concerning the OE is not trivial, ��
�

because the two parameters (B0, h) must describe the contributes of both SHOE and CBOE. The ����

two effects have different characteristics that help us discern between them. The major difference is ����

that angular width of SHOE doesn’t depend on wavelength, while the CBOE does (MacKintosh and ����

Sajeev 1998; Hapke 2002). The second one is that the SHOE width extends up to 10° or more while ����

the CBOE is limited to a width of 2°-3° at most (Hapke et al. 1998, Shkuratov et al. 1999b). ����

Additionally we must consider that SHOE is a single-scattering effect while the CBOE develops in ����

a multiple-scattering process. Therefore, we expect that the SHOE dominates for wavelengths ����

corresponding to low values of w while the CBOE dominates at wavelengths where w values is ����

close to 1.  ����

Figure 8 (bottom left panel) shows the plot h against w. The values of h spread over almost three ��
�

orders of magnitude (0.0002-0.14) giving an OE half width �g�2h ranging between 0.01° - 16°, and ����

show a clear correlation with single-scattering albedo. At low values of w we have high h while the ����

opposite is true when the albedo is low. This behavior reveals the presence of two competing ����
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mechanisms in the OE: the CBOE for wavelengths with high value of albedo and the SHOE for the ����

opposite case. This fact agrees with the argument that the CBOE depends on multiple scattering and ����

the SHOE on single scattering. Moreover, we would expect that the h values at low w would be ����

nearly constants, since SH is independent of wavelength. What we see, in fact, is that spreading ����

reduces considerably towards small values of w with h approaching 0.1.  ����

In the SH regime a rough estimation of the porosity of water ice particles on the surface can be ����

computed from the following relation (Hapke 1993): ��
�

)1ln(
8
3 φ−−≈h    (9) ����

where � is the filling factor. The value of h we chose to use is 0.1, which is referred to low values ����

of the single-scattering albedo, where single scattering dominate and the OE is due to SH. Moreover ����

this value is almost constant with w, so it is independent of wavelength, which is what we expect ����

for the SHOE. With this choice we obtain � =0.23. However, considering that a real grain size ����

distribution has a non null dispersion and that the particle diameter we have measured is just an ����

average value the filling factor can be higher. Assuming a grain size distribution of the form: ����

ma
a

aeaN
−

∝)(                        (10) ����

we obtain �=0.35. The derived porosity is then in the range 65-77 %. These values are lower than ����

those derived in a similar study by Domingue et al. (1995). It must be noted that in Domingue’s ��
�

work the analysis was performed at 0.47 and 0.55 µm, where the single-scattering albedo is close to ����

1 and the CBOE contribution is important, reducing h and increasing the estimated porosity. �
��

Regarding the amplitude of the opposition effect B0 (Fig. 8, bottom right panel) we do not find any �
��

particular trend with w, apart from the fact that values have a larger spreading for single-scattering �
��
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albedo close to 1 tending to be higher respect to the rest of the spectrum. This could be an indication �
��

of the superimposition of the CB on SH, but a compensating effect due to the unsatisfactory �
��

modeling of the single-particle phase function (backscattering region) cannot be excluded.  �
��

  �
��

 �
��

 �

�

5.4 Large-scale surface roughness  �
��

The large-scale surface roughness is characterized by the θ parameter which Hapke (Hapke, 1993) ����

interprets an average slope of the surface structures. This is the only parameter that doesn’t depend ����

on wavelength in our fit procedure. To constrain it we performed fits of full-disk phase functions ����

for each value of θ  in the range 10°-35° and chose the one that produced the smallest residual. We ����

found a final value of θ =33° (we must point out that all the values above 30° gave similar fits).  ����

The result obtained seems too high if related to common slopes of craters and other topographic ����

structures, and exceeds the values found by Domingue et al. (1995), while is close to the one found ����

by Buratti (1985) for Mimas. Recent experimental analysis performed by Shepard and Helfenstein ����

(2007), has shown that the value of  θ � is not only affected by subpixel topography but also, and ��
�

mainly, by roughness on the scale of particles clumping which can produce fairly high slopes, ����

related to the angle of repose of the regolith, and consistent with our determination. ����

Typically, in phase function fit procedures, the estimated values of single-scattering albedo and ����

surface roughness show a certain degree of correlation, which of course has no physical meaning ����

and reveals a degeneration in the inversion process.   ����

In our approach the evaluation of w comes from the spectral fit and it’s completely independent on ����

the determination of the roughness parameter, so the degree of degeneration of the regression is ����
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reduced making the result more reliable. However, it must be noted, as pointed out in Davidsson et ����

al. (2009), that the treatment of surface roughness in Hapke’s theory relies on the assumption of ����

“small mean slope” (θ <10°), which allows  to obtain analytical solutions. The value we retrieved ��
�

from the phase function analysis is far beyond this limit and must be considered with care. ����

Another issue is represented by the fact that in Hapke’s theory multiple scattering between the ����

facets composing the surface is neglected which is not applicable for high albedo materials and ����

rough surfaces. In particular, icy surfaces have high albedo and, as shown in Shepard and ����

Helfenstein (2007), the sub-centimeters scale roughness implies fairly large slope angles (typically ����

above 10°). ����

 This would  limit the applicability of the roughness correction only to low albedo media, which is ����

not the case of icy surface, unless the analysis is restricted to wavelengths where strong absorption ����

bands are located (eg. 2.0 and 3.0 µm). In our analysis the derived  θ value produces  good fits both ����

for high and low reflectance values (e.g. 1 and 2 µm). This would imply that the effect of multiple ��
�

scattering is less relevant than the “small mean slope” approximation. ����

6. Feedback on the spectral fit ����

The results of the phase function fits can be used to improve the spectral fit, which represented the ����

starting point of our analysis. The spectral fit, as explained in section 4.0, was performed assuming ����

an isotropic phase function and at phase angles large enough to avoid contributions from any OE. ����

Now, for each phase angle it is possible to compute the absolute spectrum, removing the ����

approximation of an isotropic single-particle phase function, including the OE and surface ����

roughness. We have recalculated the spectrum at g=90°, the one chosen to perform the starting ����

spectral fit, and plotted it in Fig. 11. The agreement between the fitted spectrum and the measured ����

one is almost perfect throughout the VIS-NIR region. Similar fits have been performed for each ��
�
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spectrum (phase angle) of the dataset. As example the results relative to spectra at g=2.1° and ����

g=49.4° are plotted in Fig. 12. ����

 ����

[FIGURE 11] ����

 ����

[FIGURE 12] ����
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This high level of fit accuracy is possible because we deal with a large number of free parameters ����

and this allows us to tune the reflectance at each wavelength. This represents also the limitation of ��
�

this approach. In fact, any mismatches in the spectral fit due to grain size effects, as shown in ����

section 4.5 for the reflectances at 2.2µm and 3.1 µm, or due to an incomplete knowledge of the ice ����

optical constants, for instance, can be compensated by the contribution of the single-particle phase ����

function.  The spectral fit will be optimal but we shall be misled in the interpretation of the ����

scattering mechanisms at work. ����

On the other hand, the trends observed in Fig. 8, 9 and 10 between phase curve parameters and the ����

single-scattering albedo points out some degree of physical correlation among those variables. For ����

instance, it is not totally unexpected to find that brighter surfaces have a narrower width of the ����

opposition effect than darker surfaces; the contribution of multiple scattering within the grains ����

attenuates the shadow hiding effect limiting it to a narrow region around the zero phase condition. ��
�

Also, for planetary surfaces, the slope of the linear part is larger for brighter surfaces and this is ����

consistent with the results shown in Fig. 8-9. ����

In other words, we could use these correlations to give preliminary estimates of the phase curve ����

parameters to be used in the determination of the spectral fit; this approach can prove valuable also ����

in case of incomplete or undersampled phase curves. ����

 ����

7. Summary and conclusions ����

We have studied surface spectrophotometric properties of Rhea, the largest icy satellite in the ����

saturnian system. The analysis has been performed on spectra acquired by VIMS onboard Cassini, ����

in the 0.35-5.12 µm spectral range, covering the 0.08°-110° phase angle interval. This approach ��
�

enabled us to investigate the compositional state of the ice covering the moon, the agglomeration ����

state of the medium and the roughness properties. Hapke’s spectral and photometric model has been ����
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used for the analysis. Four different organic compounds have been investigated as water ice ����

contaminants in order to model the reddening observed towards the UV. The best spectral fit in our ����

model is represented by an intraparticle mixture of crystalline water ice (99.6 %) and Triton tholin ����

(0.4%), with a grain size (diameter) of 38 µm. Major discrepancies between the measured and fitted ����

spectrum can be addressed to a grain size effect, because our particle diameter distribution ����

represents only the average size of the particles and therefore neglects the contribution of grains ����

with dimensions comparable to or less than the wavelength.  ����

Once the composition of the particles in the model was frozen it was possible to investigate the ��
�

photometric properties of the satellite fitting the full-disk phase function at each wavelength. The ����

picture that emerges is that the dominating parameter in the scattering process is the single-����

scattering albedo w, showing correlation with the single-particle phase function and OE. No ����

particular dependence of OE on wavelength was found, as expected, considering that the typical ����

grain size is larger than λ. The analysis of the OE indicates that both SH and CB are active, and ����

their relative contribution depend on the single scattering albedo value. Measuring the OE angular ����

width h in the SH regime we estimated a porosity varying between 65-77% .  ����

The relatively high value of the roughness parameter (θ =33°) is not compatible with the mean ����

slope of surface structures like craters, depressions or other reliefs. This points to a correlation of θ �����

with roughness on smaller scale, possibly on the order of centimeters, confirming the Shepard and ��
�

Helfenstein (2007) results, and providing an estimation of the regolith angle of repose. ����

The next step will be to apply the methodology described in this paper to the other full disk �
��

observations of the Saturn’s icy satellites. From this point of view the huge VIMS dataset represents �
��

an extremely useful resource, given the large number of observations over a wide variety of �
��

geometric conditions. Our goal will be to determine the distribution of contaminants in the saturnian �
��

system and to point out compositional correlations among the moons. This analysis will represent a �
��
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useful tool for characterizing the effect of processes shaping the surfaces of these bodies: �
��

interactions with other moons, with the rings, and with the saturnian magnetosphere, as well as the �
��

surface activity of the moon itself.    �
��

As a future development we intend to investigate different kinds of grain size distributions �

�

involving even smaller particles (e.g. as done by Clark et al., 2011b). This new approach is beyond �
��

the limit of geometric optics applied in the present formulation of Hapke’s model and requires to ����

use Mie theory (Mie, 1908) to compute single-scattering albedo of the particles.   ����
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APPENDIX: FIT PROCEDURE ����

Performing an inversion of a model with several free parameters is a challenging task. The most ����

common problem is to discriminate between different solutions that give similar results. Fitting ����

algorithms are able to find minima in the parameters space but it is difficult to discriminate between ����

local and absolute ones. To overcome this problem we adopted a very simple and transparent ����

method. We determined a grid in the parameter space through a quantization of the parameters over ����

the full range of variability. For each point of the grid (a single combination of the parameters) we ����

calculated the model prediction and compared it to the data. The best prediction represents the final ����
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results of the fit. This method correctly finds the absolute minimum if the parameters space is ����

sufficiently sampled. The quantization we chose is related to the degree of precision needed by the ��
�

fit. At the same time the variability range for unbounded parameters has been fixed considering a ����

range of values with physical sense.  ����

Concerning the spectral fit we chose a quantization for the particle diameter am of 1 µm in a range ����

extending from 10 to 100 µm; we knew from previous analysis that higher values where ����

unnecessary and that diameter values lower than 10 µm would have broken the limits given by ����

geometric optics in Hapke model. The water ice mixing percentage range changes corresponding to ����

the different mixtures, and in any case p was  1. The quantization “step” of the parameters has ����

been chosen as the minimum variation that could create an appreciable change in the output, ����

consequently the fitted value can be assumed with an uncertainty of half “step”. ����

For the phase function fit the various parameters have been quantized in the following way: ��
�

B0  [0;2], B0i = i�0.1, i = 0,1,2,...,10 ����

h    [0.0001;0.1], hi = 10(-4+0.15�i), i = 0,1,2,…,30 ����

b    [0;9], bi = i�0.1, i=0,1,2,…,9 ����

v  [-1;1] , vi = -1 + i�0.1, i = 0,1,2,…,20 ����

θ  [10°;35°],  θ i = i, i=10°,11°,12°,…,35° ����

�����

 ����
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FIGURES CAPTIONS 

��

Figure 1. Schematic representations of two-components mixtures: areal (a), intimate (b) and 

��

intraparticle (c). In a) the circle represents the field of view of the observing instrument, while in c) 

��

the circle represents a single grain. 


�

 

��

Figure 2. VIMS full-disk spectra of Rhea acquired at different phase angles, normalized at 1 µm. 
���

An offset is added for clarity. The spectrum at each phase angle  is compared to the spectrum at 
���

0.08° (black curve). The leading fraction L.F. of each spectrum is reported. 
���

 
���

Figure 3. Rhea’s full-disk phase functions at various wavelengths. All the curves are normalized to 
���

the value at minimum phase angle (0.08°). 
���

 
���

Figure 4. Real part (n) of the refractive index for water ice and four organic contaminants: 
���

hydrogenated amorphous carbon (ACH2), tholin from Khare et al. 1993, Titan tholin and Triton 
�
�

tholin. 
���

�����
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Figure 5. Imaginary part (k) of the refractive index for water ice and four organic contaminants: ����

hydrogenated amorphous carbon (ACH2), tholin from Khare et al. 1993, Titan tholin and Triton ����

tholin. ����

�����

Figure 6. Simulated spectra of areal mixtures of water ice and ACH2 (left panel) and of water ice ����

and Tholin from Khare et al.1993 (right panel). The percentage of water ice is indicated. Spectra are ����

normalized at 1 µm. Grain size is 50 µm. ����

���
�

�����

Figure 7. Upper left panel: areal mixture best fit. It is obtained with water ice and Titan tholin. The ����

percentages of water ice (p) and contaminant (pc) and the grain size are indicated. Observed ����

spectrum is in red. Spectra are normalized at 1 µm.  Upper right panel: intimate mixture best fit. It ����

is obtained with water ice and Titan tholin. The percentages of water ice (p) and contaminant (pc) ����

and the grain size are indicated. Observed spectrum is in red. Spectra are normalized at 1 µm.  ����

Bottom left panel: Summary plot of intraparticle mixtures fits. Rhea spectrum is the continuum line. ����

All the mixtures are water ice + contaminant. Spectra are normalized at 1µm. Grain sizes and ����

compounds abundances are in Table 3. Bottom right panel: intraparticle mixture best fit. It is ����

obtained with water ice and Triton tholin. The percentages of water ice (p) and contaminant (pc) ��
�

and the grain size are indicated. Observed spectrum is in red. Spectra are normalized at 1 µm. ����

 ����

Figure 8. Upper left panel: phase function fit residuals at each wavelength against the single-����

scattering albedo. Upper right panel: single-particle phase function at 20° and 90° ratio for each ����

wavelength against the single-scattering albedo. Bottom left panel: opposition effect width against ����



  

���

�

the single-scattering albedo. Bottom right panel: opposition effect amplitude against the single-����

scattering albedo. ����

 ����

Figure 9. Rhea full-disk phase functions at wavelengths relative to increasing value of the single-����

scattering albedo. Single-scattering albedo values and corresponding wavelengths are indicated. ��
�

Curves are normalized at minimum phase angle (0.08°). ����

 ����

Figure 10. Distribution of fitted b (left panel) and v (right panel) values respect to the single ����

scattering albedo. N represents how many times a certain value of the parameter is obtained in a ����

given range of w values. The w range (0-1) is divided in intervals 0.1 wide.  ����

�����

Figure 11. Final absolute spectral fit at g = 90.2° (p = 0.996, pc = 0.004, am = 38 µm, intraparticle ����

mixture). Isotropic single-particle phase function approximation has been removed and the ����

correction due to roughness has been introduced. Observed spectrum is red. ����

 ��
�

Figure 12. Left panel: final absolute spectral fit at g = 2.1°. Right panel: final absolute spectral fit at ����

g = 49.4°. The two simulations are obtained with an intraparticle mixture (p = 0.996, pc = 0.004, am ����

= 38 µm). Isotropic single-particle phase function approximation has been removed and the ����

correction due to roughness has been introduced. Observed spectrum is red. ����
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