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Robust Stabilization of an Airlaunch System after Launching Phase*

Van Cuong Nguyen and Riccardo Marino and Gilney Damm

Abstract— A Multiple Input Multiple Output (MIMO) con-
troller based on the dynamic feedback linearization technique
is designed for the robust global stabilization of a new satellite
launching strategy called (unmanned) airlaunch. This strategy
consists in using a two-stages launching system. The first stage
is composed of an airplane (manned or unmanned) that carries
a rocket launcher which constitute the subsequent stages. The
control objective is to stabilize the aircraft in the launch phase.
It is developed and is applied to the full multi-input multi-
output model of the aircraft. The considered model is highly
nonlinear, mostly as a consequence of possible large angle
of attack, sideslip and roll angle. Finally, the present work
illustrates through simulations the good performance of the
proposed control algorithm.

I. INTRODUCTION

This work presents the design of a Multiple Input Mul-
tiple Output controller for the robust stabilization of a new
satellite launching strategy called (unmanned) airlaunch. This
strategy consists in using a two-stages launching system. The
first stage is composed of an airplane that carries a rocket
launcher which constitutes the subsequent stage. The aircraft
brings the rocket to a desired drop area, consequently avoid-
ing many costs and risks related to land rocket launching.
On the other hand, this procedure brings up many other
difficulties connected to the instant of releasing the rocket.

Currently, several airlaunch systems are under develop-
ment (see [20] and [7]). Most current airlaunch projects
use standard or lightly modified airplanes as first stage. For
example, there has been tests using F15, C17, B52, L-1011
in Rascal, QuickReach, Proteus and Pegasus projects. Unlike
those, other projects aim to develop an airlaunch system
that uses an unmanned aerial vehicle (UAV) instead of a
standard aircraft with a human pilot inboard. The objective
is then to use an UAV to fly the launcher to the desired
drop point. There are many advantages in doing so, in first
place safety since no human lives are involved during the
delicate launching phase. In addition, since there is no need
for life supporting devices, weight is restricted to the strict
minimum. Finally, mission may take as long as necessary
without human restrictions as tiredness.

The present paper addresses the stabilization of the drop
phase. It intends to introduce a robust control scheme for this

*The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n257462 HYCON2 Network of excellence

Van Cuong Nguyen is with IBISC - Université d’Evry Val d’Essonne,
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complex procedure. In fact, airlaunch may be very delicate
for many reasons. For example, since the rocket may be
almost as heavy as the UAV, this means that the aircraft will
instantaneously lose almost half of its mass. The proposed
system must replace the human pilot in this stabilization task,
with a much more adverse mass ratio. In the same way,
the two-stages system is strongly nonlinear and can even
for small perturbations be brought quite far from the initial
equilibrium point.

Our previous works (see [16] and [15]) based on MIMO
conditional integrator developed in a series of papers ([5] and
[12]) gave good results on the stabilization of the airlaunch
system. However the problem of stabilization of a complete
airlaunch system is still not solved. In previous results, at
least one of its states remains uncontrolled. On the other hand
the thrust force did not play a serious role in the stabilization
procedure. As a consequence, the available inputs are being
underused while some states still need to be controlled.
Finally, the control surfaces become easily saturated.

For all these reasons we suggest a possibility of applying
a nonlinear controller for this problem. In [10], a nonlinear
flight control, based on inverse dynamics is presented and
is improved as a probabilistic robust control of nonlinear
uncertain flight system in [21]. The inverse dynamics control
provided high performance for large angle of attack condi-
tions. Other nonlinear approaches were based on backstep-
ping control laws (see [18]) and backstepping and neural
network control (see [11]) in the case of extreme flight
conditions.

A slightly different nonlinear approach from inverse dy-
namic is presented in [13] for the V/TOL aircraft and for a
helicopter in [6] by using nonlinear feedback linearization.
In order to be feedback linearizable, the system must satisfy
necessary and sufficient conditions shown in [8] and [17].
The regulator is designed, following a system transformation,
such that the system tracks the output of a reference model.

Based on the dynamic feedback linearization theory (see
[1], [2] and [3]) it was proved that, given some assumptions,
a simplified version of the considered system can be dynamic
feedback linearizable using a first order integration of the
thrust input.

These results have pointed some specific system charac-
teristics that are further exploited in the present work. Here
it is used the dynamic feedback control strategy based on
the nonlinear model to stabilize the full 12th order airlaunch
system in extreme situations after launch phase.

The paper is organized as follows: in section II, we
describe the system model. The control design literature is
discussed in section III, and its application to the full non-



linear system model in section IV. The paper is completed
by some computer simulations and conclusions.

II. SYSTEM MODEL

Drop phase is delicate to model, and requires a large
amount of data and previous knowledge about the real sys-
tem. It can also be represented as a hybrid system composed
by two (or three) continuous models that are switched. These
models represent the system before, (possible during) and
after the separation phase. In the present work we have
adopted this strategy, we have considered three phases, using
two aircraft models.

1) before the separation ⇒ the first model is considered
at an stable operating condition

2) during the separation ⇒ the launch phase itself hap-
pens during an interval Tint. During this interval the
second model is used, but disturbed by constant aero-
dynamic force and moment representing an imperfect
launch of the rocket from the aircraft

3) after the separation ⇒ the disturbances stop, and the
second model continues to be used

In order to make our study as much general as possible,
the first model is taken as an F-16 with twice its normal
mass, while the second model is taken as the complete F-
16 model. It is important to remark that the first model, in
practice, is only used to compute the initial conditions. for
the separation phase.

It can be shown that the effect of launching the rocket
from the carrier aircraft disturb mostly lift force and pitch
and roll moments. We suppose that these disturbing force
and moments are constant during the interval Tint. We call
Fzp , Lp and Mp the disturbances on the lift force, on the
roll moment and pitch moment respectively.

We suppose that:
• the perturbation on lift force during Tint is equal to the

air launch vehicle’s mass, that means Fz = mg.
• the perturbation on pitch moment during Tint is an

worst case that is represented by the rocket that remains
attached to the aircraft by only one end during Tint,
applying a rotational movement to the aircraft, so a
moment with value Fz = mglr/2 where lr is the rocket
length.

• the perturbation on roll moment during Tint is small
because of the rocket shape (long and thin).

• the model following the launch phase is the F-16 model.
Its initial condition is the state at an equilibrium point
of the model previous the launch phase that is the F-16
model but with twice its standard mass.

Following this procedure, the aircraft in the instant fol-
lowing the dynamic airlaunch is described in the body fixed
axes as in (1) (see [9] and [19]).

In (1), Ixx, Iyy, Izz, Ixz are the moments of inertia in
kgm2, m is the mass of the system (kg) and g the gravity
constant. x, y, z, u, v, w, p, q, r, φ, θ, ψ are the state variables
of the airlaunch aircraft model, they represent three positions,
longitudinal velocity, lateral velocity, normal velocity, roll
rate, pitch rate, yaw rate, roll angle, pitch angle and yaw
angle respectively. φ, θ, ψ are expressed in rad, p, q, r in

rad/s. Fu, Fv, Fw and L,M,N are aerodynamic forces
and moments respectively. These aerodynamic forces and
moments are function of all the considered states. In this
model, these aerodynamic forces and moments are under
look-up table from wind tunnel data measurements. We also
introduce α, β, V that are angle of attack (rad), sideslip angle
(rad) and airspeed (m/s) in relationship with u, v, w. Finally
T is the thrust force, the control inputs are respectively
aileron (δa), rudder (δr) and elevator (δe) values.

ẋ = ucψcθ + v(cψsθsφ− sψcφ) + w(cψsθcφ+ sψsφ)
ẏ = usψcθ + v(sψsθsφ+ cψcφ) + w(sψsθcφ− cψsφ)
ż = −usθ + vcθsφ+ wcθcφ
u̇ = rv − qw − gsθ + 1

m (Fu + T )
v̇ = pw − ru+ gsφcθ + 1

mFv
ẇ = qu− pv + gcφcθ + 1

mFw
φ̇ = p+ tan θ(qsφ+ rcφ)

θ̇ = qcφ− rsφ
ψ̇ = qsφ+rcφ

cθ
ṗ = 1

IxxIzz−I2xz
[(IyyIzz − I2zz − I

2
xz)rq − Ixz(Ixx

+Izz − Iyy)pq + IzzL− IxzN ]
q̇ = 1

Iyy
[(Izz − Ixx)pr + Ixz(p2 − r2) +M ]

ṙ = 1
IxxIzz−I2xz

[(−IxxIyy + I2zz + I2xz)pq + Ixz(Ixx

+Izz − Iyy)rq + IxxN − IxzL]

(1)

where c signifies cosinus and s signifies sinus, e.g. cψ =
cosψ and sψ = sinψ.

This model is based on wind tunnel data from NASA
found in [14], considering the following conditions:
• angle of attack is in the range of [−10◦, 45◦] and

sideslip of [−30◦, 30◦]
• flag deflection is ignored
• physical constraints for aileron (|δa| ≤ 21.5◦), rudders

(|δr| ≤ 30◦) and elevator (|δe| ≤ 25◦)
• all actuators are modeled as a first order model with

limit rates 60◦/s for aileron and elevator, and 120◦/s
for rudder.

In particular we use the low quality mode of the F-16
model, and in simulations the aerodynamic data is interpo-
lated and extrapolated linearly from the tables.

Before entering into the design of a Nonlinear Dynamic
Feedback Linearization controller for globally stabilizing the
airlaunch system after dropping phase, we state the following
assumption.

Assumption 1: The control surfaces deflection and angular
rates have no effects on the aerodynamic force components
(Fu, Fv and Fw) but only on moments. The components Fw,
Fu and Fv depend then only on the linear velocities u, v, w.

III. CONTROL DESIGN

Previous works ([1]), ([2] and [3]) in dynamic feedback
linearization theory have proven that the system composed
by the first nine differential equations in (1) can be dynamic
feedback linearizable using (p, q, r) as control variables, as
well as a first order integrator applied on the thrust. We
follow and make a step forward on this technique to demon-
strate the dynamic feedback linearizability of the complete
12th order flight dynamics. We will use a second order
integration of thrust input and develop a nonlinear control
algorithm in order to stabilize the aircraft and track a given
trajectory.

Because (p, q, r) in (1) can be controlled by (δa, δe, δr)
contained in (L,M,N), we can simplify the angular motion



of the last three equations in (1) as 1 :

ṗ = ṗ0; q̇ = q̇0; ṙ = ṙ0 (2)

where ṗ0, q̇0, ṙ0 are control inputs.
System (1) is then of the type:

ξ̇s=fs(ξs) + ṗ0gs1(ξs) + q̇0gs2(ξs) + ṙ0gs3(ξs) + ηgs4(ξs) (3)

where fs, gs1, gs2, gs3, gs4 are obtained from (2) respectively
and η = T/m,

gs1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)T

gs2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)T

gs3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T

gs4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

We can compute the Lie brackets adgsigsj for 1 ≤ i, j ≤ 4
and check that
• span(gs1, gs2, gs3, gs4) is involutive
• span(gs1, gs2, gs3, gs4, adfgs1, adfgs2, adfgs3, adfgs4)

is not involutive
This result implies (see [17]) that system (1) is not static

feedback linearizable.
Since gs4, which lies in the direction of thrust, plays an

important role in the dynamics of the aircraft, we choose to
apply a second order integrator on the thrust (η, η̇ and η̈), and
to check the condition for dynamic feedback linearization
with the augmented system

∆0 = span(gs1, gs2, gs3)
∆1 = ∆0 + adfs∆0 + span{gs4}
∆2 = ∆1 + adfs∆1 + span{gs4}
∆3 = ∆2 + adfs∆2 = R12×1

(4)

System (4) satisfies all sufficient conditions of the theory
presented in [3] and [4]. The extended system in (1) with
the simplified equations (2) and the second order integrator
on thrust is dynamic feedback linearizable. This can be
physically explained by the fact that engine dynamics of
thrust are of second order type, as mentioned in [10].

The work in [4] has shown that the system com-
posed by the nine first differential equations of (1),
using (p, q, r, η̇) as control variables, can be dynami-
cally feedback linearized. There it is first defined ζ1 =
x, ζ2 = y, ζ3 = z, σ1 = η. Then, a change
of coordinates from X̃ =(x, y, z, u, v, w, φ, θ, ψ, η) to
ζ̃ =(x, Lf̃x, L

2
f̃
x, y, Lf̃y, L

2
f̃
y, z, Lf̃z, L

2
f̃
z, σ1) makes the

nine first differential equations in (1) feedback linearizable in
respect to the control variables (p, q, r, η̇). There, f̃ is defined
when the nine first differential equations in (1) are rewritten
in the form ˙̃X = f̃ + g̃ũ.

Distinctly from [4], we will define σ1 as another variable
to avoid singularity of the matrix γ1(·) that we will introduce
later. For this reason, now the nine first differential equations
and the first order integrator on the thrust can be transformed
into a new feedback linearizable system as:

ζ̇1 = ζ4 = Lf̃x

ζ̇2 = ζ5 = Lf̃y

ζ̇3 = ζ6 = Lf̃z

ζ̇4 = ζ7 = L2
f̃
x

ζ̇5 = ζ8 = L2
f̃
y

ζ̇6 = ζ9 = L2
f̃
z

ζ̇7 = D1
0 +D1

1p+D2
1q +D3

1r +D4
1v4

ζ̇8 = D2
0 +D1

2p+D2
2q +D3

2r +D4
2v4

ζ̇9 = D3
0 +D1

3p+D2
3q +D3

3r +D4
3v4

σ̇1 = D4
0 +D1

4p+D2
4q +D3

4r +D4
4v4

(5)

1Remark that the three last equations in 1 are linear independent

where v4 = η̇ and Di
j for i = 1..4, j = 1..3 are function of

X̃ and can be easily computed (see [4]) and

ζ4=ucθcψ + v(cψsθsφ− cφsψ) + w(sθcφcψ + sφsψ)
ζ5=ucθsψ + v(sψsθsφ+ cφcψ) + w(sθcφsψ − sφcψ)
ζ6=−sθu+ vcθsφ+ wcθcφ
ζ7=cθcψ(−gsθ + Fu + η) + (cψsθsφ− cφsψ)(gcθsφ+ Fv)

+(sθcφcψ + sφsψ)(gcφcθ + Fw)
ζ8=cθsψ(−gsθ + Fu + η) + (sψsθsφ+ cφcψ)(gcθsφ+ Fv)

+(sθcφsψ − sφcψ)(gcφcθ + Fw)
ζ9=−sθ(−gsθ + Fu + η)

+cθsφ(gcθsφ+ Fv) + cθcφ(gcφcθ + Fw)

(6)

From (5), we define four new variables ζ10 = ζ̇7, ζ11 = ζ̇8,
ζ12 = ζ̇9 and σ2 = σ̇1.ζ10ζ11ζ12

σ2

 = χ1(X̃) + γ1(X̃)

 pqr
v4

 (7)

where

χ1(X̃) =


D1

0

D2
0

D3
0

D4
0

 ; γ1(·) =


D1

1 D2
1 D3

1 D4
1

D1
2 D2

2 D3
2 D4

2

D1
3 D2

3 D3
3 D4

3

D1
4 D2

4 D3
4 D4

4

 (8)

Di
4 for i = 1..4 are function of X̃ and depend on the

choice of variable σ1 to avoid singularity of γ1(·).
The angular dynamics of (1) can be rewritten as: ṗ

q̇
ṙ

 = χr(u, v, w, p, q, r) + γr(u, v, w)

 δa
δe
δr

 (9)

where χr(u, v, w, p, q, r) ∈ R3×1, γr(u, v, w) ∈ R3×3. It is
important to remark that matrix γr(u, v, w) is invertible in
the required flight envelop.

The derivatives of (7) can be found easily using (9):
ζ̇10
ζ̇11
ζ̇12
σ̇2

=χT (X̃, p, q, r, v4) + γ1(X̃)

[
γr(u, v, w)0

0 1

]δaδeδr
v̇4

 (10)

where

χT (X̃) = χ̇1(X̃) + γ̇1(X̃)

 pqr
v4

+ γ1(X̃)

[
χr(·)

0

]
(11)

By defining v4 = τ as a state variable, v̇4 as the
input uT , we have a feedback linearizable system in (5)
and (10) with 14 states by the change of coordinates
from (x, y, z, u, v, w, φ, θ, ψ, p, q, r, η, τ ) to (ζ1, ζ2, ζ3, ζ4,
ζ5, ζ6, ζ7, ζ8, ζ9, ζ10, ζ11, ζ12, σ1, σ2).

In system (5) and (10), we have 12 physical states from
the aircraft, and 2 states from the integration of thrust. We
need now the nonsingularity of matrix:

γT (·) = γ1(X̃)

[
γr(u, v, w) 0

0 1

]
(12)

Now we will define σ1 as φ, which has the dynamics:

φ̇ = p+ q tan θsφ+ r tan θcφ

Matrix γ1(·) then becomes

γ1(·) =


D1

1 D2
1 D3

1 D4
1

D1
2 D2

2 D3
2 D4

2

D1
3 D2

3 D3
3 D4

3
1 tan θsφ tan θcφ 0

 (13)

The nonsingularity of matrix γ1(·) in this case is guaran-
teed in the required flight envelop. It is physically explained
that three control variables are used to control the trajectory



of the aircraft, and the last control variable to control the roll
motion. The linearizing feedback is given as:

 δaδeδr
uT

 = γ−1
T (·)(−χT (·) +


ζ̇10r
ζ̇11r
ζ̇12r
σ̇2r

+

−k11(ζ1 − ζ1r)
−k21(ζ2 − ζ2r)
−k31(ζ3 − ζ3r)

0

−k12(ζ4 − ζ4r)−k13(ζ7 − ζ7r)−k14(ζ10 − ζ10r)
−k22(ζ5 − ζ5r)−k23(ζ8 − ζ8r)−k24(ζ11 − ζ11r)
−k32(ζ6 − ζ6r)−k33(ζ9 − ζ9r)−k34(ζ12 − ζ12r)

0 −k33(σ1 − σ1r) −k44(σ2 − σ2r)

)

(14)

where the kij for 1 ≤ i, j ≤ 4 are positive parameters to be
tunned, the output references are defined as:

(xr, yr, zr)T = (ζ1r, ζ2r, ζ3r)T = R1

(ẋr, ẏr, żr)T = (ζ4r, ζ5r, ζ6r)T = R2

(ẍr, ÿr, z̈r, φr)T = (ζ7r, ζ8r, ζ9r, σ1r)T = R3

(x(3)
r , y(3)r , z(3)r , φ̇r)T = (ζ10r, ζ11r, ζ12r, σ2r)T = R4

(x(4)
r , y(4)r , z(4)r , φ̈r)T = (ζ̇10r, ζ̇11r, ζ̇12r, σ̇2r)T = R5

(15)

Stability Analysis

In the following, we demonstrate that an aircraft is ex-
ponentially stabilized by the previously designed controller
in considering the effect of moments and control surfaces
on the aerodynamic force. We suppose that the effect of
moment is defined by function ε1Ψ1(X), the effect of control
surfaces is defined by function ε2Ψ2(X)ua(X) where X =
(x, y, z, u, v, w, φ, θ, ψ, p, q, r, η, τ)T . This system is called
slightly non - minimum phase system, a stability analysis
for such systems can be seen in [13].

We define state vectors,
ξ1 =(x, y, z)T = (ζ1, ζ2, ζ3)T

ξ2 =ξ̇1 = (ẋ, ẏ, ż)T = (ζ4, ζ5, ζ6)T

ξ3 =ξ̇2 = (ẍ, ÿ, z̈)T = (ζ7, ζ8, ζ9)T

ξ4 =ξ̇3 = (x(3), y(3), z(3))T = (ζ10, ζ11, ζ12)T

ξ1φ=φ = σ1; ξ2φ = ˙ξ1φ = φ̇ = σ2

(16)

From (5), (10) and (16), the approximate system can be
described as: 

ξ̇1 =ξ2
ξ̇2 =ξ3
ξ̇3 =ξ4
ξ̇1φ=ξ2φ
ξ̇4 =χT0(X) + γT0(X)ua
ξ̇2φ=χT1(X) + γT1(X)ua

(17)

where the matrix γT (X) =

[
γT0(X)
γT1(X)

]
is nonsingular in

the studied field of X and χT (X) =

[
χT0(X)
χT1(X)

]
, γT0(X) ∈

R3×4
, γT1(X) ∈R1×4

, χT0(X) ∈R3×1 and χT0(X) ∈R.

Computing the effects of moment and of control surfaces,
the true system can be described as:

ξ̇1 =ξ2
ξ̇2 =ξ3 +

∂ξ2
∂x (ε1ψ1(X) + ε2ψ2(X)ua)

ξ̇3 =ξ4 +
∂ξ3
∂x (ε1ψ2(X) + ε2ψ2(X)ua)

ξ̇1φ=ξ2φ
ξ̇4 =χT0(X) + γT0(X)ua +

∂ξ4
∂x (ε1ψ1(X) + ε2ψ2(X)ua)

ξ̇2φ=χT1(X) + γT1(X)ua

(18)

The approximate tracking controller that we designed in
the last subsection is:

ua=

[
γT0(X)
γT1(X)

]−1

(−
[
χT0(X)
χT1(X)

]
−K1(ξ1 − R1)−K2(ξ2 − R2)

−K3(

[
ξ3
ξ1φ

]
− R3)−K4(

[
ξ4
ξ2φ

]
− R4) + R5)

(19)

where K3 = diag(k13, k23, k33, k43), K4 =
diag(k14, k24, k34, k44) and

K1 =

k11 0 0
0 k21 0
0 0 k31
0 0 0

 ;K2 =

k12 0 0
0 k22 0
0 0 k32
0 0 0


We define the trajectory error vector e1 = ξ1 − R1, e2 =

ξ2 −R2,
[
e3
e5

]
=

[
ξ3
ξ1φ

]
−R3 and

[
e4
e6

]
=

[
ξ4
ξ2φ

]
− R4.

Then the system (18) with the approximate tracking con-
troller in (14) can be rewritten as:

ė1
ė2[
ė3
ė5

]
[
ė4
ė6

]
=

 I3 0 0 0
0 I3 0 0
0 0 I4 0
−K1−K2−K3−K4



e1
e2[
e3
e5

]
[
e4
e6

]


+



0
∂ξ2
∂X ε1ψ1(X)
∂ξ3
∂X ε1ψ1(X)

0
∂ξ4
∂X ε1ψ1(X)

0

+



0
∂ξ2
∂X ε2ψ2(X)ua(X)
∂ξ3
∂X ε2ψ2(X)ua(X)

0
∂ξ4
∂X ε2ψ2(X)ua(X)

0



(20)

Or compactly,

ė = Ae+ ε1Ψ1(X) + ε2Ψ2(X)ua(X) (21)

We will show now that e is bounded. To this end, we
consider the Lyapunov candidate:

W = eTPe (22)

where matrix P is the solution of:

ATP + PA = −I14 (23)

By the assumption that all output references are bounded,
that means Ri for 1 ≤ i ≤ 5 are bounded, we have:

‖ξ‖ ≤ ‖e‖+ bd (24)

Furthermore, we can check that Ψ1(X) and Ψ2(X)ua(X)
are locally Lipschitz, note that X is a local diffeomorphism
of ξ, so ‖X‖ ≤ lx‖ξ‖.

‖PΨ1(X)‖ ≤ l1‖X‖ ≤ l1lx‖ξ‖ (25)

‖PΨ2(X)ua(X)‖ ≤ l2‖X‖ ≤ l2lx‖ξ‖ (26)

Take the derivative of Lyapunov function, we find that:

Ẇ=−eT e+ 2eTP (ε1Ψ1(X) + ε2Ψ2(X)ua(X))
≤−‖e‖2 + 2‖e‖(ε1l1lx‖ξ‖+ ε2l2lx‖ξ‖)
≤−‖e‖2 + 2‖e‖(ε1l1lx(‖e‖+ bd) + ε2l2lx(‖e‖+ bd))
≤−‖e‖2 + 2(ε1l1lx + ε2l2lx)‖e‖2 + 2(ε1l1lx

+ε2l2lx)bd‖e‖
≤−(3/4− 2(ε1l1lx + ε2l2lx))‖e‖2 − (‖e‖/2− 2(ε1l1lx

+ε2l2lx)bd)2 + (2(ε1l1lx + ε2l2lx)bd)2

(27)

Thus Ẇ ≤ 0 whenever e is large, then ξ and X are
bounded. If we choose bd sufficiently small and with an
approximate initial conditions, all system states remain in
a small neighborhood of tracking values. For the purpose
of stabilization of aircraft system after the launching phase,
the references and its derivatives are zero, bd is zero. The
system is exponentially stable with ε1 and ε2 are sufficiently
small. We can see that for the purpose of flight stabiliza-
tion, dynamic feedback linearization controller satisfies the
performance requirement.



IV. SIMULATION RESULTS

This section will present numerical simulation results of
the proposed feedback linearization control laws designed in
section III to demonstrate the performance in the drop phase.

As mentioned in section II, we assume that the launch
phase is considered as a perturbation on aerodynamic force
and moment during an interval Tint that affect the aircraft
model following the launch phase, that is taken as an F-
16. This model is used since this aircraft has already been
applied for (manned) airlaunch, and because its nonlinear
model, wind tunnel informations and data are widely known
and used for control design. It is important to remark that
the model used in the following simulations is even more
complete than that used in the control design, for example
it includes actuator dynamics and their limitations. As a
consequence, simulations also illustrate some properties of
robustness to unmodeled dynamics. We may note that the
control inputs are bounded by their physical limitations
introduced in section II.

In the following text, we will show simulations of the
stabilization of the aircraft model following the launch
phase to its equilibrium point (V, h) = (154m/s, 6500m)
corresponding to (angle of attack αr to 2.7◦, sideslip βr to
0◦, and roll angle φr to 0◦).

Fig. 1. Airspeed, Angle of attack and sideslip angle

Fig. 2. State variables: Angular rates of system

Its initial condition is the final state of the first model
(before the drop phase - α = 12.5◦, β = 0◦ and φ = 0◦)
as in section II. Moreover, we add on its initial condition a
small disturbance on system output. That means the initial
condition of the second model is (α0 = 17.5◦, β0 = 4◦ and
φ0 = 10◦) for all numerical simulations.

The second model is disturbed on aerodynamic force and
moment during an interval Tint as in section II. We simulate
three sets of Tint,

1) Tint = 0.2s (solid lines in Fig. 1 to Fig. 5),
2) Tint = 0.3s (dashed lines in Fig. 1 to Fig. 5)
3) Tint = 0.36s (dash dotted lines in Fig. 1 to Fig. 5)
It is interesting to remind that the aircraft with constant in-

puts (trim conditions) is unstable for Tint greater than 0.227s
(see [15]). The dynamic feedback linearization controller we
designed in section III will stabilize the system for longer
periods. Finally, we note that the system will be unstable for
an interval Tint greater than 0.36s. Nevertheless, in this case
the control inputs are strongly saturated. As a consequence
this time interval represents more likely the limitations of the
aircraft itself than the limitations of the control algorithm.

Fig. 3. State variables: Euler’s angle of system

Fig. 4. Control surface: aileron, elevator and Rudder

Fig. 5. Thrust Force
Figs. 1 to 3 represent the convergence of the system states

to the operating point of the aircraft at the end of 10s for three
cases of Tint = (0.2s, 0.3s, 0.36s). For Tint = (0.2s, 0.3s)
the system is well stabilized, while for Tint assuming larger



values the system becomes more oscillatory and attains its
limits of stability in case of Tint = 0.36s.

Fig. 4 shows how the control variables and thrust behave
for the three cases of study. The control surfaces in the
last case are saturated by their physical limitations due to a
high perturbation on aerodynamic force and moment. It can
be said that the performance of the Feedback Linearization
Controller allows the system to keep stability even with large
perturbation during a long time interval Tint.

Collision Avoidance

Airlaunch problem does not only require stability of
system’s states, but also to avoid the possibility of collision
between the aircraft and the rocket after the drop phase. Fig.
6 shows the altitude of the aircraft from 0 to 1s in the three
previous cases of study by using the Feedback Linearization
Controller. They are compared with the trajectory of the
rocket that drop freely with the initial airspeed of the aircraft
(the thin solid plot). It is important to remark that there is a
small distance from the initial height of the rocket and the
aircraft, representing the distance from the respective centers
of mass.

Fig. 6. Altitude of the aircraft with Feedback Linearization Controller

In the three cases (dotted plot, dashed plot and dash dotted
plot), the altitude of the aircraft satisfies the specification that
requires there is no collision between the aircraft and the
rocket in the airlaunch phase.

V. CONCLUSION

We have presented the design of a Dynamic Feedback
Linearization Controller aiming to stabilize an unmanned air-
craft performing the airlaunch of a satellite launcher (rocket).
The paper shows that the flight system can be dynamic
linearizable (using a second order integration of the thrust
input) in a first step where it was neglected the derivatives
of aerodynamic forces with respect to control surfaces and
angular rates. In a second step, a deeper analysis shows that
this dynamic feedback linearization controller stabilizes the
aircraft even when are taken into account the effects of the
control surfaces and angular rates on the aerodynamic forces.

The proposed controller is then applied to an F-16 model
disturbed by large impulses on forces and moments that
may destabilize the system. This represents an aircraft per-
forming airlaunch, just after dropping the second stage.
The performance of the proposed controller is illustrated
by computer simulations with initial conditions representing
the final (stable) state before the launch phase. In three of

the studied cases, the stability of the system after the drop
phase is assured, all states return to their equilibrium values,
and there is no collision between the aircraft and the rocket,
even if the the perturbation interval Tint becomes large. The
controller satisfies then the requirement of flight stabilization
and collision avoidance with the rocket.
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