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Abstract

In this paper we consider non parametric finite translation mixtures. We prove that
all the parameters of the model are identifiable as soon as the matrix that defines the joint
distribution of two consecutive latent variables is non singular and the translation parameters
are distinct. Under this assumption, we provide a consistent estimator of the number of
populations, of the translation parameters and of the distribution of two consecutive latent
variables, which we prove to be asymptotically normally distributed under mild dependency
assumptions. We propose a non parametric estimator of the unknown translated density. In
case the latent variables form a Markov chain (Hidden Markov models), we prove an oracle
inequality leading to the fact that this estimator is minimax adaptive over regularity classes
of densities.

Keywords: translation mixtures; non parametric estimation; semi-parametric models;
Hidden Markov models,dependent latent variable models.

Short title: Non parametric finite translation mixtures

1 Introduction

Finite mixtures are widely used in applications to model heterogeneous data and to do un-
supervised clustering, see for instance MacLachlan and Peel (2000) or Marin et al. (2005) for
a review. Latent class models, hidden Markov models or more generally regime switching
models may be viewed as mixture models. Finite mixtures are therefore to be understood
as convex combinations of a finite number of probability distributions over the space the
data lives in, including both static (when the latent variables are independent) and dy-
namical models. Most of the developed methods use a finite dimensional description of the
probability distributions, which requires some prior knowledge of the phenomenon under
investigation. In particular applications, it has been noticed that this may lead to poor re-
sults and various extensions have been considered. The first natural extension is to consider
mixtures with an unknown number of components. This has been extensively studied and
used in the literature both from a Bayesian or frequentist point of view, see Akaike (1973),
Richardson and Green (1997), Ishwaran et al. (2001), Chambaz and Rousseau (2008), Cham-
baz et al. (2009), Gassiat and van Handel (pear), to name but a few. However when the
emission distribution, i.e. the distribution of each component, is misspecified this results in
an overestimation of the number of components, as explained in the discussion in Rabiner
(1989). Thus, there has recently been interest in considering nonparametric mixture models
in various applications, see for instance the discussion on the Old faithfull dataset in Azza-
line and Bowman (1990), the need for nonparametric emission distributions in climate state
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identification in Lambert et al. (2003) or the nonparametric hidden Markov model proposed
in Yau et al. (2011). In absence of training data, mixture models with nonparametric emis-
sion distributions are in general not identifiable without additional structural constraints.
In a seminal paper, Hall and Zhou (2003) discussed identifiability issues in a 2 -component
nonparametric mixture model under repeated measurements (or multivarate) and showed
that identifiability essentially only occured if there is at least 3 repeated measurements
for each individual. This work has been extended by various authors including Kasahara
and Shimotsu (2007), Bonhomme et al. (2011) and references therein. Identifiability recent
results about mixtures may also be found in Allman et al. (2009).

Consider location models
Yi = mSi

+ ǫi, i ∈ N (1.1)

where (Si)i∈N is an unobserved sequence of random variables with finite state space {1, . . . , k},
(ǫi)i∈N is a sequence of independent identically distributed random variables taking values
in R, and mj ∈ R, j = 1, . . . , k. The aim is to estimate the parameters k, m1, . . . ,mk, the
distribution of the latent variables (Si)i∈N and the distribution F of the ǫi’s. As usual for
finite mixtures, one may recover the parameters only up to relabelling, and obviously, F may
only be estimated up to a translation (that would be reversly reported to themj ’s). However
the identifiability issue is much more serious without further assumptions. To illustrate the
identifiability issues that arise with such models, assume that the Si’s are independent and
identically distributed. Then the Yi’s are independent and have distribution

Pµ,F (.) =

k∑

j=1

µ(j)F (· −mj) . (1.2)

Here, µ(j) ≥ 0, j = 1, . . . , k,
∑k

j=1 µ (j) = 1, mj ∈ R, j = 1, . . . , k, and F is a probability
distribution on R. An equivalent representation of (1.2) corresponds for instance to k = 1,
m1 = 0 and F = Pµ,F the marginal distribution. Hunter et al. (2004) have considered model
(1.2) with the additional assumption that F is symmetrical and under some constraints on
the mj , in the case of k ≤ 4 , see also L. Bordes and Vandekerkhove (2006) and Butucea and
Vandekerkhove (2011) in the case where k = 2 for an estimation procedure and asymptotic
results.

In this paper, we investigate model (1.1) where the observed variables are not inde-
pendent and may be non stationary. Interestingly, contrarywise to the independent case,
we obtain identifiability without any assumption on F under some very mild conditions
on the process S1, · · · , Sn, see Theorem 2.1. To be precise, if Q is the k × k-matrix such
that Qi,j is the probability that S1 = i and S2 = j, we prove that the knowledge of the
distribution of (Y1, Y2) allows the identification of k, m1, . . . ,mk, Q and F as soon as Q
is a non singular matrix, whatever F may be. Building upon our identifiability result, we
propose an estimator of k, and of the parametric part of the distribution, namely Q and
m1, . . . ,mk. Here, we do not need the sequence (Xi)i∈N to be strictly stationary and asymp-
totic stationarity is enough, then Q is the stationary joint disribution of two consecutive
latent variables. Moreover, we prove that our estimator is

√
n-consistent, with asymptotic

Gaussian distribution, under mild dependency assumptions, see Theorem 3.1. When the
number of populations is known and if the translation parameters mj , j ≤ k are known to
be bounded by a given constant, we prove that the estimator (centered and at

√
n-scale)

has a subgaussian distribution, see Theorem 3.2.
In the context of hidden Markov models as considered in Yau et al. (2011), we propose

an estimator of the non parametric part of the distribution, namely F , assuming that
it is absolutely continuous with respect to Lebesgue measure. This estimator uses the
model selection approach developped in Massart (2007), with the penalized estimated pseudo

likelihood contrast based on marginal densities
∑k

j=1 µ̂(j)f(y − m̂j). We prove an oracle
inequality, see Theorem 4.1, which allows to deduce that our non parametric estimator is
adaptive over regular classes of densities, see Theorem 4.2 and Corollary 1.

The organization of the paper is the following. In section 2 we present and prove our
general identifiability theorem. In section 3 we define an estimator of the order and of the
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parametric part, and state the convergence results: asymptotic gaussian distribution and
deviation inequalities. In section 4, we explain our non parametric estimator of the density
of F using model selection methods, and state an oracle inequality and adaptive convergence
results. Most of the proofs are given in the Appendices.

2 General identifiability result

LetQk be the set of probability mass functions on {1, . . . , k}2, that is the set of k×k matrices

Q = (Qi,j)1≤i,j≤k such that for all (i, j) ∈ {1, . . . , k}2, Qi,j ≥ 0, and
∑k

i=1

∑k
j=1Qi,j = 1.

We consider the joint distribution of (Y1, Y2) under model (1.1), which has distribution

Pθ,F (A×B) =

k∑

i,j=1

QijF (A−mi)F (B −mj), ∀A,B ∈ BR (2.1)

where BR denotes the Borel σ field of R and θ =
(
m, (Qi,j)1≤i,j≤k,(i,j) 6=(k,k)

)
, with m =

(m1, . . . ,mk) ∈ R
k. Recall that in this case, ordering the coefficients m1 ≤ m2 ≤ · · · ≤ mk

and replacing F by F (.−m1) leads to the same model so that without loss of generality we
fixe 0 = m1 ≤ m2 ≤ · · · ≤ mk. Let Θk be the set of parameters θ such that m1 = 0 ≤ m2 ≤
. . . ≤ mk and Q ∈ Qk, where Q = (Qi,j)1≤i,j≤k, Qk,k = 1−∑(i,j) 6=(k,k) Qi,j.

Let also Θ0
k be the set of parameters θ =

(
m, (Qi,j)1≤i,j≤k,(i,j) 6=(k,k)

)
∈ Θk such that

m1 = 0 < m2 < . . . < mk and det(Q) 6= 0. We then have the following result on the
identification of F and θ from Pθ,F .

Theorem 2.1 Let F and F̃ be any probability distributions on R. Let k and k̃ be positive
integers. If θ ∈ Θ0

k and θ̃ ∈ Θ0
k̃
, then

Pθ,F = Pθ̃,F̃ =⇒ k = k̃, θ = θ̃ and F = F̃.

Remark 1 In the same way, it is possible to identify ℓ-marginals, for any ℓ ≥ 2, that is
the distribution of (S1, . . . , Sℓ), m and F on the basis of the distribution of (Y1, . . . , Yℓ).

Remark 2 The independent case considered in Hunter et al. (2004), L. Bordes and Van-
dekerkhove (2006), Butucea and Vandekerkhove (2011) is a special case where det(Q) = 0
for which our identifiability result does not hold. An important class of models is that of
hidden Markov models. In that case, if Q is the stationary distribution of two consecutive
variables of the hidden Markov chain, det(Q) 6= 0 if and only if the transition matrix is non
singular and the stationary distribution gives positive weights to each point. When k = 2,
we thus have det(Q) 6= 0 if and only if S1 and S2 are not independent.

Proof of Theorem 2.1
Denote by φF the characteristic function of F , φF̃ the characteristic function of F̃ , φθ,1

(respectively φθ̃,1) the characteristic function of the distribution of mS1 under Pθ,F (respec-
tively under Pθ̃,F̃ ), φθ,2 (respectively φθ̃,2) the characteristic function of the distribution
of mS2 under Pθ,F (respectively under Pθ̃,F̃ ), and Φθ (respectively Φθ̃) the characteristic
function of the distribution of (mS1 ,mS2) under Pθ,F (respectively under Pθ̃,F̃ ). Then since
the distribution of Y1 is the same under Pθ,F and Pθ̃,F̃ , one gets that for any t ∈ R,

φF (t)φθ,1 (t) = φF̃ (t)φθ̃,1 (t) . (2.2)

Similarly, for any t ∈ R,
φF (t)φθ,2 (t) = φF̃ (t)φθ̃,2 (t) . (2.3)

Since the distribution of (Y1, Y2) is the same under Pθ,F and Pθ̃,F̃ , one gets that for any

t = (t1, t2) ∈ R2,
φF (t1)φF (t2)Φθ (t) = φF̃ (t1)φF̃ (t2)Φθ̃ (t) . (2.4)
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There exists a neighborhood V of 0 such that for all t ∈ V , φF (t) 6= 0, so that (2.2), (2.3)
and (2.4) imply that for any t = (t1, t2) ∈ V 2,

Φθ (t)φθ̃,1 (t1)φθ̃,2 (t2) = Φθ̃ (t)φθ,1 (t1)φθ,2 (t2) . (2.5)

Let t1 be a fixed real number in V . Φθ (t1, t2), φθ̃,2 (t2), Φθ̃ (t1, t2), φθ,2 (t2) have analytic
continuations for all complex numbers z2, Φθ (t1, z2), φθ̃ (z2), Φθ̃ (t1, z2), φθ (z2) which are
entire functions so that (2.5) holds with z2 in place of t2 for all z2 in the complex plane C and
any t1 ∈ V . Again, let z2 be a fixed complex number in C. Φθ (t1, z2), φθ̃,1 (t1), Φθ̃ (t1, z2),
φθ,1 (t1) have analytic continuations Φθ (z1, z2), φθ̃ (z1), Φθ̃ (z1, z2), φθ (z1) which are entire
functions so that (2.5) holds with z1 in place of t1 and z2 in place of t2 for all (z1, z2) ∈ C2.
Let now Z be the set of zeros of φθ,1, Z̃ be the set of zeros of φθ̃,1 and fix z1 ∈ Z. Then,
for any z2 ∈ C,

Φθ (z1, z2)φθ̃,1 (z1)φθ̃,2 (z2) = 0. (2.6)

We now prove that z2 → Φθ (z1, ·) is not the null function. For any z ∈ C,

Φθ (z1, z) =

k∑

ℓ=1




k∑

j=1

Qℓ,je
imjz1


 eimℓz .

Since 0 = m1 < m2 < . . . < mk, if Φθ (z1, ·) was the null function, we would have for all
ℓ = 1, . . . , k

k∑

j=1

Qℓ,je
imjz1 = 0,

which is impossible since det(Q) 6= 0. Thus, Φθ (z1, ·) is an entire function which has
isolated zeros, φθ̃,2 (·) also, and it is possible to choose z2 in C such that Φθ (z1, z2) 6= 0 and

φθ̃,2 (z2) 6= 0. Then (2.6) leads to φθ̃,1 (z1) = 0, so that Z ⊂ Z̃. A symmetric argument

gives Z̃ ⊂ Z so that Z = Z̃. Moreover, φθ,1 and φθ̃,1 have growth order 1, so that using
Hadamard’s factorization Theorem (see Stein and Shakarchi (2003) Theorem 5.1) one gets
that there exists a polynomial R of degree ≤ 1 such that for all z ∈ C,

φθ,1 (z) = eR(z)φθ̃,1 (z) .

But using φθ,1 (0) = φθ̃,1 (0) = 1 we get that there exists a complex number a such that
φθ̃,1 (z) = eazφθ,1 (z). Using now 0 = m1 < m2 < . . . < mk, and 0 = m̃1 < m̃2 < . . . < m̃k̃

we get that φθ,1 = φθ̃,1. Similar arguments lead to φθ,2 = φθ̃,2. Combining this with (2.5)

we obtain Φθ = Φθ̃ which in turns implies that k = k̃ and θ = θ̃. Thus, using (2.2), for all
t ∈ R such that φθ,1(t) 6= 0, φF (t) = φF̃ (t). Since φθ,1 has isolated zeros and φF , φF̃ are

continuous functions, one gets φF = φF̃ so that F = F̃ . �

3 Estimation of the parametric part

3.1 Assumptions on the model

Hereafter, we are given a sequence (Yi)i∈N of real random variables with distribution P⋆. We
assume that (1.1) holds, with (Si)i∈N a sequence of non-observed random variables taking
values in {1, . . . , k⋆}. We denote by F ⋆ the common probability distribution of the ǫi’s, and
m⋆ ∈ Rk⋆

the possible values of the mSi
’s. We assume:

(A1) (Si, Si+1) converges in distribution to Q⋆ ∈ Qk⋆ .
For θ⋆ = (m⋆, (Q⋆

i,j)(i,j) 6=(k⋆ ,k⋆)), θ
⋆ ∈ Θ0

k⋆ , and all differencesm⋆
j−m⋆

i , i, j = 1, . . . , k⋆,
i 6= j, are distinct.

We do not assume that k⋆ is known, so that the aim is to estimate θ⋆ and k⋆ altogether.
Assumption (A1) implies that the marginal distributions in Q⋆ are identical so that we
write from now on φθ⋆ = φθ⋆,1 = φθ⋆,2.
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The idea to estimate θ⋆ and k∗ is to use equation (2.5) which holds if and only if the
parameters are equal. Consider w any probability density on R2 with compact support S,
positive on S and with 0 belonging to the interior of S ; typically S = [−a, a]2 for some
positive a. Define, for any integer k and θ ∈ Θk:

M (θ) =

∫

R2

|Φθ⋆ (t1, t2)φθ,1 (t1)φθ,2 (t2)− Φθ (t1, t2)φθ⋆ (t1)φθ⋆ (t2)|2

|φF⋆ (t1)φF⋆ (t2)|2 w (t1, t2) dt1dt2. (3.1)

We shall use M(θ) as a contrast function. Indeed, thanks to Theorem 2.1, θ ∈ Θ0
k is such

that M(θ) = 0 if and only if k = k⋆ and θ = θ⋆.
We estimate M(·) by

Mn (θ) =

∫

R2

∣∣∣Φ̂n (t1, t2)φθ,1 (t1)φθ,2 (t2)− Φθ (t1, t2) φ̂n,1 (t1) φ̂n,2 (t2)
∣∣∣
2

w (t1, t2) dt1dt2,

(3.2)

where Φ̂n is an estimator of the characteristic function of the asymptotic distribution of
(Yt, Yt+1), φ̂n,1(t) = Φ̂n(t, 0) and φ̂n,2(t) = Φ̂n(0, t). One may take for instance the empirical
estimator

Φ̂n (t1, t2) =
1

n

n−1∑

j=1

exp i (t1Yj + t2Yj+1) . (3.3)

We require that Φ̂n is uniformly upper bounded; if Φ̂n is defined by (3.3) then it is uniformly
upper bounded by 1. Define, for any t = (t1, t2) ∈ R2

Zn (t) =
√
n
(
Φ̂n(t)− Φθ⋆(t)φF⋆ (t1)φF⋆ (t2)

)
.

Our main assumptions on the model and on the estimator Φ̂n are the following.

(A2) The process (Zn (t))t∈S converges weakly to a Gaussian process (Z (t))t∈S in the
set of complex continuous functions on S endowed with the uniform norm and with
covariance kernel Γ(·, ·).

(A3) There exist real numbers E and c (depending on θ⋆) such that for all x ≥ 0 and
n ≥ 1,

P
⋆

(
sup
t∈S

|Zn (t)| ≥ E + x

)
≤ exp

(
−cx2

)
.

(A2) will be used to obtain the asymptotic distribution of the estimator, and (A3) to
obtain non asymptotic deviation inequalities. Note that (A2) and (A3) are for instance
verified if we use (3.3), under stationarity and mixing conditions on the Yj ’s. This follows
applying results of Doukhan et al. (1994), Doukhan et al. (1995) and Rio (2000).

3.2 Definition of the estimator

Our contrast function verifies M (θ) = 0 if and only if θ = θ⋆ only when we restrict θ
to belong to ∪k∈NΘ

0
k. When minimization is performed over ∪k∈NΘ

0
k it may happen that

the minimizer is on the boundary. To get rid of this problem, we build our estimator θ̂n
using a preliminary consistent estimator θ̃n, and then restrict the minimization using the
information given by θ̃n.
Define for any integer k, Ik a positive continuous function on Θ0

k and tending to +∞ on the
boundary of Θ0

k or whenever ‖m‖ tends to infinity. For instance one may take

Ik
(
m, (Qi,j)(i,j) 6=(k,k)

)
= − log detQ−

k∑

i=2

log
|mi −mi−1|
(1 + ‖m‖∞)2

.
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Let (kn, θ̃n) be a minimizer over {(k, θ) : k ∈ N, θ ∈ Θk} of

Cn (k, θ) =Mn (θ) + λn [J (k) + Ik (θ)]

where J : N → N is an increasing function tending to infinity at infinity and (λn)n∈N a
decreasing sequence of real numbers tending to 0 at infinity such that

lim
n→+∞

√
nλn = +∞ (3.4)

Define now θ̂n as a minimizer of Mn over
{
θ ∈ Θkn

: Ikn
(θ) ≤ 2Ikn

(
θ̃n

)}
.

In case k⋆ is known, we may choose another estimator. Let K be a compact subset of
Θ0

k⋆ . We denote by θn(K) a minimizer of Mn over K. This estimator will also be used as a

theoretical trick in the proof of the asymptotic distribution of θ̂n.

3.3 Asymptotic results

Our first result gives the asymptotic distribution of θ̂n. To define the asymptotic variance,
we define ∇M (θ) the gradient of M at point θ and D2M (θ) the Hessian of M at point θ.
We also set V the variance of the gaussian process

∫
{C (t) [Z (−t)φθ⋆ (−t1)φθ⋆ (−t2)− Φθ⋆ (−t) (Z(−t1, 0)φθ⋆ (−t2) + Z(0,−t2)φθ⋆ (−t1))]

+C (−t) [Z (t)φθ⋆ (t1)φθ⋆ (t2)− Φθ⋆ (t) (Z(t1, 0)φθ⋆ (t2) + Z(0, t2)φθ⋆ (t1))]}w (t) dt

where
C (t) = Φθ⋆ (t)∇ (φθ⋆ (t1)φθ⋆ (t2))−∇Φθ⋆ (t)φθ⋆ (t1)φθ⋆ (t2) .

Theorem 3.1 Assume (A1), (A2), and (3.4). Then D2M (θ⋆) is non singular, and for
any compact subset K of Θ0

k⋆ such that θ⋆ lies in the interior of K,
√
n(θn(K)−θ∗) converges

in distribution to the centered Gaussian with variance

Σ = D2M (θ⋆)
−1
V D2M (θ⋆)

−1
.

Moreover,
√
n(θ̂n − θ∗) converges in distribution to the centered Gaussian with variance Σ.

If one wants to use Theorem 3.1 to build confidence sets, one needs to have a consis-

tent estimator of Σ. Since D2M is a continuous functions of θ, D2M
(
θ̂n

)
is a consistent

estimator of D2M (θ⋆). Also, V may be viewed as a continuous function of Γ(·, ·) and θ, as
easy but tedious computations show. One may use empirical estimators of Γ(·, ·) which are
uniformly consistent under stationarity and mixing conditions, to get a consistent estimator
of V . This leads to a plug-in consistent estimator of Σ.
Another possible way to estimate Σ is to use a boostrap method, following for instance
Clemencon et al. (2009) when the hidden variables form a Markov chain.

When we have deviation inequalities for the process Zn, we are able to provide deviation
inequalities for

√
n(θn(K)−θ∗). Such inequalities have interest by themselves, they will also

be used for proving adaptivity of our non parametric estimator in Section 4.

Theorem 3.2 Assume (A1) and (A3). Let K be a compact subset of Θ0
k⋆ such that θ⋆ lies

in the interior of K. Then there exist real numbers c⋆, M⋆, and an integer n⋆ such that for
all n ≥ n⋆ and M ≥M⋆,

P
⋆
(√
n‖θn(K) − θ⋆‖ ≥M

)
≤ 8 exp

(
−c⋆M2

)
.

In particular, for any integer p,

sup
n≥1

EP⋆

[(√
n‖θn(K)− θ⋆‖

)p]
< +∞.
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4 Estimation of the non parametric part in the case of

hidden Markov models

In this section we assume that P⋆ is the distribution of a stationary ergodic hidden Markov
model (HMM for short), that is the sequence (St)t∈N is a stationary ergodic Markov chain.
We also assume that the unknown distribution F ⋆ has density f⋆ with respect to Lebesgue
measure. Thus the density s⋆ of Y1 writes

s⋆ (y) =

k⋆∑

j=1

µ⋆ (j) f⋆
(
y −m⋆

j

)
,

where µ⋆(j) =
∑k⋆

i=1Q
⋆
j,i, 1 ≤ i ≤ k⋆. We shall assume moreover:

(A4) For all i, j = 1, . . . , k⋆, Q⋆
i,j > 0, and there exists δ > 0 such that

∫

R

[f⋆ (y)]1−δ dy < +∞.

Notice that, if the observations form a stationary HMM and if for all i, j = 1, . . . , k⋆,
Q⋆

i,j > 0, then the sequence is geometrically uniformly ergodic, and applying results of
Doukhan et al. (1994), Doukhan et al. (1995) and Rio (2000), (A2) and (A3) hold if we use
(3.3).

We propose to use model selection methods to estimate f⋆ using penalized marginal
likelihood. We assume in this section that k⋆ is known, and that we are given an estimator
θ̂n = ((m̂i)1≤i≤k⋆ , (Q̂i,j)(i,j) 6=(k⋆ ,k⋆)) = θn(K) of θ⋆ for some compact subset K of Θ0

k⋆ such

that θ⋆ lies in the interior of K. Let µ̂(i) =
∑k⋆

j=1 Q̂i,j , 1 ≤ i ≤ k⋆. Define for any density
function f on R

ℓn (f) =
1

n

n∑

i=1

log




k⋆∑

j=1

µ̂ (j) f (Yi − m̂j)


 .

Let F be the set of probability densities on R. We shall use the model collection (Fp)p≥2 of
Gaussian mixtures with p components as approximation of F . Let us define for any integer
p

Fp =

{
p∑

i=1

πiϕui
(x− αi) , αi ∈ [−Ap, Ap], ui ∈ [bp, B], πi ≥ 0, i = 1, . . . , p,

p∑

i=1

πi = 1

}

(4.1)
where B and Ap, bp, p ≥ 2, are positive real numbers, and where ϕβ is the Gaussian density

with variance β2 given by ϕβ(x) = exp(−x2/2β2)/β
√
2π. For any p ≥ 2, let f̂p be the

maximizer of ℓn(f) over Fp. Define

Dn (p) = −ℓn
(
f̂p

)
+ pen (p, n) .

Our model selection estimator f̂ will be given by f̂p̂ whenever p̂ is a minimizer of Dn.

4.1 Oracle inequality

The following theorem says that a suitable choice of the penalty term pen (p, n) leads to an
estimator having good non asymptotic and asymptotic properties. In the following,

ŝp̂ (·) =
k⋆∑

j=1

µ̂ (j) f̂p̂ (· − m̂j) ,

7



is the estimator of s⋆,

S⋆
p = {

k⋆∑

j=1

µ⋆ (j) f
(
· −m⋆

j

)
, f ∈ Fp}

for any p ≥ 2, h2(·, ·) is the Hellinger distance and K(·, ·) the Kullback-Leibler diver-
gence between probability densities. For any p ≥ 1, fix some fp ∈ Fp and set sp =∑k⋆

j=1 µ
⋆ (j) fp

(
· −m⋆

j

)
. Of course to derive good behaviour of the estimator from the

oracle inequality, one will have to choose carefully fp.

Theorem 4.1 Assume (A1), (A3) and (A4). Let (xp)p≥2 be a sequence of positive real
numbers such that Σ =

∑
p≥2 e

−xp < +∞. Then there exist positive real numbers κ and C,
depending only on Q⋆ and δ such that, as soon as

pen (p, n) ≥ κ

n

(
k⋆p

[
logn+ log

(
1

bp

)
+ logAp

]
+ xp

[
1 +

∣∣∣∣log
(
1 +

1

bδp

)∣∣∣∣
])

,

one has

EP⋆

[
h2 (s⋆, ŝp̂)

]
≤ C

{
inf
p≥2

(K (f⋆, fp) + pen (p, n) + EP⋆ [Vp]) +
Σ

n

}

with

Vp =
1

n

n∑

i=1

log

( ∑k⋆

j=1 µ̂(j)fp(Yi − m̂j)
∑k⋆

j=1 µ
⋆(j)fp(Yi −m⋆

j )

)
.

The proof of Theorem 4.1 is postponed to Appendix C.
Notice that the constant in the so-called oracle inequality depends on P

⋆, so that the result
of Theorem 4.1 is not of real practical use. Also, the upper bound depends on θ̂, for which
the results in Section 3 are for large enough n. However, Theorem 4.1 is the building stone
to understand how to choose a penalty function and to prove adaptivity of our estimator.

4.2 Adaptive estimation

We prove now that ŝp̂ is an adaptive estimator of s⋆, and that, if maxj µ
⋆(j) > 1

2 , f̂p̂ is
an adaptive estimator of f⋆. Adaptivity will be proved on the following classes of regular
densities.

Let y0 > 0, c > 0, M > 0, τ > 0, C > 0, λ > 0 and L a positive polynomial function on
R. Let also β > 0 and γ > (3/2 − β)+. If we denote P = (y0, c0,M, τ, C, λ, L), we define
Hloc(β, γ,P) as the set of probability densities f on R satisfying:

• f is monotone on (−∞,−y0) and on (y0,+∞), and inf |y|≤y0
f(y) ≥ c0 > 0.

•
∀y ∈ R, f(y) ≤Me−τ |y| (4.2)

• log f is ⌊β⌋ times continuously differentiable with derivatives ℓj, j ≤ β satisfying for
all x ∈ R and all |y − x| ≤ λ,

|ℓ⌊β⌋(y)− ℓ⌊β⌋(x)| ≤ ⌊β⌋!L(x)|y − x|β−⌊β⌋

and ∫

R

|ℓj(y)|
2β+γ

j f(y)dy ≤ C.

We use ŝp̂ where the penalty is set to

pen (p, n) =
3κ

n
(k⋆p+ xp) logn.

8



Theorem 4.2 Assume (A1), (A3) and (A4). Then for any P, β ≥ 1/2 and γ > (3/2 −
β)+, there exists C(β, γ,P) > 0 such that

lim sup
n→+∞

(
n

(logn)3

) 2β
2β+1

sup
f⋆∈Hloc(β,γ,P)

EP⋆

[
h2 (s⋆, ŝp̂)

]
≤ C(β, γ,P).

Thus, ŝp̂ is adaptive on the regularity β of the density classes up to (log n)3β/(2β+1), see
Maugis-Rabusseau and Michel (2012) for a lower bound of the asymptotic minimax risk in
the case of independent and identically distributed random variables. Using Theorem 4.2,
we can also derive adaptive asymptotic rates for the minimax L1-risk for the estimation of
f∗.

Corollary 1 Assume (A1), (A3), (A4) and that maxj µ
⋆(j) > 1

2 . Then for any P,
β ≥ 1/2 and γ > (3/2− β)+,

lim sup
n→+∞

(
n

(log n)3

) β
2β+1

sup
f⋆∈Hloc(β,γ,P)

EP⋆

[∥∥∥f̂p̂ − f⋆
∥∥∥
1

]
≤ 2

√
C(β, γ,P)

(2maxj µ⋆ (j)− 1)
.

It is possible that the constraint, maxj µ
⋆(j) > 1/2 is not sharp, however note that the

Fourier transform of s⋆ is expressed as φθ⋆φf⋆ with φθ⋆(t) =
∑k

j=1 µ
⋆(j)eitm

⋆
j and φf⋆ the

Fourier transform of f⋆, and that |φθ⋆(t)| > 0 for all t ∈ R if and only if maxj µ
⋆(j) > 1/2,

applying the main theorem of Moreno (1973).
Proof of Corollary 1

We shall use
‖s⋆ − ŝp̂‖1 ≤ 2h (s⋆, ŝp̂) ,

together with

‖s⋆ − ŝp̂‖1 = ‖
k⋆∑

j=1

µ⋆ (j) f⋆
(
· −m⋆

j

)
−

k⋆∑

j=1

µ̂ (j) f̂p̂ (· − m̂j) ‖1

≥ ‖
k⋆∑

j=1

µ⋆ (j) (f̂p̂ − f⋆) (· − m̂j) ‖1 − ‖θ̂n − θ⋆‖

− ‖
k⋆∑

j=1

µ⋆ (j)
(
f⋆
(
· −m⋆

j

)
− f⋆ (· − m̂j)

)
‖1

≥
(
2max

j
µ⋆ (j)− 1

)∥∥∥f̂p̂ − f⋆
∥∥∥
1
− ‖θ̂n − θ⋆‖

− ‖f⋆
(
· −m⋆

j

)
− f⋆ (· − m̂j) ‖1

which follows by using iteratively the triangle inequality. Using β ≥ 1/2, Theorem 3.2. and
Theorem 4.2, we thus get that

lim sup
n→+∞

(
n

(logn)3

) β
2β+1

sup
f⋆∈Hloc(β,γ,P)

EP⋆

[∥∥∥f̂p̂ − f⋆
∥∥∥
1

]
≤ 2

√
C(β, γ,P)

(2maxj µ⋆ (j)− 1)

as soon as

lim
n→+∞

(
n

(logn)3

) β
2β+1

sup
f⋆∈Hloc(β,γ,P)

EP⋆

[
‖f⋆

(
· −m⋆

j

)
− f⋆ (· − m̂j) ‖1

]
= 0. (4.3)

Now, since f⋆ ∈ Hloc(β, γ,P) with β ≥ 1/2, if |m̂j −m⋆
j | ≤ λ,

| log f⋆(y − m̂j)− log f⋆(y −m⋆
j )| ≤ L(y −m⋆

j )|m̂j −m⋆
j |β∧1.

9



Set M ≥ 1
2c⋆ , and a > 0 such that, if |y| ≤ na, then L(y)|m̂j − m⋆

j |β∧1 ≤ 1. Observe

also that since θ̂n stays in a compact set, for large enough n, if |y| ≥ na, then for any j,
|y − m̂j | ≥ na/2 and |y −m⋆

j | ≥ na/2. We obtain, using |eu − 1| ≤ 2u for 0 ≤ u ≤ 1:

‖f⋆
(
· −m⋆

j

)
− f⋆ (· − m̂j) ‖1 ≤ 2

(
M log n

n

)−(β∧1)/2 ∫
L(y −m⋆

j )f
⋆(y −m⋆

j )dy

+2

∫

|y|≥na/2

f⋆(y)dy + 1l‖θ⋆−θ̂n‖>
√
M logn/

√
n,

and (4.3) follows from Theorem 3.2, β ≥ 1/2 and the fact that f⋆ ∈ Hloc(β, γ,P) has
exponentially decreasing tails. �

4.3 Computation of f̂p

The computation of f̂p may be performed using the EM-algorithm, which is particularly

simple for Gaussian mixtures. Indeed, for f =
∑p

i=1 πiϕβi
(· − αi),

∑k⋆

j=1 µ̂ (j) f (· − m̂j) is
a mixture of pk⋆ Gaussian densities φβi

(· − αi − m̂j) with weights πiµ̂ (j). Starting from an
initial point ((π0

i )1≤i≤p, (v
0
i )1≤i≤p, (σ

0
i )1≤i≤p), the EM l-th iteration may be easily computed

as

πl+1
i =

∑k⋆

j=1

∑n
t=1 µ̂ (j)π

l
iϕβl

i

(
Yt − m̂j − αl

i

)
∑p

i′=1

∑k⋆

j=1

∑n
t=1 µ̂ (j)π

l
i′ϕβl

i′

(
Yt − m̂j − αl

i′

) , i = 1, . . . , p,

αl+1
i = T−Ap,Ap

[∑k⋆

j=1

∑n
t=1 (Yt − m̂j) µ̂ (j) π

l
iϕβl

i

(
Yt − m̂j − αl

i

)
∑k⋆

j=1

∑n
t=1 µ̂ (j)π

l
iϕβl

i

(
Yt − m̂j − αl

i

)
]
, i = 1, . . . , p,

where for any real numbers C1, C2, TC1,C2 is the troncature function: TC1,C2(x) = x1lC1≤x≤C2+
C11lx<C1 + C21lx>C2 , and

σl+1
i = Tbp,B



∑k⋆

j=1

∑n
t=1

(
Yt − m̂j − vli

)2
µ̂ (j)πl

iϕβl
i

(
Yt − m̂j − αl

i

)
∑k⋆

j=1

∑n
t=1 µ̂ (j)π

l
iϕβl

i

(
Yt − m̂j − αl

i

)


 , i = 1, . . . , p.
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A Proof of Theorem 3.1

First of all, we prove a lemma we shall use several times. Using ||A|2−|B|2| ≤ |A−B|||A|+
|B|| and the fact that characteristic functions are uniformly upper bounded by 1, we get
that for any integer k and any θ ∈ Θk:

|Mn (θ)−M (θ)| ≤ 2

∫ {∣∣∣Φ̂n (t1, t2)− Φθ⋆ (t1, t2)φF⋆ (t1)φF⋆ (t2)
∣∣∣

+
∣∣∣φ̂n (t1) φ̂n (t2)− φθ⋆ (t1)φθ⋆ (t2)φF⋆ (t1)φF⋆ (t2)

∣∣∣
}
w (t1, t2) dt1dt2.

The upper bound does not depend on k and θ, Φ̂n is uniformly upper bounded, and we get

sup
k≥2, θ∈Θk

|Mn (θ)−M (θ)| = O

(
sup
t∈S

∣∣∣∣
Zn(t)√

n

∣∣∣∣
)

= OP⋆(1/
√
n) (A.1)

which together with Theorem 2.1 gives
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Lemma 1 If (kn, θn)n, θn ∈ Θkn
, is a random sequence such that there exists an integer

K ≥ k∗, and a compact subset T of ∪k≤KΘ0
k such that

P
∗ (kn ≤ K and θn ∈ T ) → 1 and Mn (θn) = oP⋆(1),

then
P
∗ (kn = k⋆) → 1 and θn = θ⋆ + oP⋆(1).

Since Cn

(
kn, θ̃n

)
≤ Cn (k

∗, θ∗) and Mn is a non negative function, we get

[
J(kn) + Ikn

(
θ̃n

)]
≤ [J(k⋆) + Ik⋆ (θ⋆)] +

Mn (θ
⋆)−M (θ⋆)

λn
,

so that using (A.1), assumption (A2) and (3.4) we get

[
J(kn) + Ikn

(
θ̃n

)]
≤ [J(k⋆) + Ik⋆ (θ⋆)] + oP⋆ (1) . (A.2)

Also,

Mn

(
θ̃n

)
≤Mn (θ

⋆) + λn [J(k⋆) + Ik⋆ (θ⋆)] ,

so that
Mn

(
θ̃n

)
= oP⋆ (1) .

Thus, using (A.2) and Lemma 1

P
∗ (kn = k⋆) → 1 and θ̃n = θ⋆ + oP⋆(1). (A.3)

Set now K = {θ ∈ Θk⋆ : Ik⋆ (θ) ≤ 4Ik⋆ (θ⋆)}. K is a compact subset of Θ0
k⋆ . Let En be

the event (kn = k⋆ and θ̂n = θn(K)). Using Lemma 1, we get that θn(K) is a consistent

estimator of θ⋆, and using (A.3) and Lemma 1, we get also that θ̂n is a consistent estimator
of θ⋆, so Mn has the same minimizer on K and on {Ikn

(θ) ≤ 2Ikn
(θ̃n)}, with probability

tending to 1, since it belongs to a neigbourhood of θ∗. Thus, P⋆ (En) → 1. Now, since

θ̂n = θn(K)1lEn
+ θ̂n1lEc

n
,

Theorem 3.1 follows as soon as we prove that
√
n(θn(K) − θ⋆) converges in distribution to

the centered Gaussian with variance Σ. But this is a straighforward consequence of

D2Mn (θn)
(
θn(K) − θ⋆

)
= ∇Mn (θ

⋆) ,

for some θn ∈ Θk⋆ such that ‖θn − θ⋆‖ ≤ ‖θn(K) − θ⋆‖, the consistency of θn(K) and the
following Lemma

Lemma 2 Assume (A1) and (A2). Then

• √
n∇Mn (θ

⋆) converges in distribution to a centered gaussian with variance V .

• D2M (θ⋆) is non singular, and for any random variable θn ∈ Θk⋆ converging in P⋆-
probability to θ⋆, one has

D2Mn (θn) = D2M (θ⋆) + oP⋆ (1) .

Proof of Lemma 2
First notice that, in every formula, taking the conjugate of any involved function at point

t is the same as taking the function at point −t. This is also verified for derivatives. Write
now for any θ ∈ Θk⋆ and any t = (t1, t2)

Gn (θ, t) = Φ̂n (t)φθ,1 (t1)φθ,2 (t2)− Φθ (t) φ̂n,1 (t1) φ̂n,2 (t2)

11



so that, if ∇Gn (θ, t) denotes the gradient of Gn with respect to θ at point (θ, t), one has

∇Mn (θ
⋆) =

∫
[∇Gn (θ

⋆, t)Gn (θ⋆,−t) +∇Gn (θ
⋆,−t)Gn (θ

⋆, t)]w (t) dt.

Now, writing Φ̂n (t) =
Zn(t)√

n
+Φθ⋆(t)φF⋆(t1)φF⋆(t2) and using (A2) one gets easily

√
n∇Mn (θ

⋆) =

∫
{φF⋆(t1)φF⋆(t2) [Φθ⋆ (t)∇ (φθ⋆ (t1)φθ⋆ (t2))−∇Φθ⋆ (t)φθ⋆ (t1)φθ⋆ (t2)]

[Zn (−t)φθ⋆ (−t1)φθ⋆ (−t2)− Φθ⋆ (−t) (Zn(−t1, 0)φθ⋆ (−t2) + Zn(0,−t2)φθ⋆ (−t1))]
+φF⋆(−t1)φF⋆(−t2) [Φθ⋆ (−t)∇ (φθ⋆ (−t1)φθ⋆ (−t2))−∇Φθ⋆ (−t)φθ⋆ (−t1)φθ⋆ (−t2)]

[Zn (t)φθ⋆ (t1)φθ⋆ (t2)− Φθ⋆ (t) (Zn(t1, 0)φθ⋆ (t2) + Zn(0, t2)φθ⋆ (t1))]}w (t) dt

+OP⋆

(
1√
n

)

and the convergence in distribution of
√
n∇Mn (θ

⋆) to a centered gaussian with variance V
follows.

Similar computation gives that for any θ ∈ Θk⋆

D2Mn(θ)−D2Mn(θ
⋆) =

∫
|Φ̂n(t)|2 [A1(t, θ) −A1(t, θ

⋆)]w(t)dt

+

∫
|Φ̂n(t1, 0)|2|Φ̂n(0, t2)|2 [A2(t, θ) −A2(t, θ

⋆)]w(t)dt

+Re

{∫
Φ̂n(−t)Φ̂n(t1, 0)Φ̂n(0, t2) [A3(t, θ)−A3(t, θ

⋆)]w(t)dt

}

for matrix-valued functions A1(t, θ), A2(t, θ), A3(t, θ) that are, in a neighborhood of θ⋆,
continuous in the variable θ for all t and uniformly upper bounded. Thus D2Mn(θn) −
D2Mn(θ

⋆) converges in P⋆-probability to 0 whenever θn is a random variable converging in
P⋆-probability to θ⋆.

Finally, note that at point θ⋆ the Hessian of M simplifies into:

D2M(θ⋆) = 2

∫
H(t)H(−t)T |φF⋆ (t1)φF⋆ (t2)|2 w(t)dt,

with

H(t) = Φθ⋆(t)(φθ⋆(t1)∇φθ⋆(t2) +∇φθ⋆(t1)φθ⋆(t2))−∇Φθ⋆(t)φθ⋆(t1)φθ⋆(t2).

Denote by Hmj
(t), j = 2, . . . , k⋆, HQj1,j2

(t), j1, j2 = 1, . . . , k⋆, (j1, j2) 6= (k⋆, k⋆) the
components of the vector H(t). Definite positiveness of the second derivative of M at θ⋆

can thus be established by proving that, if for all t ∈ S,
k∑

j=2

Umj
Hmj

(t) +
∑

(j1,j2) 6=(k,k)

Uj1,j2HQj1,j2
(t) = 0 (A.4)

then
Umj

= 0, j = 2, · · · , k⋆, Uj1,j2 = 0, j1, j2 = 1, . . . , k⋆, (j1, j2) 6= (k⋆, k⋆).

By linear independence of the functions eita and teitb this implies in particular that for all
t = (t1, t2),

k⋆∑

j1,··· ,j4=1

Umj1
µ⋆ (j1)µ

⋆ (j2)Q
⋆
j3,j4e

it1(m
⋆
j1

+m⋆
j3

)+it2(m
⋆
j2

+m⋆
j4

)

=
k⋆∑

j1,··· ,j4=1

Umj1
µ⋆ (j2)µ

⋆ (j3)Q
⋆
j1,j4e

it1(m
⋆
j1

+m⋆
j3

)+it2(m
⋆
j2

+m⋆
j4

) (A.5)
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with Um1 = 0. The smallest possible term m⋆
j1
+m⋆

j3
with j1 > 1 is equal to m⋆

2 = m⋆
2 +m⋆

1

setting j1 = 2 and j3 = 1 only. Thus (A.5) implies that

Um2µ
⋆ (2)

k⋆∑

j2,j4=1

µ⋆ (j2)Q
⋆
1,j4e

it2(m
⋆
j2

+m⋆
j4

) = Um2µ
⋆ (1)

k⋆∑

j2,j4=1

µ⋆ (j2)Q
⋆
2,j4e

it2(m
⋆
j2

+m⋆
j4

)

for all t2, i.e.

Um2µ
⋆ (2)φθ⋆(t2)

k⋆∑

j4=1

Q⋆
1,j4e

it2m
⋆
j4 = Um2µ

⋆ (1)φθ⋆(t2)

k⋆∑

j4=1

Q⋆
2,j4e

it2m
⋆
j4 .

Since φθ⋆ has only isolated zeros this is satisfied if and only if

Um2µ
⋆ (2)

k⋆∑

j4=1

Q⋆
1,j4e

it2m
⋆
j4 = Um2µ

⋆ (1)

k⋆∑

j4=1

Q⋆
2,j4e

it2m
⋆
j4 .

Thus (A.5) is satisfied only if either Um2 = 0 or µ⋆ (2)Q⋆
1,j = µ⋆ (1)Q⋆

2,j for all j. The latter
is impossible since Q⋆ is non singular, thus Um2 = 0 and (A.5) becomes

k⋆∑

j1=3,j2,··· ,j4=1

Umj1
µ⋆ (j1)µ

⋆ (j2)Q
⋆
j3,j4e

it1(m
⋆
j1

+m⋆
j3

)+it2(m
⋆
j2

+m⋆
j4

)

=

k⋆∑

j1=3,j2,··· ,j4=1

Umj1
µ⋆ (j2)µ

⋆ (j3)Q
⋆
j1,j4e

it1(m
⋆
j1

+m⋆
j3

)+it2(m
⋆
j2

+m⋆
j4

)

The smallest possible value for m⋆
j1

+ m⋆
j3

is then m⋆
3 which is obtained with the only

configuration j1 = 3, j3 = 1. The same argument as before leads to Um3 = 0. Iteration of
the argument leads to Umj

= 0 for all j = 1, · · · , k⋆. We now study the derivatives associated
to Q. We write U the k⋆ × k⋆-matrix whose components are Uj1,j2 for (j1, j2) 6= (k⋆, k⋆)
and Uk⋆,k⋆ = −∑(j1,j2) 6=(k⋆,k⋆) Uj1,j2 . Then

∑

(j1,j2) 6=(k⋆,k⋆)

Uj1,j2∇Qj1,j2
Φθ⋆(t) = V (t1)

TUV (t2)

where for any t ∈ R, V (t) = ((eitm
⋆
j )j=1,··· ,k⋆)T , and

∑

(j1,j2) 6=(k⋆,k⋆)

Uj1,j2∇Qj1 ,j2
φθ⋆(t1) = V (t1)

TU1l

with 1l = (1, · · · , 1)T ∈ Rk⋆

, since φθ⋆(t1) = V (t1)
TQ⋆1l and Φθ⋆(t) = V (t1)

TQ⋆V (t2). We
can then express (A.4) as

V (t1)
T
[
Q⋆V (t2)V (t2)

TU1l1lT (Q⋆)T +Q⋆V (t2)V (t2)
TQ⋆1l1lTUT

−UV (t2)V (t2)
TQ1l1lT (Q⋆)T

]
V (t1) = 0. (A.6)

Note also that since all differences m⋆
j1 −m⋆

j2 , j1 6= j2, are distinct, if A is a k⋆ × k⋆-matrix
and I is an open subset of R,

[
∀t ∈ I, V (t)TAV (t) = 0

]
=⇒ A+AT = 0. (A.7)

Then (A.6) implies

Q⋆V (t2)V (t2)
TU1l1lT (Q⋆)T +Q⋆1l1lTUTV (t2)V (t2)

T (Q⋆)T

+Q⋆V (t2)V (t2)
TQ⋆1l1lTUT + U1l1lT (Q⋆)TV (t2)V (t2)

T (Q⋆)T

− UV (t2)V (t2)
TQ⋆1l1lT (Q⋆)T −Q⋆1l1lT (Q⋆)TV (t2)V (t2)

TUT = 0. (A.8)
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Recall also that 1lTU1l = 0 and that Q⋆1l = µ⋆. Note that U1l = αµ⋆ with α ∈ R if and
only if α = 0 since 1lTU1l = 0 while 1lTµ⋆ = 1. Therefore if U1l 6= 0 there exists w ∈ Rk⋆

such that wT (U1l) 6= 0 while (µ⋆)Tw = 0. Multiplying the above equality on the left by wT

and on the right by w leads to

wTQ⋆V (t2)V (t2)
T (µ⋆)(U1l)Tw = 0

that for all t2 in an open set. Using (A.7) again and since (U1l)Tw 6= 0 we get that

µ⋆[(Q⋆)Tw]T + [(Q⋆)Tw](µ⋆)T = 0.

Since µ⋆(j) > 0 for all j this implies that (Q⋆)Tw = 0 which is impossible since Q⋆ has full
rank. Therefore U1l = 0 and (A.8) becomes V (t2)

Tµ⋆[UV (t2)(µ
⋆)T + µ⋆V (t2)

TUT ] = 0,
that is UV (t2)(µ

⋆)T + µ⋆V (t2)
TUT = 0 for all t2 in an open set. Multiplying on the left by

1l implies that UV (t2) = 0 for all t2 in an open set so that U = 0. �

B Proof of Theorem 3.2

Define for any θ ∈ Θk⋆ , Ln(θ) = Mn(θ) −M(θ). Then, since Mn(θn(K)) ≤ Mn(θ
⋆), one

easily gets
M
(
θn(K)

)
−M (θ⋆) ≤

∣∣Ln

(
θn(K)

)
− Ln (θ

⋆)
∣∣ .

Define for any t = (t1, t2) and any θ

G (θ, t) = {Φθ⋆ (t)φθ,1 (t1)φθ,2 (t2)− Φθ (t)φθ⋆,1 (t1)φθ⋆,2 (t2)}φF⋆ (t1)φF⋆ (t2)

and

Bn (θ, t) = φF⋆ (t1)φF⋆ (t2)

{
Zn(t)√

n
φθ,1 (t1)φθ,2 (t2)

−Φθ (t)

[
Zn(t1, 0)√

n
φθ,2 (t2) +

Zn(0, t2)√
n

φθ,1 (t1) +
Zn(t1, 0)Zn(0, t2)

n

]}

Writing Φ̂n (t) =
Zn(t)√

n
+Φθ⋆(t)φF⋆(t1)φF⋆(t2) one gets

Ln (θ) =

∫ (
[Bn (θ, t) +G (θ, t)] [Bn (θ,−t) +G (θ,−t)]− |G (θ, t) |2

)
w (t) dt.

Since G (θ⋆, t) = 0 for all t we obtain

Ln (θ)− Ln (θ
⋆) =

∫ {
|Bn (θ, t) |2 − |Bn (θ

⋆, t) |2 +Bn (θ, t)G (θ,−t)

+Bn (θ,−t)G (θ, t)}w (t) dt

which gives

|Ln (θ)− Ln (θ
⋆)| ≤

∫
{|Bn (θ, t)−Bn (θ

⋆, t)| |Bn (θ, t) +Bn (θ⋆, t)|

+2 |Bn (θ, t)| |G (θ, t)−G (θ⋆, t)|}w (t) dt

which leads to
M
(
θn(K)

)
−M (θ⋆) ≤ CWn‖θn(K)− θ⋆‖ (B.1)

for some constant C and any integer n, and with

Wn =

{
Vn√
n
+
V 2
n

n
+

V 3
n

n3/2
+
V 4
n

n2

}
, Vn = sup

t∈S
|Zn (t)| .
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Observe now that, since D2M is continuous and D2M(θ⋆) is non singular, there exists λ > 0
and α > 0 such that, if ‖θ − θ⋆‖ ≤ α, then M(θ) −M(θ⋆) ≥ λ

2 ‖θ − θ⋆‖2. Moreover, there
exists δ > 0 such that, if θ ∈ K is such that ‖θ − θ⋆‖ ≥ α, then M(θ)−M(θ⋆) ≥ δ. Using
(B.1) we obtain that for any real number M large enough,

P
⋆
(√
n‖θn(K) − θ⋆‖ ≥M

)
≤ P

⋆

(
Wn ≥ δ

2CM(K)

)
+ P

⋆

(√
nWn ≥ Mλ

2C

)

where M(K) = supθ∈K ‖θ‖. This last equation together with Assumption (A3) gives the
Theorem.

C Proof of Theorem 4.1

The proof follows the general methodology for model selection developed by Massart (2007).
To prove Theorem 4.1 and Theorem 4.2, we will use a concentration inequality we state now.
Let us introduce some notations. For any real function f , denote

Gnf =
1√
n

n∑

i=1

[
f (Yi)−

∫
fdP⋆

]
.

Lemma 3 Assume (A4). Let F be a class of real functions, and F such that, for any
f ∈ F , |f | ≤ F . Assume that there exists c(F ) > 0 and C(F ) > 0 such that ∀j = 1, . . . , k⋆,
|g(j)| ≤ C(F ) where g is defined by

g (j) = lnEP⋆

{
exp

[
2c(F )−1|F (Y2)|

]
|S1 = j

}
.

Then there exist universal constants C1, C2, K1, K2 and a constant C⋆ depending only on
Q⋆ such that

P
⋆

(
√
n sup

f∈F
Gnf ≥ K1

√
nEP⋆

(
sup
f∈F

Gnf

)
+ C1τ

√
nx+ C2C

⋆c(F )C(F )x

)

≤ K2 exp {−x}
where τ2 = supf∈F EP⋆f2 (Y1).

Proof of Lemma 3
The lemma is an application of Theorem 7 in Adamczak and Bednorz (2012) to the

stationary Markov chain (Xi)i≥1 = (Si, Yi)i≥1 and functions f(s, y) := f(y). Then, with
the notations of Adamczak and Bednorz (2012) we get that:

• m = 1,

• the small set C is the whole space,

• the minorizing probability measure ν is that of (S̃i, Yi)i≥1 with (S̃i)i i.i.d. with uniform
distribution, and δ = mini,j Q

⋆
i,j.

• Since C is the whole space, the return times σ(i) = i, so that si(f) = f(Yi), thus the
σ2 of Theorem 7 is just supf EP⋆(f2(Y1)).

Using the specific assumption of the lemma, taking α = 1, we can apply Corollary 1 of
Adamczak and Bednorz (2012), to get (with their notations again)

a, b, c ≤ C⋆c(F )C(F )

for some constant C⋆ > 0 depending only on mini,j Q
⋆
i,j . �

For any p ≥ 2, define

Sp =





k⋆∑

j=1

µ (j) f (· −mj) , f ∈ Fp, |mj | ≤M(K),

k⋆∑

j=1

µ (j) = 1,

µ (j) ≥ 0, j = 1, . . . , k⋆} ,
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so that ŝp ∈ Sp. We now fix, for any p ≥ 2, some s̃p ∈ Sp such that:

∀t ∈ Sp, ‖
√
s⋆ −

√
s̃p‖2 ≤ 2‖

√
s⋆ −

√
t‖2. (C.1)

For any p ≥ 2 and any σ > 0, define

Wp (σ) = sup
t∈Sp,‖

√
t−
√

s̃p‖2≤σ

Gn

(
ln

(
s⋆ + t

s⋆ + s̃p

))
,

and let Lp be an enveloppe function of {ln (s⋆ + t) − ln (s⋆ + s̃p) , t ∈ Sp}. Assume there
exists functions ψp such that ψp(x)/x is non increasing and for all p ≥ 2 and σ > 0,

EP⋆ [Wp (σ)] ≤ ψp (σ) . (C.2)

Define σp (depending also on n) as the unique solution of

ψp (σp) =
√
nσ2

p. (C.3)

Now we follow and adapt the proof of Theorem 7.11 in Massart (2007). Let p be such that
K(s⋆, sp) < +∞. If p′ is such that D(p′) ≤ D(p), then one gets, as in Massart (2007) p.241,

K

(
s⋆,

s⋆ + ŝp′

2

)
− 1

2
√
n
Gn

(
log
(sp
s⋆

))

≤ K (s⋆, sp) + pen (p, n)− 1√
n
Gn

(
ln

(
s⋆ + ŝp′

2s⋆

))
− pen (p′, n) + Vp (C.4)

where

Vp =
1

n

n∑

i=1

ln

( ∑k⋆

j=1 µ̂(j)fp(Yi − m̂j)
∑k⋆

j=1 µ
⋆(j)fp(Yi −m⋆

j )

)
.

Applying Lemma 4.23 in Massart (2007) p. 139, for any positive yp′ :

E⋆

[
sup
t∈Sp′

Gn

(
ln (s⋆ + t)− ln (s⋆ + s̃p′)

y2p′ + ‖
√
t−√

sp′‖22

)]
≤ 4

ψp′ (yp′)

y2p′

.

Using Lemma 3, the fact that 2yp′‖
√
t −

√
s̃p′‖2 ≤ y2p′ + ‖

√
t −

√
s̃p′‖22, and Lemma 7.26

p. 276 in Massart (2007), we obtain that for some constant C > 0, except on a set with
probability less than K2 exp−(xp′ + x), for all x > 0:

1√
n
Gn

(
ln (s⋆ + ŝp′)− ln (s⋆ + s̃p′)

y2p′ + ‖
√
s̃p′ −

√
ŝp′‖2

)
≤ Cte

yp′

(
ψp′ (yp′)

yp′

√
n

+
T (Lp′)(xp′ + x)

nyp′

+

√
xp′ + x

n

)
.

Here, T (Lp′) = C2C
⋆c(Lp′)C(Lp′). Using again Lemma 3 and Lemma 7.26 p. 276 in

Massart (2007) we get that, for some constant C > 0, except on a set with probability less
than K2 exp−(xp′ + x), for all x > 0:

1√
n

Gn (ln (s
⋆ + s̃p′)− ln (2s⋆))

y2p′ + ‖
√
s⋆ −

√
s̃p′‖2

≤ C

yp′

(
T (Lp′)(xp′ + x)

nyp′

+

√
xp′ + x

n

)
.

Now, using (C.1), we get

‖
√
s̃p′ −

√
ŝp′‖2 ≤

[
‖
√
s̃p′ −

√
s⋆‖+ ‖

√
s⋆ −

√
ŝp′‖

]2
≤ 6‖

√
s⋆ −

√
ŝp′‖2

and
‖
√
s⋆ −

√
s̃p′‖2 ≤ 2‖

√
s⋆ −

√
ŝp′‖2
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and we finally obtain that, for some other constant C > 0 depending only on P⋆, except on
a set with probability less than 2K2 exp−(xp′ + x), for all x > 0:

1√
n
Gn

(
ln (s⋆ + ŝp′)− ln (2s⋆)

y2p′ + ‖
√
s⋆ −

√
ŝp′‖2

)
≤ C

yp′

(
ψp′ (yp′)

yp′

√
n

+
T (Lp′)(xp′ + x)

nyp′

+

√
xp′ + x

n

)
.

Define for some constant a to be chosen

yp′ = a−1

√
σ2
p′ +

(xp′ + x)(1 + T (Lp′))

n
.

Then we can follow the proof of Theorem 7.11 in Massart (2007) to obtain that, as soon as

pen (p, n) ≥ κ

(
σ2
p +

xp(1 + T (Lp))

n

)
, (C.5)

one has for any n ≥ 2, for some real numbers κ > 0 and C > 0 depending only on Q⋆

EP⋆

[
h2 (s⋆, ŝp̂)

]
≤ C

{
inf
p≥2

(K (s⋆, sp) + pen (p, n) + EP⋆ [Vp]) +
Σ

n

}
.

But using the convexity of the Kullback-Leibler divergence to both arguments, we have, for
any p ≥ 2, K (s⋆, sp) ≤ K (f⋆, fp). Thus to finish the proof of Theorem 4.1, one has to find
functions ψp verifying (C.2), evaluate σp using (C.3), and evaluate T (Lp).
Let us first prove that there exists constants C,C′ > 0 depending only on δ and Q⋆ such
that, as soon as (A4) holds, for any p ≥ 2,

T (Lp) ≤ C ln

(
1 +

C′

bδp

)
. (C.6)

First of all, we see that we can take

Lp (y) = ln

(
1 +

1

bp
√
2πs⋆(y)

)
,

with c(Lp) = 2/δ, the function defined in Lemma 3 is given by

g (s) = log




k⋆∑

j=1

Q⋆
s,j

∫ (
1 +

1

bp
√
2πs⋆(u)

)δ

f⋆(u −m⋆
j )du




Under (A4), on gets that there exists constants C > 0 depending only in Q⋆ and δ such that

g is bounded by the constant C ln
(
1 + C′

bδp

)
and (C.6) follows (for maybe another constant

C).
To find functions ψp, we shall use Doukhan et al. (1995). Since (Yt)t∈N is geometrically
ergodic, Lemma 2 in Doukhan et al. (1995), implies that, for some constant C that depends
only on Q⋆, for any real function f ,

‖f‖2β ≤ Cγ(f)(1 + log+(γ(f)), γ(f) =

∫
f2(1 + log+ |f |)dP⋆

where ‖·‖β is defined in Doukhan et al. (1995). Now, since for all x > 0, x ln+ x ≤ x2/e,

‖f‖2β ≤ C

e

∫
|f |3dP⋆

(
1 + log+(

1

e

∫
|f |3dP⋆)

)
.

Using Lemma 7.26 in Massart (2007), we thus get that for all t ∈ Sp,

‖ln (s⋆ + t)− ln (s⋆ + s̃p)‖2β ≤ 1

c2
‖
√
t−

√
s̃p‖22
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for some constant c > 0 that depends only on Q⋆, and the same trick leads to

Hβ (u, {ln (s⋆ + t)− ln (s⋆ + s̃p) , t ∈ Sp}) ≤ H2

(
cu, {

√
t, t ∈ Sp}

)

where Hβ (u,F) is the bracketing entropy of a set F at level u with respect to ‖ · ‖β, that is
the logarithm of the minimum of the number of brackets of ‖ · ‖β-width u needed to cover
F , and H2 (u,F) is the bracketing entropy of a set F at level u with respect to ‖ · ‖2.
Let for any for σ > 0 and p ≥ 2

ηp (σ) =

∫ σ/c

0

√
H2

(
cu, {

√
t, t ∈ Sp}

)
du.

Using Theorem 3 in Doukhan et al. (1995) we get

EP⋆ [Wp (σ)] ≤ Aηp (σ)

[
1 +

δp(1 ∧ ǫ(σ, n))
σ

]
, (C.7)

where ǫ(σ, n) is the unique solution of x2/B(x) = η2p(σ)/nσ
2,

B(x) = x+ C(x − x lnx)

for some constant C that depends only on Q⋆, and δp is the function given by

δp (ǫ) = sup
t≤ǫ

Q (t)
√
B(t)

with for any t, Q (t) ≤ u iff P⋆(Hp(Y1) > u) ≤ t. Here, Hp is an envelope function of
{ln (s⋆ + t)− ln (s⋆ + s̃p) , ‖

√
t−

√
s̃p‖ ≤ σ, t ∈ Sp}. Taking Hp = Lp one gets easily

Q (t) ≤ ln

(
1 +

1

tbp
√
2π

)
,

so that δp (ǫ) ≤ supt≤ǫ hp(t) with

hp (t) = ln

(
1 +

1

tbp
√
2π

)
√
t+ C(t− t ln t).

The variations of hp imply that there exists a universal constant b such that as soon as
bp ≤ b, h(t) is increasing on (0, 1), so that

δp (ǫ ∧ 1) = hp (ǫ ∧ 1) ≤ h̃p (ǫ ∧ 1)

with

h̃p (t) = C ln

(
1

bp

)√
t| ln t|

(√
| ln t| ∧ 1

)
,

for some universal constant C. Using Maugis and Michel (2011), we get that for some fixed
constant K, for all u > 0,

H2

(
u, {

√
t, t ∈ Sp}

)
≤ k⋆p

[
3 ln

(
1

u ∧ 1

)
+

3

4
ln

(
1

bp

)
+ lnAp +K

]
+ ln (k⋆p) .

Using the fact that for all ǫ ∈]0, 1],
∫ ǫ

0

√
ln

(
1

x

)
dx ≤ ǫ

{√
ln

(
1

ǫ

)
+
√
π

}

and since

ηp (σ) =
1

c

∫ σ

0

√
H2

(
c2u, {

√
t, t ∈ Sp}

)
du
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we get that for some other fixed constant K and all σ > 0

ηp (σ) ≤
σ

c
tp (σ) (C.8)

with

tp (σ) =
√
k⋆p

[
3

√
ln

(
1

σ ∧ 1

)
+

√
3

4
ln

(
1

bp

)
+ lnAp +K

]
+
√
ln(k⋆p).

Now, one may use the upper bound (C.8) to upper bound ǫ(σ, n), and we get that for some
universal constant C,

ǫ (σ, n) ≤ C
t2p (σ)

n
ln

[
t2p (σ)

2n

]
.

Then we may set

ψp (σ) =
σ

c
tp (σ)


1 +

h̃
(
C

t2p(σ)

n ln
[
t2p(σ)

2n

]
∧ 1
)

σ


 .

(C.2) holds, ψp(x)/x is indeed non increasing, and if σp is the unique solution of (C.3), we
obtain that for some constant C depending only on P⋆, as soon as bp ≤ b,

σ2
p ≥ C

n
k⋆p

[
lnn+ ln

(
1

bp

)
+ lnAp

]
. (C.9)

D Proof of Theorem 4.2

For simplicity’s sake we denote in the followingHloc(β) := Hloc(β, γ,P). Set p = p0⌊(n/ logn)1/(2β+1)(logn)4β/(2β+1

with p0 > 0 fixed which we shall determine later, bp = b0(log p)
2/p for some positive b0 and

Ap = a0| log bp| for some positive a0. The approximating fp ∈ Fp

fp(y) =

p∑

i=1

πiϕbp(y − αi)

is taken from Kruijer et al. (2010). Let ℓ⋆j denote the j-th derivative of log f⋆. A simple
modification in the proof of Lemma 4 of Kruijer et al. (2010) gives that for any H and any
H̃ with H > H̃ + 3β, there exists B̃ such that if

Dp :=
{
y : f⋆(y −m) ≥ bH̃p , |ℓ⋆j (y −m)| ≤ B̃b−j

p | log p|−j/2, j ≤ β,

|L(y −m)| ≤ B̃b−β
p | log p|−β/2, ∀0 ≤ m ≤ 2m⋆

k

}

then, for all y ∈ Dp and all 0 ≤ m ≤ m⋆
k

fp(y −m) = f⋆(y −m)(1 +O(R(y −m)bβp )) +O((1 +R(y −m))bH−H̃
p ), (D.1)

where the function R(y) is a linear combination of L(y) and of the functions |ℓ⋆j (y)|β/j ,
j ≤ β, and where the constants entering the terms O(.) depend on Hloc(β), B̃, H and H̃ .
Note that since the functions l⋆j are bounded by polynomials, there exists a constant C such

that |R(y −m)| ≤ C(1 + R(y)), ∀0 ≤ m ≤ 2m∗
k. In the following we fix H̃ > 4β + 2γ and

H > H̃ + 3β. Moreover, Lemma 4 in Kruijer et al. (2010) implies

K(f⋆, fp) . b2βp ,

∫
f⋆ (log f⋆ − log fp)

2 (y)dy . b2βp . (D.2)
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Here and further, . will denote an upper bound up to a constant, where the constant
entering the upper bound depends only on Hloc(β). Throughout the proof C denotes a
generic constant depending only on Hloc(β) and Q

⋆.
First of all, with such choices of p, bp, and Ap, using Theorem 4.1 and (D.2), there remains

to prove that EP⋆ [Vp] . b2βp or equivalently vnEP⋆ [Vp] . 1 with vn = n
2β

2β+1 (logn)−6β/(2β+1).
For any θ and any y, set

wp (θ, y) = log

( ∑k⋆

j=1 µ(j)fp(y −mj)
∑k⋆

j=1 µ
⋆(j)fp(y −m⋆

j )

)
.

First note that

log

(∑k
j=1 µ

⋆
jfp(y −mj)

∑k
j=1 µ

⋆
jfp(y −m⋆

j )

)
≤ max

j

{
(|y −m⋆

j |+Ap)|mj −m⋆
j |

b2p

}
. (D.3)

Thus we can bound

vn
n
EP⋆

[
n∑

i=1

wp(θ̂, Yi)1l‖θ−θ̂‖>M0

√
logn/n

]

≤ vn
n

max
j

n∑

i=1

EP⋆

[
1l‖θ−θ̂‖>M0

√
logn/n

(
(|Yi −m⋆

j |+Ap)|m̂j −m⋆
j |

b2p
+

|µ̂j − µ⋆
j |

µ⋆
j

)]

.

(
vn log p

b2p
√
n

+
vn√
n

)
P
⋆
[
‖θ − θ̂‖ > M0

√
logn/n

]

= o(1)

by Theorem 3.2 and choosing M0 = 1/
√
c⋆.

Set now H1 > 3 + 2β, Cp,1 = Dc
p ∩ {|y| ≤ H1 log(1/bp)τ

−1} and Cp,2 = Dc
p ∩ {|y| >

H1 log(1/bp)τ
−1}. Using (D.3) we get, for all i = 1, · · · , n,

EP⋆

[
1lCp,1(Yi)wp(θ̂, Yi)1l‖θ−θ̂‖≤M0

√
logn/n

]
.

(log p)3/2

b2p
√
n

∫

Cp,1

s⋆(y)dy

≤ (log p)3/2

b2p
√
n

b2β+γ
p . v−1

n

as soon as γ > (3/2− β)+, where the last inequality comes from an adaptation of Lemma
2 in Kruijer et al. (2010), using the moment conditions (4.2). We also have

EP⋆

[
1lCp,2(Yi)wp(θ̂, Yi)1l‖θ−θ̂‖≤M0

√
log n/n

]
.

(log p)3/2

b2p
√
n

∫

Cp,2

|y|s⋆(y)dy

.
(log p)3/2b

H1/2
p

b2p
√
n

. v−1
n

(D.4)

since H1 > 3+2β, where the last inequality comes from the tail condition (4.2). There thus
remains to prove that

vnEP⋆

[
1

n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

]
. 1.

We shall use:

vnEP⋆

[
1

n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

]

≤
∫ +∞

0

P
⋆

(
vn
n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

≥ x

)
dx. (D.5)
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Notice now that

P
⋆

(
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n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

≥ x

)
≤

P
⋆
(√

n‖θ̂n − θ⋆‖ ≥M(x)
)
+P

⋆


 sup

√
n‖θ−θ⋆‖≤M(x)∧M0

√
logn/n

vn√
n
Gn(wp(θ, ·)1lDp

(·)) ≥ x

2




as soon as
vn sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
logn

EP⋆ [wp(θ, Y1)1lDp
(Y1)] ≤

x

2
. (D.6)

If moreover

vnK1√
n
EP⋆

(
sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
log n

Gn(wp(θ, ·)1lDp
(·))
)

≤ x

4
, (D.7)

where K1 is defined in Lemma 3, Appendix C, using Theorem 3.2 and Lemma 3 we get, for
large enough x, with M(x) = x1/4,

P
⋆

(
|vn
n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

| ≥ x

)
≤

2 exp

(
− nx

vnCn(x)

)
+ 2 exp

(
− nx2

v2nτn(x)
2

)
+ 8 exp

(
−c⋆x1/2

)

with
τn(x)

2 = 16C2
1 sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
logn

EP⋆ [w2
p(θ, Y1)1lDp

(Y1)],

Cn(x) = 4C2C
⋆c (Wn,p,x)C (Wn,p,x) ,

where Wn,p,x is such that

sup√
n‖θ−θ⋆‖≤M(x)∧M0

√
log n

wp(θ, ·)1lDp
≤Wn,p,x(·).

For instance we may take

Wn,p,x (y) = log p+ C
(|y|+Ap)M(x)√

nb2p
,

leading, by choosing c(Wn,p,x) = C M(x)√
nb2p logn

, to

Cn(x) = C
Apx

1/2

√
nb2p logn

. (D.8)

For any θ set

sp,θ(y) =

k⋆∑

j=1

µ(j)fp(y −mj) and s⋆θ(y) =

k⋆∑

j=1

µ(j)f⋆(y −mj).

We consider the following decomposition,

log

(
sp,θ(y)

sp,θ⋆(y)

)
= log

(
sp,θ(y)

s⋆θ(y)

)
+ log

(
s⋆θ(y)

s⋆(y)

)
+ log

(
s⋆(y)

sp,θ⋆(y)

)
. (D.9)

The first and third terms of (D.9) are treated similarly. (D.1) gives that for any θ, over Dp,
∣∣∣∣log

(
sp,θ(y)

s⋆θ(y)

)∣∣∣∣ . R(y)bβp . (D.10)
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For the second term, since f⋆ ∈ Hloc(β, γ,P) with β ≥ 1/2,

| log f⋆(y − m̂j)− log f⋆(y −m⋆
j )| ≤ L(y −m⋆

j )|m̂j −m⋆
j |β∧1.

Moreover, if y ∈ Dp, and
√
n‖θ − θ⋆‖ ≤M(x) ∧M0

√
log n, then for large enough n,

L(y −m⋆
j )|m̂j −m⋆

j |β∧1 ≤ 1

so that we have, for θ such that
√
n‖θ− θ⋆‖ ≤M(x)∧M0

√
logn, over Dp, for large enough

n,

∣∣∣∣log
(
s⋆θ(y)

s⋆(y)

)∣∣∣∣ .
∑

j

|µj − µ⋆
j |

µ⋆
j

+
∑

j

|mj −m⋆
j |β∧1L(y −m⋆

j )

.
M(x)√

n
+ (n−1/2M(x))β∧1

∑

j

L(y −m⋆
j ). (D.11)

Thus, using the fact that β ≥ 1/2, for large enough x,

sup√
n‖θ−θ⋆‖≤M(x)∧M0

√
logn

EP⋆ [w2
p(θ, Y1)1lDp

(Y1)] = O(M(x)2b2βp ). (D.12)

(D.8) and (D.12) give that, for all β ≥ 1/2, for large enough x,

nx

vnCn(x)
& x1/2n3/2b2β+2

p & x1/2(logn)3(2β+2)/(2β+1),
nx2

v2nτ
2
n(x)

& x1/2n,

so that for large enough x,

P
⋆

(
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n

n∑

i=1

wp(θ̂n, Yi)1lDp
(Yi)1l‖θ−θ̂‖≤M0

√
logn/n

≥ x

)
. exp

(
−Cx1/2

)
(D.13)

as soon as (D.6) and (D.7) hold for large enough x.
We now prove (D.6).

EP⋆ [wp(θ, Y1)1lDp
(Y1)] =

∫

Dp

(s⋆(y)− sp,θ⋆(y)) log

(
sp,θ(y)

sp,θ⋆(y)

)
dy −K(sp,θ⋆ , sp,θ)

≤
∫

Dp

(s⋆(y)− sp,θ⋆(y)) log

(
sp,θ(y)

sp,θ⋆(y)

)
dy.

Moreover, (D.1) and (D.10) give that

∫
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|s∗(y)− sp,θ⋆(y)|
∣∣∣∣log

(
sp,θ(y)

s⋆θ(y)
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. bβph(s
⋆, sp,θ⋆)

(∫

Dp

|R(y)|2(s⋆(y) + sp,θ⋆(y))dy

)1/2

. b2βp

using (D.2). Also, (D.1) and (D.11) give that for θ such that
√
n‖θ−θ⋆‖ ≤M(x)∧M0

√
logn,

∫

Dp

|s⋆(y)− sp,θ⋆(y)|
∣∣∣∣log

(
s⋆θ(y)

s⋆(y)

)∣∣∣∣ dy . b2βp M(x)β∧1

so that for β ≥ 1/2, uniformly for θ such that
√
n‖θ − θ⋆‖ ≤M(x) ∧M0

√
logn,

EP⋆ [wp(θ, Y1)1lDp
(Y1)] = O(M(x)b2βp )

and (D.6) holds for large enough x.
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To Prove (D.7) we use (D.9). We first control

EP⋆

(
sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
logn

Gn(1lDp
log(sp,θ/s

⋆
θ))

)
.

Using (D.10), we can bound on Dp,

∣∣∣∣log
(
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s⋆θ

(y)

)∣∣∣∣ . |R(y)|bβp . (log p)−1/2 ≤ 1

for n large enough, uniformly over
√
n‖θ−θ⋆‖ ≤M(x)∧M0

√
logn. Also, ‖f‖22,β .

∫
f2(1+

log+ |f |)(y)dy . ‖f‖22, for any f in the form log (sp,θ/s
⋆
θ). We denote

ϕ1(σ) =

∫ σ
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√
H(u, Sn,p,1(σ), ‖.‖2)du
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Sn,p,1(σ, x) = {log (sp,θ/s⋆θ) ,
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n‖θ − θ⋆‖ ≤M(x) ∧M0

√
logn, ‖ log(sp,θ/s⋆θ)‖2 ≤ σ}.

Then for all y ∈ Dp, since |y| ≤ Ap, and for all |mj −m′
j | ≤ η,

fp(y −m′
j) =

p∑

l=1

πlϕbp(y −mj − αl)e
−

(mj−m
′

j)
2

2b2p
+

(y−mj−αl)(mj−m
′

j)

b2p

≤ fp(y −mj)e
(|y|+mk⋆+Ap)η

b2p

≤ fp(y −mj)e
3Apη

b2p := fU (y −mj)

≥ fp(y −mj)e
− η2

2b2p
− 3Apη

b2p := fL(y −mj)

and

f⋆(y −m′
j) ≤ f⋆(y −mj)e

ηβ∧1 sup|m−mj |<η |ℓ̃(y−m)|

≥ f⋆(y −mj)e
−ηβ∧1 sup|m−mj|<η |ℓ̃(y−m)|

(D.14)

where ℓ̃(y −m) = ℓ1(y −m) if β > 1 and ℓ̃(y −m) = L(y −mj) if β ≤ 1, so that a bracket
for log(sp,θ′/s∗θ′)1lDp

is given on Dp by

Up,θ :=

(
3Apη

b2p
+ ηβ∧1 sup

|m−mj|<η

|ℓ̃(y −m)|
)

+ log(1 + η

k⋆∑

j=1

µ(j)−1)

Lp,θ := −3Apη

b2p
− ηβ∧1 sup
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|ℓ̃(y −m)|+ log(1− η
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Thus if u > 0 and η ≤ η0(u
1/2b2p/Ap ∧ u(β∧1)/2) with η0 > 0 small enough,

∫

Dp

(Up,θ − Lp,θ)
2(y)s⋆(y)dy ≤ u,

so that

ϕ1(σ) . σ

√
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Moreover for all ‖θ − θ⋆‖ ≤M0

√
logn/

√
n, (D.1) implies that

‖ log(sp,θ′/s⋆θ′)‖22 ≤ b2βp C.
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Therefore using Theorem 2 of Doukhan et al. (1995) and the fact that the chain is geomet-
rically ergodic, we obtain that

EP⋆

(
sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
logn

Gn(1lDp
log(sp,θ/s

⋆
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)
. bβp (log n+ logM(x))

≤ x/8,

(D.15)

for x ≥ 1 and large enough n. We now study
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log

(
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.

Using (D.14), if
√
n|θ − θ⋆‖ ≤M(x) ∧M0

√
logn,

∣∣∣∣log
(
s⋆θ(y)

s⋆(y)
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n = o(1),

so that
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s⋆θ(y)

s⋆(y)

)∥∥∥∥
2
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.

∥∥∥∥log
(
s⋆θ(y)
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2

2

. max
j

(µj/µ
⋆
j − 1)2 +max

j

∫
s⋆(y)(log f⋆(y −mj)− log f⋆(y −m⋆

j ))
2dy

. (M(x)2/n)β∧1.

Hence using the same tricks as before and applying Theorem 2 of Doukhan et al. (1995) we
obtain that for large enough n,

EP⋆

(
sup√

n‖θ−θ⋆‖≤M(x)∧M0

√
logn

Gn(1lDp
log(sp,θ/s

⋆
θ))

)
.M(x)n−(β∧1)/2

√
logn = o(x

√
n/vn)

(D.16)
for all x and (D.7) is satisfied.
Finally, (D.13) holds, which, together with (D.5) ends the proof of Theorem 4.2.
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