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Abstract

This paper presents a motorcycle direct dynamic formutatipthe Jourdain’s
principle approach. This vehicle is considered as an adyewflsix rigid bod-
ies and the resulting equation of motion allows to simuldteDegrees of Free-
dom (DoF). The vehicle geometry is described and a step lpymtecedure is
introduced to evaluate the kinematics and the generalifedsof the consid-
ered vehicle. In addition, to simulate the equation of muti@ Lyapunov based
stabilization is developed to assess the vehicle behaviogsponse to a propul-
sion/braking torque applied on the vehicle’s wheels andlerriorque exerted on
the motorcycle’s handlebar. Simulation results revealesdgmamics features like
load transfer and counter-steering phenomena.

keywor ds
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1 Introduction

During last decades, motorcycles have become a populapwaiation tool. Indeed,
the number of two-wheeled vehicles is in constant incresggegifically in urban ar-
eas. However, the risk associated with driving such vebkildéemportant and a road
accident, even trivial, can have fatal consequences omthevheeled users.
Motorcyclists are the most vulnerable road users. Theyesapt less than 2% of
the traffic, but 18% of those killed in 2010 in France [1]. Tdare many causes to
these fatalities: alcohol, non-compliance with the rodésupoor visibility, lack of
assistive devices and especially the overvaluation of ¢tfensastering capabilities of
such a vehicle. Indeed, with the same power, the motorcegeesents more aggres-
sive dynamics compared to those of a car vehicle. Riding aviiveeled vehicle is
neither simple nor intuitive like driving a car vehicle. bived accelerations, critical
equilibrium, trajectory anticipation are, among otheranmpoints that make riding a
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motorcycle a complicated exercise especially for inexqgraxed riders who get carried
away by the riding sensations and pleasure.

Fortunately, recent preventive as well as suppressive hawe significantly con-
tributed to decrease number of fatalities. It must be satriotorcyclists’ road safety
has attracted the attention of all academic, industrial jaolitical institutions. In
France, several research projects were undertaken: SUNRDTQ003-2006), SIMA-
COM? (2006-2009) [2], SAFERIDER (2008-2010), DAMOTC* (2008-2011), and
others with a common point: understand the rider behavior.

To deal with this aim, it is necessary to predict the dynaroicthe motorcycle
vehicle and model it. In the study of mechanical systems,atiog usually leads to a
set of differential/algebraic equations (DAE) derivednfréaws of mechanics. In this
field, two approaches are proposed: the analytical appraadithe numerical one.
In the later one, many tools were developed such MSC ADAMS §BhMechanics
[4] and Modelica [5]. The alternative approach is the deprient of symbolic equa-
tions of motion which is a time consuming method, but it afferore flexibilities in
the system description. In that case, an algebra packagdliBsymba [6] is highly
recommended.

Many works have addressed the modeling of the two-wheeleidles. Indeed, the
first study on the stability and balance of a bicycle vehicés\werformed by Whipple
[7]. This bicycle is represented by two bodies linked via #gteering mechanism.
Wheels are modeled as circular thin disks where the gyras&dfect is considered.
Other research works have been undertaken [8, 9, 10]. Iinedlet studies, the tire-
road interaction has been neglected. In 1971, Sharp intsgjtiaes’ efforts [11]. The
objective of this study is to examine the effect of paransatecertainties on the vehicle
stability. The vehicle is modeled as a set of two rigid bodi@snected by the steering
mechanism, simulating 4 DoF: the lateral displacement had/aw, the roll and the
steering rotations.

So far, in all these models, the longitudinal velocity wasuased to be constant and
the vehicle suspension motions were ignored. It was iniegeto examine how these
factors influenced the frequency characteristics of thiedint stability modes. These
aspects have been investigated in a further work of Shar@7d 112]. In 1994, Sharp
published a paper, in which, the motorcycle is represenyeadd®et of four rigid bodies
to simulate 8 DoF. The originality of this model lies in theédgration of flexibilities
and the rider tilting motion [13].

In the same perspective, a model incorporating the suspehsivels and a more
complex representation of the tire-road interaction ispnéed in [14]. The advances
made by this model have allowed exploring the dynamics dfi sugehicle for a large
motion around equilibrium. In that case, the interactiotwleen the in-plane and the
out-of-plane motion is well described. More recently, thestBike program presents
a nonlinear model of a motorcycle described as a set of 6 badid simulating 11
DoF. Each body is identified by its natural coordinates (aoreof six coordinates:
three Cartesian coordinates of its center of mass and totatons) and the assembly
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is done by introducing geometric constraints [15]. Finalynodeling technique based
on the recursive Newton-Euler approach is adapted to darivetorcycle dynamics
model intended for a two-wheeled simulator application f1§.

Among the vehicle models, the simulation of single-track turns out to be par-
ticularly difficult. While a car vehicle remains stable, stabilization of two-wheeled
vehicles is required and a rider model must be included. itature of two-wheeled
vehicle stabilization is recent [19, 18, 20]. Generallyva-dayer controller is adopted
to track the reference road trajectory and an inner coetraliabilizes the longitudi-
nal and lateral dynamics. For this, several strategies sed:uthe optimal maneuver
method [21, 22], robust., and LPV? control techniques [23].

In this paper, a step by step modeling approach based on tindain’s principle
is presented. This method was firstly used in [24] to derivaradgnamics model and
the modeling prerequisites are inspired from this work. fieéis an efficient tool for
deriving motion equations in a systematic way and with lasstetical skills compar-
ing to the Lagrangian and the Newton/Euler approaches. Téwa gfforts concern the
computation of Jacobian matrices and the virtual power efdifferent external ap-
plied forces. Our aim is to derive a mathematical descniptiba motorcycle vehicle
with middle complexity, which captivates the essentialayics issues. This model is
intended for control, state observation and security dsvievelopment applications.
In section 2, a brief outline to the mathematical modelinthefmotorcycle kinematics
and dynamics is introduced. Section 3 focuses on the cotipuiaf the generalized
vector efforts. Section 4 is intended to demonstrate thedasncepts of the tire/road
contact. Finally, a virtual rider controller is introducidorder to regulate the longi-
tudinal speed towards a reference profile and to stabilizéatieral dynamics by using
the roll motion.

2 Motorcycle kinematics and dynamics

2.1 Motorcycle description

In the present work, the motorcycle is composed of six bofties Figure 1). A rear
body G, including the saddle, the engine and the fuel tank. The uppet body
Gy includes the handlebar and the upper part of the suspenssemély. The lower
front body G, represents the lower part of the suspension assembly afuigke sys-
tem. The swing arm bod¢; contains the swing arm mass and the rear brake system.
Finally, Ry and R, represent respectively, the front and the rear wheel bodies

Most of these bodies are connected via revolute link exdepupper and lower
parts of the front body which are interconnected with a pasalink (telescopic sus-
pension). In order to completely define the configuratiorhefrnotorcycle, a set of 11
DoF has been considered. A full characterization of motety kinematics includes

¢ the longitudinal, lateral and vertical position, {;, z) of the rear body,

¢ the roll, pitch and yaw orientationp( 6, ) of the rear body,

1LPV: Linear Parameter Varying



o the steering anglé of the front body and the front wheel,
e the front suspension travel and the swing arm rotatiom,

¢ and finally, the front and rear wheels spinnigg.andd,.

1
:
1
x
v
Figure 1: The motorcycle geometrical description

2.2 Kinematic background

Consider a right-handed, orthogonal axis reference ff&pte, ., j,,, k. ) attached to
the vehicle at point in which the motion of the overall mechanical system will be
expressed. Pointis defined as the intersection of the longitudinal plane aisetry,
the ground plane, and the vertical transverse plane canggpoint P, attach point
of the swing arm with the rear body. The motion of the motoleys referred to the
inertial reference fram&, (O, ., j,,, ko), by the velocity vector components, v,
of pointwv, and the yaw rotatiog around the z-axig, of the inertial reference frame
R, (see Figure 2). Starting from the reference frafg the orientations of the other
reference frames are defined as follows (see Figure 3). Aatationy abouti, gives
Ry (v, 1o, k,). Next, a pitch rotatiory followed by a castor rotation aboutj
givesR (P, i, Jj., k.). Then, a steer rotatiof aboutk. givesRs(B, 5,75, ks). In
the other side, a swing rotatignaboutj , gives®,, (P, 4,,7,,, k.)-
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Figure 2: Configuration of the vehicle system aRisw.r.t the inertial reference frame
K,

In the movable reference franfg,, the position of a body is given by:

Toi = Tov + Tui (1)

From equation (1), the velocity and the acceleration of aybodre derived as
following:

Voi = Vov + Wou X Ty + 'iavi (2)

Qo = Aoy + €Eoy X Ty + Woy X (wov X Ty + 27"1,1) + Tvz

and, the angular velocity,; and the angular acceleratiey; vectors of body are
derived in the same way:

Woi = Woy + Wyi (3)

€oi = €op T Woy X Wy + Way;

Since the kinematic configuration of each body is well defingts local reference
frame, it remains to define the kinematic configuration ofrtt@vable reference frame
R,, it means, to find the expressions@f, ande,, in equations (2,3) w.r4,, and
woep- Suppose that the linear and angular velocity vector® ofv.r.t the inertial one
R, are given bw?, = R,,v}, andw?, = R,,w},,. It goes that the linear and angular
acceleration vectors @t,, expressed ift,,, can be derived as following:

Aoy = Woy X Voy + 'bo’u (4)

€Eov = Wou



Figure 3: Axis systems and angular displacements configurat

From equations (2-4), the linear and angular acceleragotovs of each bodyare
expressed in the movable reference fraieby the following equations:

Ao = 'i}ov + wov X Toyi + Tvz + Woy X ('Uoi + rvz) (5)

€oi = Woy T Woy X Wyj + Wayj

At present, all kinematic quantities are defined, then wedce the principle of
the virtual power called also Jourdain’s principle.

2.3 Jourdain’sprinciple

Jourdain’s principle states that the virtual power done layiom compatible constraint
effortsF'; ./ M, . is null [24], then:

n

Z {(A'Uoi) : Fi,c + (Awoi) ' Mi,c} =0 (6)
=1
wheren is the number of bodies andv describes a virtual velocity. By intro-

ducing the Newton/Euler dynamics principle, the constrefforts F'; ./ M ; . can be
expressed from the system motion and the external appfiedeF’; .,/ M, , as:

F;.=mija, —F;, (7)
M; . =TL€y +wo x Liwy; — M

Moreover, from equations (2, 3, 5), the velocity and acedien vectors can be
written as following:



87701' o 8‘*’01’ o a'Uoi < o awoi b
Vos W Woi 99 Qo; = (91919+aR €o; = 8’1919+€R (8)
where:

O=luv v, & 2 ¢ 66 X i & & (©)

denotes the vector of generalized velocities and the palidvatives are called
Jacobian matrices of the velocity vector w.r.t the geneealivelocities vecto#. Vec-
torsar andeg are referred as the residual acceleration terms. Constygueom
equations (7, 8) and after some algebraic manipulatioesybtion dynamics can be
expressed as:

MY = Q (10)
whereM is the mass matrix obtained from the direct computation abBan
matrices:
n a’Uoi T a'Uoi a"‘)oi r 8‘*’01’
M = i I; 11
;{m<ao> 819+(819) 619} (11)

and the generalized efforts vectQrcan be split as following:
= a'voi r awoi r
QZZ{(&'&) Flﬂ_i_(a’l?) Mi,a}_ (12)

2": [(Ovai N Ow i T(I. i % Tiwys) (13)
: mg 99 apR 99 i€ER Woi iWoi

Qr

The next subsection presents a step-by-step procedureite tiee Jacobian ma-
trices. These matrices allow the calculation of the massixd and the residual
generalized effort vectap.

24 Motorcycle Kinematics
2.4.1 Rear body

The rear body,. has 3 DoF w.r.8®, which are the roll, pitch rotations and vertical
displacement. Then, its center of mass position vector is:

TvG, = ToP + TPG, (14)



where the coordinates of vectorsp andrpg, in the reference fram&, are
computed by:

0 TGr
rop = Ry 0 rpa, =Ry 0 (15)
z+ hp ZGr

By differentiating, the relative linear and angular vetgaiectors are:

’l"‘UGT =7r,p + ’l"‘pGT = (wg, X ryp + 2kga) =+ We.0 X TPaG, (16)
WG, = We,o = W, + wo a7
(18)

where the coordinates of the unit veckgrin &, are obtained b, = R.,[0,0, 1]7
and the components of the angular velocity vectogsandwy are respectively given
by w, = [¢,0,0]7, ws = R,[0,0,0]”. By using equations (5, 8), the Jacobian
matrices and the residual acceleration vectors can be dddycsimple algebraic ma-
nipulations.

2.4.2 Front upper body

The front upper body~; is belonging to the fixed-body reference frafe and has
1 DoF w.r.t the rear body which represents the steer rotafiben, its center of mass
position vector is governed by:

TvG; = Twp +TPB + TBG, (19)

where the coordinates of the vectorsp andrpg, are given in the reference
frameR, as following:

lpB zraf
rpPB = Rtp,e,€ 0 TBG; = Rtp,e,e,é 0 (20)
0 ZGf

By differentiating, the relative linear and angular vetgaiectors are:

TvG; =ToP +TPB +TBG; = ToP + Wy o X TPB + Wy o6 X TBG, (21)
quf = Wp,0,6 = WG, + ws (22)
(23)

wherews = R, 9..[0,0,4]7.



2.4.3 Lower front body

The front lower body has 1 DoF w.i; representing the suspension traxgl Its
center of mass position vector is:

TvG, = TvB + TBG, (24)
where the coordinates of the vectgs, are:
iel)
TG, = Ryo.c5 0 (25)
Ar + zai

By differentiating, the relative linear and angular vetgaiectors are:

PoG, = ToB + TBG, = ToB + We 0.5 X TBG, + Arks (26)
WyG, = WG, T Ws 27)

where the coordinates of the unit vectgrin ®, areks = R, 9.¢,6[0,0,1]7.

2.4.4 Swingarm body

The swing arm body has 3 DoF w.ft, which represents the roll, swing rotations and
vertical displacement. Then, its center of mass positiatoras:

TvG, = ToP +TPG, (28)

in which the coordinates afp¢, in the reference fram®&, are calculated using
the following expression:

ZGs
rpc, = Ry 0 (29)

ZGs

By differentiating, the relative linear and angular vetgaiectors are:

Tvg, = ToP +TPG, = TP + Wy X TPG, (30)

Wo@a, =Weu =Wy + W, (31)

Wherewu = Rtp,p, [07 /11 O]T



2.45 Rear-whed bodies

The rear-wheel body has three independent DoF W,r.including roll rotation, ver-
tical displacement and the tire spin rotation around whpel axisj. ,.. It follows

that:

WyR, = Wy + We (32)

where the components of the angular velocityagg. = R0, o 0]. Onthe other
hand, the position of the rear wheel center of mass is:

TyR, = TyP + TPR, (33)

where the coordinates of the vecigsr, are computed by:

L Rr
TPR, = R%‘u 0 (34)
ZRr

By differentiating, the relative linear velocity vector is

'iavRT = 'iavP + ";PRT = ";vP + Wou X TPR, (35)
(36)

2.4.6 Front-wheel body

The front-wheel body has one independent DoF &r.twvhich represents the tire spin
rotation around wheel spin axjs , consequently:

WyR; = Woa, +We; (37)
(38)
wherew,, = R, 9.5[0, ('f, 0]”. In the same way as the rear wheel, the position
of the front wheel center of mass is:
'rva =7ryB+ TBRf (39)

in which the coordinates of the vectog r, are:

.”L'Rf
TBR; = Ry 0 (40)
)\f + 2Ry

10



By differentiating, the relative linear velocity vector is

FoR; = ToB + TBR; = Top + Weos X TBR, + Arks (41)

At this level, the whole motorcycle kinematics is defined.tNdamassM and the
residual generalized effor@  are fully defined. In the next section, we look for the
development of the generalized efforts vector associatedternal applied efforts.

3 Vector of Generalized Efforts

The motorcycle system is subject to various forces and egglements. One enumer-
ates gravity forces, suspensions forces due to springstarutk-sabsorbers, tire forces
and torques at the tire/road contact point, rider steedngute and steer damper torque
applied on motorcycle’s handlebar, rear and front brakgues and finally the driving
torque applied on the rear wheel. In this work, the rider issidered to be a rigid body
attached to the rear assemlgly where its lean movement is ignored.

To express the generalized efforts veafdy associated to external applied efforts,
one can make use of equation (12). This method may be tedispscially when the
applied efforts are numerous. So, it is most convenient tbtfie virtual power done
by each effort and hence its associated contribution.

3.1 Gravity force

The contribution of this force i, is directly computed from equation (12):

Qa,g—Z(a(;’gi)T[ 8 } (42)

i —mig

fori e (GT, Gf, Gy, Gy, Rf, RT).

3.2 Rider torque

The rider’s torquer,. applied on the motorcycle’s handlebar is considered to be an
important input for the vehicle riding. This torque is ajpoliaround the steering axis,
which constitutes the interconnection link between thelbbedyG,. and the front upper
bodyGs. The contribution of this torque is defined by:

NEA 0 06
o) .
Qun = <_819> 0 | =]|7n-Cs (43)
Ty — 056 04

where—Cj4 is the steer damping torque.

In [25], a more detailed rider-motorcycle interaction isdebed by taking into
account the rider’s upper torso leaning motion and the catimeof his/her arms with
the handlebars.

11



3.3 Propulsion and braking torque

For the front-wheel, the braking force acts between the Wkmeckle and the front
lower body which contains the braking disk. For the rear whidse braking torque
is applied between the rear-wheel body and the swing arnrmdsgevhere the engine
propulsion torque is applied around the rear-wheel spig, édnce:

1\ T 0 N\ T 0 N\ T 0
_ a<f G, % _
Qa,pb - <8'19> [ TBE)-,f ] + <_8'19> [ TD —BTB,T ] + (6’19) [ 7;)B.,r ]

(44)
0Os
—TB,r
TB,f
D + TB,r

3.4 Front and rear suspension

The front suspension fordg ; is applied between the front upper and the front lower
bodies. The contribution of this force i, can be expressed by using the virtual
power principle, therefore:

i\
_ f _
Q.55 = <3—0> Fop=

In the same way, the contribution of the rear suspension eacomputed as fol-

lowing:
. T
Q. . - Oy F (46)
a,sr (919 s,r

where),. is the rear suspension travel givenky= rg,s, - rs,s,. By differenti-

u

ating, the suspension travel ratgis deduced and written by the following equation:

03

07
Fo (45)

).\T = €gs,s, * {w%g Xrps, — Wo n X ’l"psl} (47)

12
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Figure 4: Suspensions configuration, (a) front, (b) rear

whereeg, s, is the rear suspension unit vector. Consequently, the iboititn of

u

the rear suspension in the total generalized effort is dgbyen

05
es,s, (Jg X TPs,)
Qoo = 0, F., (48)
—es,s,  (J,. X TPs))
02

where the coordinates of the unit vectggsandj, in &, are respectively equal to
R,[0,1,0]7.

Equations (42-48) show the contribution@h, of each external force/moment ap-
plied on the motorcycle vehicle. In the next section, the-tad interaction is exposed
and its contribution is demonstrated.

4 Tires kinematics and dynamics

Tire-road interaction is the most important phenomenadhatacterize ground vehi-
cles. Due to this importance, several works are undertadating to a mathematical
description of friction forces which arises from tire andaezss deformation [15, 26].

In the present paper, the motorcycle’s wheels are consldseigid, thin disks
where the road/tire contact is dot shaped at poeinft this point, a system of lon-
gitudinal, lateral and vertical forces is implemented bingsan empirical tire model
type named Pacejka model [27] with respect to kinematiccgligntities and the nor-
mal load. Moreover, carcass deformations are not takenaiotount but reproduced
by introducing the tire relaxation equations [20].

In following, we expose the tire kinematics to define slipiaates required while
computing the tire/road contact forces and hence, dedededbntribution in the gen-
eralized effort vecto),, .

13



4.1 Tireskinematics

To describe the tire motion, a new reference frafa€c, ir, j, kr) is introduced at
the contact point: of each wheel’s tirekr is the normal vector to the road surface.
Vectorir is obtained by the cross produgt x kr andj; completes the reference
axis.

Figure 5: Tire reference frame

As shown in Figure 5, the camber angle is an important vaiaibthe motorcycle
safety studies [28]. This variable is expressed by thedllg scalar product:
siny =jg¢ - kr (49)

Besides, the position of the rear and front road/tire cdnaint c w.r.t the movable
frame referenc&, is given by:

Tve,, = ToR, + TR, c, (50)

Tyc; = TRy +TRfo (51)

in which the coordinates ofg, ., andrg,., in &, are respectively given by:

0 —pfsine
TRTCT = RW 0 ’I’Rfcf = R@797575 0 (52)
—pr Py Cose

By differentiating, the relative linear velocity vector each contact point can be
deduced as:

14



".’vcr = ".’URT + Wep X TR.c,

Tye; = TRy T WoG; X TRyc
f f f fef

By using equation (2), the contact point velocity vectorasnputed and the slip
variables are defined by the following equations:

.
a, = —atan(M) (53)
1y - 'UocT
—
ap = —atan(M) +dcose
’ 1y - vOCf
B Vei— 1Dl
K; =

max (Vg ;, TD,iéi)

where, V. ; = ||lvo., || is the contact point speedp ; is the wheel's dynamic radius
andi =, f.

Finally, knowing that the contact point must always belong to the road surface
then, the vertical deformatiomds ; of the wheels’ tire can be derived by:

62,1' - kT *Toe; (54)

These deformations help to determine the normal load nagess maintain con-
tact with the road plane [29].

4.2 Tiresforce/moment system

Once the tire’s kinematics is established, the equivalenfdrces/moments wrench at
the center of each wheel is given by the following expression

FT:FmiT+ijT+szT
MT:MI'iT-i-Mij-l-Msz-FFTXTcR

whereF, = F,(k) is the longitudinal forceF, = F,(«,) is the lateral force
and F, = F,(d,) is the vertical force. M, is the tire torque abouir, M, is the
rolling resistance torque antl, = M, («,~) is the alignment torque. These forces
and torques are obtained from equation (53) for the longialdlip x, the lateral slipx
and from equation (54) for the vertical tire deformatign Afterwards, the contribution
of the tire/road contact forces/moments in the generakiffedts vector is given by:

ov R T ow R T
Qur= Z {(#) FT,i+( 81097) MT,i} (55)

i=f,r

15



5 Motorcycle mode control

To simulate the motorcycle model, a convenient control ise@ynthesized to track a
reference longitudinal speed profile and to stabilize therdéh dynamics around trim
trajectories. This is a hard task since the roll DoF is uristahd, for some aggressive
driving maneuvers conditions, system nonlinearities oabe neglected. In addition,
it is impossible to exploit the whole nonlinear model to depea suitable controller,
even by using a nonlinear control method. For these reaadimgarized version of the
dynamics model representing small motions in the neighdimdtof the straight motion
is considered.

In this paper, the speed and the roll controllers are baségiaygpunov method [30].
This technique avoids the gain-scheduling, necessanhéolinear method control to
consider longitudinal speed variations. For each modeggifodinal and lateral, the
controller acts on the speed error to produce a torque to piedpon the rear wheel
and on the roll angle error to generate a rider steering #otqube applied on the
motorcycle’s handlebar.

5.1 Longitudinal control

Consider the following longitudinal simplified model:

Z m; (vw - Uyw) =Fy ¢+ Fy,—F, ¢sind (56)
iy.5Cr = To.f — pf(Fap — Fy ssind)
iy,ré‘r =TD + Tor — erm,r

With the assumption of zero longitudinal slip, it goes that= p,.{, = ps{; and
by replacing in equation (56) the simplified longitudinaldedecomes:

. U D + T, ;
Mgy = —2L 4 22200 4 Zmﬂ)@ﬂ/) (57)
143 Pr
wherem., = Y- m; + iy ;/p7 +iy./p; is the equivalent mass. Let us introduce
the Lyapunov functio = mc,e?/2, wheree = v, — v, ¢ is the speed tracking
error, its derivative is given by:

V= Meg€é = € {M + M + Zmlvyzp — meq'[}m,ref} (58)
Pf Pr '

In order to the Lyapunov function derivative to be negatitxe, propulsion torque
Tp must satisfy:

To,f

- Z mivyd} + meqi)z,re‘f} — Tb,r (59)
Pf

™D = Pr {_kmem -

16



wherek, is a positive constant. With this input control, the Lyapurfionction
derivative is always negativd(= —k,e?) and hence the system is also, always stable.

Remark With the control of equation (59), the error dynamics beceme- —k, e,
then, k, is just a proportional coefficient which is tuned until thesided tracking er-
ror level is achieved. However, a high value introduces ajillatory behavior while
stability remains preserved.

17
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Figure 7: Longitudinal acceleration and requested prapulorque

The following simulations are carried-out using the depefibnonlinear model and
the controller of equation (59). Starting from 5msthe desired speed profile consists
of two main phases, an acceleration phase to reach 23rfolowed by a deceleration
phase to keep a constant speed (see Figure 6-a). In Figuréné-tire/road contact
point speed is shown to give an overview of the longituditial where Figure 6-c
presents the simulation results of the in-plane mode vi@salyertical displacement,
front suspension travel, pitch and swing angles). Figuck 6escribes the evolution
of the nominal load applied on each tire w.r.t to speed vianat(and so longitudinal
acceleration). Lastly, requested propulsion torque atehe-wheel and the resulting
acceleration are sketched in Figure 7.

The second simulation aims to highlight the motorcycle bahravhen subjected
to a braking torques applied separately on the front anceidiewheel. Here in, itis not
question to apply a particular braking model such as the AB&m. It will be shown
that when applying a braking torque, significant load trarsstake place from the rear
wheel to the front one. If suspensions are assumed to be agidpproximation of the
vertical load on each wheel when braking [31] is given by:
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_ ng (xGr - er) + FBZGT‘
p

F o ng(p_xGr_er)_FBzGr
z,r — D

F. ¢ (60)

where, p is the motorcycle wheelbase arid; is the total braking force at the
tire/road contact. Based on these two equations, a limKibgaforce £ ;;,,, which
causes the rear wheel lift can be computed.

Figure 8 represents the rear and the front brake profile egpgkparately on each
wheel. In the first scenario, a rear braking torque with a maxn value of -600 N.m
is applied between 4-7 seconds. The motorcycle dynamicavihis demonstrated
in Figure 9. From an initial forward speed of 20m/s, the moyote brakes hardly up
to 2m/s with a deceleration of 0.4g. In that case, the vdrfioaition z of point P is
lowered which introduces a clockwise and hence a negatigh mtationd. The same
vertical movement produces an anti-clockwise and hencesdiy@mswing rotatiory..
Itis clear that the rear wheel does not lift due to the applixtical force (600N which
is equivalent to a payload of 60kg. See Figure 9-d).

-100

--T

B | |

-200

—-300

Tg (N.m)

—400 -

—500 -

—-600 &

10 15 20
time (s)

Figure 8: Rear and front brake torque profiles

In the second scenario, the same torque profile as beforgligdput with minus
a half amplitude (-280Nm). The motorcycle dynamics behaidshown in Figure
10. Initially the motorcycle was traveling at 20m/s and leskip to 12 m/s with a
deceleration of 0.4g. A first conclusion concerns the amgbétof the applied torque
which is not sufficient to stop the motorcycle. In addition¢ls front brake can easily
create the limit braking forc€} ;;,,, and hence causes the loss of the rear wheel contact
with the ground. Indeed, the vertical force at the rear wieeabout 100N (a payload
of only 10kg. See Figure 10-d). With the same justificatibe, tertical positior of
point P goes up which introduces an anti-clockwise and hence aiympitch rotation
# and a clockwise and hence a negative swing rotation
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As is recognized in literature, this simulation presengshitaking efficiency where
an optimal braking must be split between the two wheels witinebrake ratio at the
front wheel (Figure 11).

v, (mis)

1400

.................

Figure 11: Simulation results according to 70% front brakgue and 30% rear brake
torque of previous torques

5.2 Cornering maneuver control

As the longitudinal mode, a linearized version of the ldtdymamics model represent-
ing small motions in the neighborhood of the straight motsoderived which leads to
the following linear state-space representation:

T = ALm+BTr (61)

wherez = [vy, ¥, &, 8, ©,0]T is the state vector and. is the rider torque input.
In Figure 12, the stability of the uncontrolled motorcycleael of equation (61) is
presented. This eigenvalues plot shows the existence liestaodes (ino symbol)
and three instability modes, the first concerns the steenioigon which appears from
8m/s (inx symbol), the second concerns the roll motion at very low dpegil 7m/s
(in 7 symbol) and finally, a coupled steering-roll instable moti@nerated at very low
speed (in+ symbol). In [11], these instability modes are named capsisave and
wobble.
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eigenvalues real part

Figure 12: Eigenvalues real part of the uncontrolled liresr motorcycle model w.r.t
the forward speed

In order to stabilize the motorcycle, a control scheme isa@ynthesized to track
areference roll angle. In its simplest form, consider thagynov functiort = ¢2/2,
wheree = ¢ — . is the roll tracking error. By differentiation, the roll erdynamics
becomes:

E=¢— Sbref (62)
Sb = AL,(3,:)w + B3T7‘

whereBj3 andA , 3 .) are the third line of vectaB and matrixA ;. From equation
(62), it can be seen that acts as a virtual input to the roll error dynamics. By using
backstepping technique [32], the required rider torqueackta reference roll angle is
given by:

B3T7‘ = _kzz - AL,(3,:)w +B (63)

B = _kape + Prey (64)

wherez = ¢ — [ is the error between the real roll rate and the virtual infiut
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Figure 13: Road curvature

The following simulation are carried-out using the nonéinenodel and the con-
trollers of equations (59,63) where Figure 13 shows the magature. From this
curvature, the reference roll profile is calculated. In Figli4-a, the performance of
backstepping controller in reference tracking is desdkili#bviously, the linear model-
based control of equation (63) is able to stabilize the maxar dynamics. However, for
an aggressive cornering maneuver where the system noritiegare important, the
stability of the motorcycle is not guaranteed.
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Figure 14: Simulation results for roll profile tracking
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Otherwise, from figures 14-(a,b,c), the main features of gtmposed dynamic
model are illustrated mainly the counter-steer phenomimakeed, for a given applied
torquer,., the vehicle leans in the same direction as torque sign vakedtee vehicle
is steered in the opposite direction. Furthermore, stgeaimgle and curvature have
approximately the same plot. Finally, the requested ridegue at the motorcycle’s
handlebar is illustrated in Figure 14-d.

6 Conclusion

Based on the virtual power principle, called also Jourdaaminciple, a middle com-
plexity motorcycle dynamics model is proposed. The muitilp model has 11 DoF
and includes the main features of motorcycle subsystermris.approach is chosen for
its simplicity of synthesis and its fine analytical derieatiwith an acceptable calcu-
lation load, in particular, when the equations of motiond@eeeloped by using gener-
alized coordinates approach. This model exhibits many tefé@sting behaviors of a
real motorcycle such non-minimum phase steering respanskoad transfer resulting
from acceleration and braking.

Besides, a virtual rider is synthesized for longitudinal aornering modes respec-
tively by using Lyapunov theory. This technique allows tlaécalation of speed and
roll controllers which are valid for a wide range of forwaqegds and hence, avoids
controller scheduling.

From Figure 14.b, it is clear that using only roll stabilinatcannot lead to a good
trajectory tracking. For this, additional cost functionasnbe included to minimize
the relative yaw angle and lateral deviation errors of theamycle from the road
center line. These issues will be the scope of future worksteldver, as perspective,
experimental validation of the proposed motorcycle modelthe simulation of more
limit riding maneuvers are expected.
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7 Notations

w.r.t with respect to
B revolute link point between the steering system and thelvedy
P attach point of the swing arm to the rear body
Cry Cf rear and front tire/road contact points
g gravity force
hp vertical position ofP w.r.tv
Gy.i wheel’s spin inertia = f, r
m; i-th body mass foi = G, Gy, G, G, Ry, R,
; tire lateral slip
0 vertical deformation of the wheels’ tire
€ motorcycle castor angle
5 motorcycle camber angle
Kq tire longitudinal slip
Pi wheel radius foi = f,r
T rider torque applied on the vehicle handlebar
TB.i brake torque foi = f,r
™D propulsion torque applied on the rear wheel spin axis
I; i-th body inertia tensor matrix
R; rotation matrix transformation
1 0 0

R;=| 0 cos(i) —sin(i) |,fori=¢
0 sin(i) cos(i) |
cos(i) 0 sin(i)

R, = 0 1 0 Jfori=0,e,pn
—sin(i) 0 cos(i)
[ cos(i) —sin(i) 0 ]
R;=| sin(¢) cos(d) 0 |[,fori=94
| 0 0 L]
Rij..r=RR; Ry
Cs damping ratio of the handlebar around its axis
ks.ir Cs,i stiffness and damping of the motorcycle suspensions

F,./M;. constraint forcess/moments applied on bady
F;./M,, external forcessmoments applied on bady

Fs; spring and shock absorber force

Fr /My tire/road contact efforts

Q., contribution of the gravity force i),

Qun contribution of the rider torque on the handleba€lp
Qusf contribution of the front suspension force@,

contribution of the rear suspension force(y
contribution of the propulsion/braking torquesan,

a,pb
Qaf; contribution of the tire/road interaction effortsp,
r scalar variable
0, zero vector of dimension
0 zero matrix of dimensiom by n
r vector variable
R matrix variable 30

zT Transposition operator
T, T first and second differentiation of a variahlev.r.t time variable



8 Numerical values

All numerical values are taken from [20]. However, the caoate system convention
are different (SAE withz axis points downward in [20] and 1SO with axis points
upward in this paper). Consequently, the sign of some Padrgkparameters must be
inverted Prcy1, Pry6) PKy71 4B210s 4D231 4D281 D29, 4E221 qE=5, QH=3, {H 24)-

Table 1: Motorcycle geometric specification (lengths argrihand angles in [rad])

Tar 2Gr TGt 2Gf zal za1
0.1289 0.1116 0.0452 0.1237 0.0679 -0.263
TGs ZGs TRr ZRr TRf ZRf
-0.353 -0.0495 -0.549 -0.0638 0.0474 -0.3655
s Zs1 TSy ZSu hp lpp
-0.1047 -0.1826 -0.062 0.128 0.3608 0.6831
Pr Pr €

0.324 0.297 -0.4189

Table 2: Motorcycle mass specification [Kg]

magr MGy MGL MGs MRr MRf
165.13 9.99 7.25 8 147 11.9

Table 3: Motorcycle inertia specification [KgZin

Ig, Igy I
11.085 0 3.691 1.341 0 0
0 22.013 0 0 1.584 0 03
3.691 0 14.982 0 0 0.4125
IGs IRT IRf
0.02 0 0 0.383 0 0 0.27 0 0
0 0.259 0 0 0.638 0 0 0.484 0
0 0 0.259 0 0 0 0 0 0

Table 4: Motorcycle handlebar and suspensions specificatio

CsINmrad™.s] Fs ;0[N Fsro  kssINM™ ks,  csf[NM™Ls] ¢,
6.77 -796 6089.16 25000 58570 2134 11650
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9 Linear and angular velocity Jacobian matrices

Let be the set of coordinates = [1,0,0]%, e, = [0,1,0]” ande, = [0,0,1]. The
expressions of the linear and angular Jacobian matricesafdr body is given by:

For the rear body:

8v0GT

0
a"‘)OGT

ov

I _
e, =Rge. ey=Rye,

For the front upper body:
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For the front lower body:
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For the swing arm body:
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For the rear wheel:
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e For the front wheel:
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