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IBISC Laboratory, 40 rue de pelvoux, 91020 Evry Cedex, France

February 8, 2013

Abstract

This paper presents a motorcycle direct dynamic formulation by the Jourdain’s
principle approach. This vehicle is considered as an assembly of six rigid bod-
ies and the resulting equation of motion allows to simulate 11 Degrees of Free-
dom (DoF). The vehicle geometry is described and a step by step procedure is
introduced to evaluate the kinematics and the generalized efforts of the consid-
ered vehicle. In addition, to simulate the equation of motion, a Lyapunov based
stabilization is developed to assess the vehicle behavior in response to a propul-
sion/braking torque applied on the vehicle’s wheels and a rider torque exerted on
the motorcycle’s handlebar. Simulation results reveal some dynamics features like
load transfer and counter-steering phenomena.

keywords
Motorcycle modeling, motorcycle control, Jourdain’s dynamics principle.

1 Introduction

During last decades, motorcycles have become a popular transportation tool. Indeed,
the number of two-wheeled vehicles is in constant increase,specifically in urban ar-
eas. However, the risk associated with driving such vehicles is important and a road
accident, even trivial, can have fatal consequences on the two-wheeled users.

Motorcyclists are the most vulnerable road users. They represent less than 2% of
the traffic, but 18% of those killed in 2010 in France [1]. There are many causes to
these fatalities: alcohol, non-compliance with the road rules, poor visibility, lack of
assistive devices and especially the overvaluation of the self mastering capabilities of
such a vehicle. Indeed, with the same power, the motorcycle represents more aggres-
sive dynamics compared to those of a car vehicle. Riding a two-wheeled vehicle is
neither simple nor intuitive like driving a car vehicle. Involved accelerations, critical
equilibrium, trajectory anticipation are, among others, many points that make riding a
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motorcycle a complicated exercise especially for inexperienced riders who get carried
away by the riding sensations and pleasure.

Fortunately, recent preventive as well as suppressive lawshave significantly con-
tributed to decrease number of fatalities. It must be said that motorcyclists’ road safety
has attracted the attention of all academic, industrial andpolitical institutions. In
France, several research projects were undertaken: SUMOTORI 1 (2003-2006), SIMA-
COM2 (2006-2009) [2], SAFERIDER3 (2008-2010), DAMOTO4 (2008-2011), and
others with a common point: understand the rider behavior.

To deal with this aim, it is necessary to predict the dynamicsof the motorcycle
vehicle and model it. In the study of mechanical systems, modeling usually leads to a
set of differential/algebraic equations (DAE) derived from laws of mechanics. In this
field, two approaches are proposed: the analytical approachand the numerical one.
In the later one, many tools were developed such MSC ADAMS [3], simMechanics
[4] and Modelica [5]. The alternative approach is the development of symbolic equa-
tions of motion which is a time consuming method, but it offers more flexibilities in
the system description. In that case, an algebra package like MBsymba [6] is highly
recommended.

Many works have addressed the modeling of the two-wheeled vehicles. Indeed, the
first study on the stability and balance of a bicycle vehicle was performed by Whipple
[7]. This bicycle is represented by two bodies linked via thesteering mechanism.
Wheels are modeled as circular thin disks where the gyroscopic effect is considered.
Other research works have been undertaken [8, 9, 10]. In all these studies, the tire-
road interaction has been neglected. In 1971, Sharp integrated tires’ efforts [11]. The
objective of this study is to examine the effect of parameters uncertainties on the vehicle
stability. The vehicle is modeled as a set of two rigid bodiesconnected by the steering
mechanism, simulating 4 DoF: the lateral displacement and the yaw, the roll and the
steering rotations.

So far, in all these models, the longitudinal velocity was assumed to be constant and
the vehicle suspension motions were ignored. It was interesting to examine how these
factors influenced the frequency characteristics of the different stability modes. These
aspects have been investigated in a further work of Sharp in 1974 [12]. In 1994, Sharp
published a paper, in which, the motorcycle is represented by a set of four rigid bodies
to simulate 8 DoF. The originality of this model lies in the integration of flexibilities
and the rider tilting motion [13].

In the same perspective, a model incorporating the suspension travels and a more
complex representation of the tire-road interaction is presented in [14]. The advances
made by this model have allowed exploring the dynamics of such a vehicle for a large
motion around equilibrium. In that case, the interaction between the in-plane and the
out-of-plane motion is well described. More recently, the FastBike program presents
a nonlinear model of a motorcycle described as a set of 6 bodies and simulating 11
DoF. Each body is identified by its natural coordinates (a vector of six coordinates:
three Cartesian coordinates of its center of mass and three rotations) and the assembly

1Safety of motorcyclist against risky environment
2Simulator for learning to drive motorized two-wheeled vehicles
3Advanced telematics for enhancing the SAFETY and comfort ofmotorcycle RIDERS
4Detection of accident situations on motorcycle
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is done by introducing geometric constraints [15]. Finally, a modeling technique based
on the recursive Newton-Euler approach is adapted to derivea motorcycle dynamics
model intended for a two-wheeled simulator application [16, 17].

Among the vehicle models, the simulation of single-track one turns out to be par-
ticularly difficult. While a car vehicle remains stable, thestabilization of two-wheeled
vehicles is required and a rider model must be included. The literature of two-wheeled
vehicle stabilization is recent [19, 18, 20]. Generally, a two-layer controller is adopted
to track the reference road trajectory and an inner controller stabilizes the longitudi-
nal and lateral dynamics. For this, several strategies are used: the optimal maneuver
method [21, 22], robustH∞ and LPV1 control techniques [23].

In this paper, a step by step modeling approach based on the Jourdain’s principle
is presented. This method was firstly used in [24] to derive a car dynamics model and
the modeling prerequisites are inspired from this work. It offers an efficient tool for
deriving motion equations in a systematic way and with less theoretical skills compar-
ing to the Lagrangian and the Newton/Euler approaches. The great efforts concern the
computation of Jacobian matrices and the virtual power of the different external ap-
plied forces. Our aim is to derive a mathematical description of a motorcycle vehicle
with middle complexity, which captivates the essential dynamics issues. This model is
intended for control, state observation and security devices development applications.
In section 2, a brief outline to the mathematical modeling ofthe motorcycle kinematics
and dynamics is introduced. Section 3 focuses on the computation of the generalized
vector efforts. Section 4 is intended to demonstrate the basics concepts of the tire/road
contact. Finally, a virtual rider controller is introducedin order to regulate the longi-
tudinal speed towards a reference profile and to stabilize the lateral dynamics by using
the roll motion.

2 Motorcycle kinematics and dynamics

2.1 Motorcycle description

In the present work, the motorcycle is composed of six bodies(see Figure 1). A rear
bodyGr including the saddle, the engine and the fuel tank. The upperfront body
Gf includes the handlebar and the upper part of the suspension assembly. The lower
front bodyGl represents the lower part of the suspension assembly and thebrake sys-
tem. The swing arm bodyGs contains the swing arm mass and the rear brake system.
Finally,Rf andRr represent respectively, the front and the rear wheel bodies.

Most of these bodies are connected via revolute link except the upper and lower
parts of the front body which are interconnected with a prismatic link (telescopic sus-
pension). In order to completely define the configuration of the motorcycle, a set of 11
DoF has been considered. A full characterization of motorcycle’s kinematics includes
:

• the longitudinal, lateral and vertical position (x, y, z) of the rear body,

• the roll, pitch and yaw orientation (ϕ, θ, ψ) of the rear body,

1LPV: Linear Parameter Varying
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• the steering angleδ of the front body and the front wheel,

• the front suspension travelλf and the swing arm rotationµ,

• and finally, the front and rear wheels spinning,ζf andζr.

Rf Rr

Gr

Gl

Gf

Gs

Sl

Su

B

P

v

ǫ

ǫ

Figure 1: The motorcycle geometrical description

2.2 Kinematic background

Consider a right-handed, orthogonal axis reference frameℜv(v, iv, jv,kv) attached to
the vehicle at pointv in which the motion of the overall mechanical system will be
expressed. Pointv is defined as the intersection of the longitudinal plane of symmetry,
the ground plane, and the vertical transverse plane containing pointP , attach point
of the swing arm with the rear body. The motion of the motorcycle is referred to the
inertial reference frameℜo(O, io, jo,ko), by the velocity vector componentsvx, vy
of pointv, and the yaw rotationψ around the z-axisko of the inertial reference frame
ℜo (see Figure 2). Starting from the reference frameℜv, the orientations of the other
reference frames are defined as follows (see Figure 3). A rollrotationϕ aboutiv gives
ℜϕ(v, iϕ, jϕ,kϕ). Next, a pitch rotationθ followed by a castor rotationǫ aboutjϕ
givesℜǫ(P, iǫ, jǫ,kǫ). Then, a steer rotationδ aboutkǫ givesℜδ(B, iδ, jδ,kδ). In
the other side, a swing rotationµ aboutjϕ givesℜµ(P, iµ, jµ,kµ).
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Figure 2: Configuration of the vehicle system axisℜv w.r.t the inertial reference frame
ℜo

In the movable reference frameℜv, the position of a bodyi is given by:

roi = rov + rvi (1)

From equation (1), the velocity and the acceleration of a body i are derived as
following:

voi = vov + ωov × rvi + ṙvi (2)

aoi = aov + ǫov × rvi + ωov × (ωov × rvi + 2ṙvi) + r̈vi

and, the angular velocityωoi and the angular accelerationǫoi vectors of bodyi are
derived in the same way:

ωoi = ωov + ωvi (3)

ǫoi = ǫov + ωov × ωvi + ω̇vi

Since the kinematic configuration of each body is well definedin its local reference
frame, it remains to define the kinematic configuration of themovable reference frame
ℜv, it means, to find the expressions ofaov andǫov in equations (2,3) w.r.ṫvov and
ω̇ov. Suppose that the linear and angular velocity vectors ofℜv w.r.t the inertial one
ℜo are given byvo

ov = Rvov
v
ov andωo

ov = Rvoω
v
ov. It goes that the linear and angular

acceleration vectors ofℜv, expressed inℜv, can be derived as following:

aov = ωov × vov + v̇ov (4)

ǫov = ω̇ov
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Figure 3: Axis systems and angular displacements configuration

From equations (2-4), the linear and angular acceleration vectors of each bodyi are
expressed in the movable reference frameℜv by the following equations:

aoi = v̇ov + ω̇ov × rvi + r̈vi + ωov × (voi + ṙvi) (5)

ǫoi = ω̇ov + ωov × ωvi + ω̇vi

At present, all kinematic quantities are defined, then we introduce the principle of
the virtual power called also Jourdain’s principle.

2.3 Jourdain’s principle

Jourdain’s principle states that the virtual power done by motion compatible constraint
effortsF i,c/M i,c is null [24], then:

n∑

i=1

{(∆voi) · F i,c + (∆ωoi) ·M i,c} = 0 (6)

wheren is the number of bodies and∆v describes a virtual velocity. By intro-
ducing the Newton/Euler dynamics principle, the constraint effortsF i,c/M i,c can be
expressed from the system motion and the external applied effortsF i,a/M i,a as:

F i,c = miaoi − F i,a (7)

M i,c = Iiǫoi + ωoi × Iiωoi −M i,a

Moreover, from equations (2, 3, 5), the velocity and acceleration vectors can be
written as following:
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voi =
∂voi

∂ϑ
ϑ ωoi =

∂ωoi

∂ϑ
ϑ aoi =

∂voi

∂ϑ
ϑ̇+ aR ǫoi =

∂ωoi

∂ϑ
ϑ̇+ ǫR (8)

where:

ϑ =
[

vx vy ψ̇ ż ϕ̇ θ̇ δ̇ λ̇f µ̇ ζ̇f ζ̇r
]T

(9)

denotes the vector of generalized velocities and the partial derivatives are called
Jacobian matrices of the velocity vector w.r.t the generalized velocities vectorϑ. Vec-
torsaR andǫR are referred as the residual acceleration terms. Consequently, from
equations (7, 8) and after some algebraic manipulations, the motion dynamics can be
expressed as:

Mϑ̇ = Q (10)

whereM is the mass matrix obtained from the direct computation of Jacobian
matrices:

M =

n∑

i=1

{

mi

(
∂voi

∂ϑ

)T
∂voi

∂ϑ
+

(
∂ωoi

∂ϑ

)T

Ii
∂ωoi

∂ϑ

}

(11)

and the generalized efforts vectorQ can be split as following:

Q =
n∑

i=1

{(
∂voi

∂ϑ

)T

F i,a +

(
∂ωoi

∂ϑ

)T

M i,a

}

︸ ︷︷ ︸

Qa

− (12)

n∑

i=1

{

mi

(
∂voi

∂ϑ

)

aR +

(
∂ωoi

∂ϑ

)T

(IiǫR + ωoi × Iiωoi)

}

︸ ︷︷ ︸

QR

(13)

The next subsection presents a step-by-step procedure to derive the Jacobian ma-
trices. These matrices allow the calculation of the mass matrix M and the residual
generalized effort vectorQ.

2.4 Motorcycle Kinematics

2.4.1 Rear body

The rear bodyGr has 3 DoF w.r.tℜv which are the roll, pitch rotations and vertical
displacement. Then, its center of mass position vector is:

rvGr
= rvP + rPGr

(14)

7



where the coordinates of vectorsrvP and rPGr
in the reference frameℜv are

computed by:

rvP = Rϕ





0
0

z + hp



 rPGr
= Rϕ,θ





xGr

0
zGr



 (15)

By differentiating, the relative linear and angular velocity vectors are:

ṙvGr
= ṙvP + ṙPGr

= (ωϕ × rvP + żkϕ) + ωϕ,θ × rPGr
(16)

ωvGr
= ωϕ,θ = ωϕ + ωθ (17)

(18)

where the coordinates of the unit vectorkϕ inℜv are obtained bykϕ = Rϕ[0, 0, 1]
T

and the components of the angular velocity vectorsωϕ andωθ are respectively given
by ωϕ = [ϕ̇, 0, 0]T , ωθ = Rϕ[0, θ̇, 0]

T . By using equations (5, 8), the Jacobian
matrices and the residual acceleration vectors can be deduced by simple algebraic ma-
nipulations.

2.4.2 Front upper body

The front upper bodyGf is belonging to the fixed-body reference frameℜδ and has
1 DoF w.r.t the rear body which represents the steer rotation. Then, its center of mass
position vector is governed by:

rvGf
= rvP + rPB + rBGf

(19)

where the coordinates of the vectorsrPB andrBGf
are given in the reference

frameℜv as following:

rPB = Rϕ,θ,ǫ





lPB

0
0



 rBGf
= Rϕ,θ,ǫ,δ





xGf

0
zGf



 (20)

By differentiating, the relative linear and angular velocity vectors are:

ṙvGf
= ṙvP + ṙPB + ṙBGf

= ṙvP + ωϕ,θ × rPB + ωϕ,θ,δ × rBGf
(21)

ωvGf
= ωϕ,θ,δ = ωvGr

+ ωδ (22)

(23)

whereωδ = Rϕ,θ,ǫ[0, 0, δ̇]
T .

8



2.4.3 Lower front body

The front lower body has 1 DoF w.r.tGf representing the suspension travelλf . Its
center of mass position vector is:

rvGl
= rvB + rBGl

(24)

where the coordinates of the vectorrBGl
are:

rBGl
= Rϕ,θ,ǫ,δ





xGl

0
λf + zGl



 (25)

By differentiating, the relative linear and angular velocity vectors are:

ṙvGl
= ṙvB + ṙBGl

= ṙvB + ωϕ,θ,δ × rBGl
+ λ̇fkδ (26)

ωvGl
= ωvGr

+ ωδ (27)

where the coordinates of the unit vectorkδ in ℜv arekδ = Rϕ,θ,ǫ,δ[0, 0, 1]
T .

2.4.4 Swing arm body

The swing arm body has 3 DoF w.r.tℜv which represents the roll, swing rotations and
vertical displacement. Then, its center of mass position vector is:

rvGs
= rvP + rPGs

(28)

in which the coordinates ofrPGs
in the reference frameℜv are calculated using

the following expression:

rPGs
= Rϕ,µ





xGs

0
zGs



 (29)

By differentiating, the relative linear and angular velocity vectors are:

ṙvGs
= ṙvP + ṙPGs

= ṙvP + ωϕ,µ × rPGs
(30)

ωvGs
= ωϕ,µ = ωϕ + ωµ (31)

whereωµ = Rϕ,µ[0, µ̇, 0]
T .
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2.4.5 Rear-wheel bodies

The rear-wheel body has three independent DoF w.r.tℜv including roll rotation, ver-
tical displacement and the tire spin rotation around wheel spin axisjζ,r. It follows
that:

ωvRr
= ωϕ + ωζ,r (32)

where the components of the angular velocity areωζ,r = Rϕ[0, ζ̇r, 0]. On the other
hand, the position of the rear wheel center of mass is:

rvRr
= rvP + rPRr

(33)

where the coordinates of the vectorrPRr
are computed by:

rPRr
= Rϕ,µ





xRr

0
zRr



 (34)

By differentiating, the relative linear velocity vector is:

ṙvRr
= ṙvP + ṙPRr

= ṙvP + ωϕ,µ × rPRr
(35)

(36)

2.4.6 Front-wheel body

The front-wheel body has one independent DoF w.r.tGl which represents the tire spin
rotation around wheel spin axisjζ,f , consequently:

ωvRf
= ωvGl

+ ωζf (37)

(38)

whereωζf = Rϕ,θ,ǫ,δ[0, ζ̇f , 0]
T . In the same way as the rear wheel, the position

of the front wheel center of mass is:

rvRf
= rvB + rBRf

(39)

in which the coordinates of the vectorrBRf
are:

rBRf
= Rϕ,θ,ǫ,δ





xRf

0
λf + zRf



 (40)
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By differentiating, the relative linear velocity vector is:

ṙvRf
= ṙvB + ṙBRf

= ṙvB + ωϕ,θ,δ × rBRf
+ λ̇fkδ (41)

At this level, the whole motorcycle kinematics is defined. Matrix massM and the
residual generalized effortsQR are fully defined. In the next section, we look for the
development of the generalized efforts vector associated to external applied efforts.

3 Vector of Generalized Efforts

The motorcycle system is subject to various forces and torques elements. One enumer-
ates gravity forces, suspensions forces due to springs and shock-absorbers, tire forces
and torques at the tire/road contact point, rider steering torque and steer damper torque
applied on motorcycle’s handlebar, rear and front brake torques and finally the driving
torque applied on the rear wheel. In this work, the rider is considered to be a rigid body
attached to the rear assemblyGr where its lean movement is ignored.

To express the generalized efforts vectorQa associated to external applied efforts,
one can make use of equation (12). This method may be tedious,especially when the
applied efforts are numerous. So, it is most convenient to find the virtual power done
by each effort and hence its associated contribution.

3.1 Gravity force

The contribution of this force inQa is directly computed from equation (12):

Qa,g =
∑

i

(
∂voi

∂ϑ

)T




0
0

−mig



 (42)

for i ∈ (Gr, Gf , Gl, Gs, Rf , Rr).

3.2 Rider torque

The rider’s torqueτr applied on the motorcycle’s handlebar is considered to be an
important input for the vehicle riding. This torque is applied around the steering axis,
which constitutes the interconnection link between the rear bodyGr and the front upper
bodyGf . The contribution of this torque is defined by:

Qa,h =

(

∂δ̇

∂ϑ

)T




0
0

τr − Cδ δ̇



 =





06

τr − Cδ δ̇
04



 (43)

where−Cδ δ̇ is the steer damping torque.
In [25], a more detailed rider-motorcycle interaction is described by taking into

account the rider’s upper torso leaning motion and the connection of his/her arms with
the handlebars.
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3.3 Propulsion and braking torque

For the front-wheel, the braking force acts between the wheel knuckle and the front
lower body which contains the braking disk. For the rear wheel, the braking torque
is applied between the rear-wheel body and the swing arm assembly where the engine
propulsion torque is applied around the rear-wheel spin axis, hence:

Qa,pb =

(

∂ζ̇f
∂ϑ

)T




0
τB,f

0



+

(

∂ζ̇r
∂ϑ

)T




0
τD + τB,r

0



+

(
∂µ̇

∂ϑ

)T




0
−τB,r

0





(44)

=







08

−τB,r

τB,f

τD + τB,r







3.4 Front and rear suspension

The front suspension forceFs,f is applied between the front upper and the front lower
bodies. The contribution of this force inQa can be expressed by using the virtual
power principle, therefore:

Qa,sf =

(

∂λ̇f
∂ϑ

)T

Fs,f =





07

Fs,f

03



 (45)

In the same way, the contribution of the rear suspension can be computed as fol-
lowing:

Qa,sr =

(

∂λ̇r
∂ϑ

)T

Fs,r (46)

whereλr is the rear suspension travel given byλ2r = rSlSu
· rSlSu

. By differenti-
ating, the suspension travel rateλ̇r is deduced and written by the following equation:

λ̇r = eSlSu
· {ωϕ,θ × rPSu

− ωϕ,µ × rPSl
} (47)

12
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Figure 4: Suspensions configuration, (a) front, (b) rear

whereeSlSu
is the rear suspension unit vector. Consequently, the contribution of

the rear suspension in the total generalized effort is givenby:

Qa,sr =









05

eSlSu
· (jθ × rPSu

)
02

−eSlSu
· (jµ × rPSl

)
02









Fs,r (48)

where the coordinates of the unit vectorsjθ andjµ in ℜv are respectively equal to
Rϕ[0, 1, 0]

T .
Equations (42-48) show the contribution inQa of each external force/moment ap-

plied on the motorcycle vehicle. In the next section, the tire-road interaction is exposed
and its contribution is demonstrated.

4 Tires’ kinematics and dynamics

Tire-road interaction is the most important phenomena thatcharacterize ground vehi-
cles. Due to this importance, several works are undertaken leading to a mathematical
description of friction forces which arises from tire and carcass deformation [15, 26].

In the present paper, the motorcycle’s wheels are considered as rigid, thin disks
where the road/tire contact is dot shaped at pointc. At this point, a system of lon-
gitudinal, lateral and vertical forces is implemented by using an empirical tire model
type named Pacejka model [27] with respect to kinematic slipquantities and the nor-
mal load. Moreover, carcass deformations are not taken intoaccount but reproduced
by introducing the tire relaxation equations [20].

In following, we expose the tire kinematics to define slip variables required while
computing the tire/road contact forces and hence, deduce their contribution in the gen-
eralized effort vectorQa.
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4.1 Tires kinematics

To describe the tire motion, a new reference frameℜT (c, iT , jT ,kT ) is introduced at
the contact pointc of each wheel’s tire.kT is the normal vector to the road surface.
Vector iT is obtained by the cross productjζ × kT andjT completes the reference
axis.

ρ

•

jζ

γ

iT

jT

Fx

Fy

Fz

voc
α

c
•

Figure 5: Tire reference frame

As shown in Figure 5, the camber angle is an important variable in the motorcycle
safety studies [28]. This variable is expressed by the following scalar product:

sin γ = jζ · kT (49)

Besides, the position of the rear and front road/tire contact pointc w.r.t the movable
frame referenceℜv is given by:

rvcr = rvRr
+ rRrcr (50)

rvcf = rvRf
+ rRf cf (51)

in which the coordinates ofrRrcr andrRf cf in ℜv are respectively given by:

rRrcr = Rϕ





0
0

−ρr



 rRf cf = Rϕ,θ,ǫ,δ





−ρf sin ǫ
0

ρf cos ǫ



 (52)

By differentiating, the relative linear velocity vector ofeach contact point can be
deduced as:
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ṙvcr = ṙvRr
+ ωϕ × rRrcr

ṙvcf = ṙvRf
+ ωvGf

× rRf cf

By using equation (2), the contact point velocity vector is computed and the slip
variables are defined by the following equations:

αr = −atan

(
jv · vocr

iv · vocr

)

(53)

αf = −atan

(
jv · vocf

iv · vocf

)

+ δ cos ǫ

κi = −
Vc,i − rD,iζ̇i

max (Vc,i, rD,iζ̇i)

where,Vc,i = ‖voci‖ is the contact point speed,rD,i is the wheel’s dynamic radius
andi = r, f .

Finally, knowing that the contact pointci must always belong to the road surface
then, the vertical deformationsδz,i of the wheels’ tire can be derived by:

δz,i = kT · rvci (54)

These deformations help to determine the normal load necessary to maintain con-
tact with the road plane [29].

4.2 Tires force/moment system

Once the tire’s kinematics is established, the equivalent tire forces/moments wrench at
the center of each wheel is given by the following expressions:

F T = FxiT + FyjT + FzkT

MT =MxiT +MyjT +MzkT + F T × rcR

whereFx = Fx(κ) is the longitudinal force,Fy = Fy(α, γ) is the lateral force
andFz = Fz(δz) is the vertical force.Mx is the tire torque aboutiT , My is the
rolling resistance torque andMz = Mz(α, γ) is the alignment torque. These forces
and torques are obtained from equation (53) for the longitudinal slipκ, the lateral slipα
and from equation (54) for the vertical tire deformationδz. Afterwards, the contribution
of the tire/road contact forces/moments in the generalizedefforts vector is given by:

Qa,T =
∑

i=f,r

{(
∂voRi

∂ϑ

)T

F T,i +

(
∂ωoRi

∂ϑ

)T

MT,i

}

(55)
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5 Motorcycle model control

To simulate the motorcycle model, a convenient control is tobe synthesized to track a
reference longitudinal speed profile and to stabilize the lateral dynamics around trim
trajectories. This is a hard task since the roll DoF is unstable and, for some aggressive
driving maneuvers conditions, system nonlinearities cannot be neglected. In addition,
it is impossible to exploit the whole nonlinear model to develop a suitable controller,
even by using a nonlinear control method. For these reasons,a linearized version of the
dynamics model representing small motions in the neighborhood of the straight motion
is considered.

In this paper, the speed and the roll controllers are based onLyapunov method [30].
This technique avoids the gain-scheduling, necessary for the linear method control to
consider longitudinal speed variations. For each mode, longitudinal and lateral, the
controller acts on the speed error to produce a torque to be applied on the rear wheel
and on the roll angle error to generate a rider steering torque to be applied on the
motorcycle’s handlebar.

5.1 Longitudinal control

Consider the following longitudinal simplified model:

∑

mi

(

v̇x − vyψ̇
)

= Fx,f + Fx,r − Fy,f sin δ (56)

iy,f ζ̈f = τb,f − ρf (Fx,f − Fy,f sin δ)

iy,rζ̈r = τD + τb,r − ρrFx,r

With the assumption of zero longitudinal slip, it goes thatvx = ρrζ̇r = ρf ζ̇f and
by replacing in equation (56) the simplified longitudinal mode becomes:

meq v̇x =
τb,f
ρf

+
τD + τb,r

ρr
+
∑

mivyψ̇ (57)

wheremeq =
∑
mi + iy,f/ρ

2
f + iy,r/ρ

2
r is the equivalent mass. Let us introduce

the Lyapunov functionV = meqe
2/2, wheree = vx − vx,ref is the speed tracking

error, its derivative is given by:

V̇ = meqeė = e

{
τb,f
ρf

+
τD + τb,r

ρr
+
∑

mivyψ̇ −meq v̇x,ref

}

(58)

In order to the Lyapunov function derivative to be negative,the propulsion torque
τD must satisfy:

τD = ρr

{

−kxex −
τb,f
ρf

−
∑

mivyψ̇ +meq v̇x,ref

}

− τb,r (59)
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wherekx is a positive constant. With this input control, the Lyapunov function
derivative is always negative (V̇ = −kxe

2) and hence the system is also, always stable.

Remark With the control of equation (59), the error dynamics becomes ė = −kxe,
then,kx is just a proportional coefficient which is tuned until the desired tracking er-
ror level is achieved. However, a high value introduces an oscillatory behavior while
stability remains preserved.
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Figure 6: Speed profile tracking
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Figure 7: Longitudinal acceleration and requested propulsion torque

The following simulations are carried-out using the developed nonlinear model and
the controller of equation (59). Starting from 5ms−1, the desired speed profile consists
of two main phases, an acceleration phase to reach 23m/s−1 followed by a deceleration
phase to keep a constant speed (see Figure 6-a). In Figure 6-b, the tire/road contact
point speed is shown to give an overview of the longitudinal slip where Figure 6-c
presents the simulation results of the in-plane mode variables (vertical displacement,
front suspension travel, pitch and swing angles). Figure 6-d, describes the evolution
of the nominal load applied on each tire w.r.t to speed variations (and so longitudinal
acceleration). Lastly, requested propulsion torque at therear-wheel and the resulting
acceleration are sketched in Figure 7.

The second simulation aims to highlight the motorcycle behavior when subjected
to a braking torques applied separately on the front and the rear wheel. Here in, it is not
question to apply a particular braking model such as the ABS system. It will be shown
that when applying a braking torque, significant load transfers take place from the rear
wheel to the front one. If suspensions are assumed to be rigid, an approximation of the
vertical load on each wheel when braking [31] is given by:
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Fz,f =

∑
mg (xGr − xRr) + FBzGr

p
(60)

Fz,r =

∑
mg (p− xGr − xRr)− FBzGr

p

where,p is the motorcycle wheelbase andFB is the total braking force at the
tire/road contact. Based on these two equations, a limit braking forceFB,lim which
causes the rear wheel lift can be computed.

Figure 8 represents the rear and the front brake profile applied separately on each
wheel. In the first scenario, a rear braking torque with a maximum value of -600 N.m
is applied between 4-7 seconds. The motorcycle dynamics behavior is demonstrated
in Figure 9. From an initial forward speed of 20m/s, the motorcycle brakes hardly up
to 2m/s with a deceleration of 0.4g. In that case, the vertical positionz of pointP is
lowered which introduces a clockwise and hence a negative pitch rotationθ. The same
vertical movement produces an anti-clockwise and hence a positive swing rotationµ.
It is clear that the rear wheel does not lift due to the appliedvertical force (600N which
is equivalent to a payload of 60kg. See Figure 9-d).
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Figure 8: Rear and front brake torque profiles

In the second scenario, the same torque profile as before is applied but with minus
a half amplitude (-280Nm). The motorcycle dynamics behavior is shown in Figure
10. Initially the motorcycle was traveling at 20m/s and brakes up to 12 m/s with a
deceleration of 0.4g. A first conclusion concerns the amplitude of the applied torque
which is not sufficient to stop the motorcycle. In addition, such front brake can easily
create the limit braking forceFB,lim and hence causes the loss of the rear wheel contact
with the ground. Indeed, the vertical force at the rear wheelis about 100N (a payload
of only 10kg. See Figure 10-d). With the same justification, the vertical positionz of
pointP goes up which introduces an anti-clockwise and hence a positive pitch rotation
θ and a clockwise and hence a negative swing rotationµ.
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Figure 9: Simulation results according to only hard rear brake torque
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Figure 10: Simulation results according to only hard front brake torque
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As is recognized in literature, this simulation presents the braking efficiency where
an optimal braking must be split between the two wheels with more brake ratio at the
front wheel (Figure 11).
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Figure 11: Simulation results according to 70% front brake torque and 30% rear brake
torque of previous torques

5.2 Cornering maneuver control

As the longitudinal mode, a linearized version of the lateral dynamics model represent-
ing small motions in the neighborhood of the straight motionis derived which leads to
the following linear state-space representation:

ẋ = ALx+Bτr (61)

wherex = [vy, ψ̇, ϕ̇, δ̇, ϕ, δ]
T is the state vector andτr is the rider torque input.

In Figure 12, the stability of the uncontrolled motorcycle model of equation (61) is
presented. This eigenvalues plot shows the existence of stable modes (in◦ symbol)
and three instability modes, the first concerns the steeringmotion which appears from
8m/s (in⋆ symbol), the second concerns the roll motion at very low speed until 7m/s
(in ▽ symbol) and finally, a coupled steering-roll instable motion generated at very low
speed (in+ symbol). In [11], these instability modes are named capsize, weave and
wobble.
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Figure 12: Eigenvalues real part of the uncontrolled linearized motorcycle model w.r.t
the forward speed

In order to stabilize the motorcycle, a control scheme is to be synthesized to track
a reference roll angle. In its simplest form, consider the Lyapunov functionV = e2/2,
wheree = ϕ−ϕref is the roll tracking error. By differentiation, the roll error dynamics
becomes:

ė = ϕ̇− ϕ̇ref (62)

ϕ̈ = AL,(3,:)x+B3τr

whereB3 andAL,(3,:) are the third line of vectorB and matrixAL. From equation
(62), it can be seen thaṫϕ acts as a virtual input to the roll error dynamics. By using
backstepping technique [32], the required rider torque to track a reference roll angle is
given by:

B3τr = −kzz −AL,(3,:)x+ β̇ (63)

β = −kϕe+ ϕ̇ref (64)

wherez = ϕ̇− β is the error between the real roll rate and the virtual inputβ.
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Figure 13: Road curvature

The following simulation are carried-out using the nonlinear model and the con-
trollers of equations (59,63) where Figure 13 shows the roadcurvature. From this
curvature, the reference roll profile is calculated. In Figure 14-a, the performance of
backstepping controller in reference tracking is described. Obviously, the linear model-
based control of equation (63) is able to stabilize the nonlinear dynamics. However, for
an aggressive cornering maneuver where the system nonlinearities are important, the
stability of the motorcycle is not guaranteed.
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Figure 14: Simulation results for roll profile tracking
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Otherwise, from figures 14-(a,b,c), the main features of theproposed dynamic
model are illustrated mainly the counter-steer phenomena.Indeed, for a given applied
torqueτr, the vehicle leans in the same direction as torque sign whereas the vehicle
is steered in the opposite direction. Furthermore, steering angle and curvature have
approximately the same plot. Finally, the requested rider torque at the motorcycle’s
handlebar is illustrated in Figure 14-d.

6 Conclusion

Based on the virtual power principle, called also Jourdain’s principle, a middle com-
plexity motorcycle dynamics model is proposed. The multi-body model has 11 DoF
and includes the main features of motorcycle subsystems. This approach is chosen for
its simplicity of synthesis and its fine analytical derivation with an acceptable calcu-
lation load, in particular, when the equations of motion aredeveloped by using gener-
alized coordinates approach. This model exhibits many of interesting behaviors of a
real motorcycle such non-minimum phase steering response and load transfer resulting
from acceleration and braking.

Besides, a virtual rider is synthesized for longitudinal and cornering modes respec-
tively by using Lyapunov theory. This technique allows the calculation of speed and
roll controllers which are valid for a wide range of forward speeds and hence, avoids
controller scheduling.

From Figure 14.b, it is clear that using only roll stabilization cannot lead to a good
trajectory tracking. For this, additional cost functions must be included to minimize
the relative yaw angle and lateral deviation errors of the motorcycle from the road
center line. These issues will be the scope of future works. Moreover, as perspective,
experimental validation of the proposed motorcycle model and the simulation of more
limit riding maneuvers are expected.
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7 Notations

w.r.t with respect to
B revolute link point between the steering system and the rearbody
P attach point of the swing arm to the rear body
cr, cf rear and front tire/road contact points
g gravity force
hp vertical position ofP w.r.t v
iy,i wheel’s spin inertiai = f, r
mi i-th body mass fori = Gr, Gf , Gl, Gs, Rf , Rr

αi tire lateral slip
δz vertical deformation of the wheels’ tire
ǫ motorcycle castor angle
γ motorcycle camber angle
κi tire longitudinal slip
ρi wheel radius fori = f, r
τr rider torque applied on the vehicle handlebar
τB,i brake torque fori = f, r
τD propulsion torque applied on the rear wheel spin axis
Ii i-th body inertia tensor matrix
Ri rotation matrix transformation

Ri =





1 0 0
0 cos(i) − sin(i)
0 sin(i) cos(i)



, for i = ϕ

Ri =





cos(i) 0 sin(i)
0 1 0

− sin(i) 0 cos(i)



, for i = θ, ǫ, µ

Ri =





cos(i) − sin(i) 0
sin(i) cos(i) 0
0 0 1



, for i = δ

Ri,j,··· ,k = RiRj · · ·Rk

Cδ damping ratio of the handlebar around its axis
ks,i, cs,i stiffness and damping of the motorcycle suspensions
F i,c/M i,c constraint forces/moments applied on bodyi
F i,a/M i,a external forces/moments applied on bodyi
Fs,i spring and shock absorber force
FT /MT tire/road contact efforts
Qa,g contribution of the gravity force inQa

Qa,h contribution of the rider torque on the handlebar inQa

Qa,sf contribution of the front suspension force inQa

Qa,sr contribution of the rear suspension force inQa

Qa,pb contribution of the propulsion/braking torques inQa

Qa,T contribution of the tire/road interaction efforts inQa

r scalar variable
0n zero vector of dimensionn
0m,n zero matrix of dimensionm by n
r vector variable
R matrix variable
xT Transposition operator
ẋ, ẍ first and second differentiation of a variablex w.r.t time variable
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8 Numerical values

All numerical values are taken from [20]. However, the coordinate system convention
are different (SAE withz axis points downward in [20] and ISO withz axis points
upward in this paper). Consequently, the sign of some Pacejka tire parameters must be
inverted (pKy1, pKy6, pKy7, qBz10, qDz3, qDz8, qDz9, qEz2, qEz5, qHz3, qHz4).

Table 1: Motorcycle geometric specification (lengths are in[m] and angles in [rad])
xGr zGr xGf zGf xGl zGl

0.1289 0.1116 0.0452 0.1237 0.0679 -0.263
xGs zGs xRr zRr xRf zRf

-0.353 -0.0495 -0.549 -0.0638 0.0474 -0.3655
xSl zSl xSu zSu hp lPB

-0.1047 -0.1826 -0.062 0.128 0.3608 0.6831
ρf ρr ǫ

0.324 0.297 -0.4189

Table 2: Motorcycle mass specification [Kg]
mGr mGf mGl mGs mRr mRf

165.13 9.99 7.25 8 14.7 11.9

Table 3: Motorcycle inertia specification [Kg.m2]
IGr IGf IGl



11.085 0 3.691
0 22.013 0

3.691 0 14.982









1.341 0 0
0 1.584 0
0 0 0.4125



 03

IGs IRr IRf



0.02 0 0
0 0.259 0
0 0 0.259









0.383 0 0
0 0.638 0
0 0 0









0.27 0 0
0 0.484 0
0 0 0





Table 4: Motorcycle handlebar and suspensions specification
Cδ [N.m.rad−1.s] Fs,f,0 [N] Fs,r,0 ks,f [N.m−1] ks,r cs,f [N.m−1.s] cs,r

6.77 -796 6089.16 25000 58570 2134 11650
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9 Linear and angular velocity Jacobian matrices

Let be the set of coordinatesex = [1, 0, 0]T , ey = [0, 1, 0]T andez = [0, 0, 1]T . The
expressions of the linear and angular Jacobian matrices foreach body is given by:

• For the rear body:

∂voGr

∂ϑ
=
[
ex ey ez × rvGr

e′z ex × rvGr
eθ × rPGr

03,5

]

∂ωoGr

∂ϑ
=
[
03,2 ez 03 ex eθ 03,5

]

e′z = Rϕez eθ = Rϕey

• For the front upper body:

∂voGf

∂ϑ
=
[
ex ey ez × rvGf

e′z ex × rvGf
eθ × rPGf

eδ × rBGf
03,4

]

∂ωoGf

∂ϑ
=
[
03,2 ez 03 ex eθ eδ 03,4

]

eδ = Rϕ,θ,ǫez

• For the front lower body:

∂voGl

∂ϑ
=
[
ex ey ez × rvGl

e′z ex × rvGl
eθ × rPGl

eδ × rBGl
eδ 03,3

]

∂ωoGl

∂ϑ
=
[
03,2 ez 03 ex 03 eδ 03,4

]

• For the swing arm body:

∂voGs

∂ϑ
=
[
ex ey ez × rvGs

e′z ex × rvGs
03,3 eµ × rPGs

03,2

]

∂ωoGs

∂ϑ
=
[
03,2 ez 03 ex 03,3 eµ 03,2

]

eµ = eθ

• For the rear wheel:

∂voRr

∂ϑ
=
[
ex ey ez × rvRr

e′z ex × rvRr
03,3 eµ × rPRr

03,2

]

∂ωoRr

∂ϑ
=
[
03,2 ez 03 ex 03,5 eζr

]

eζr = eθ
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• For the front wheel:

∂voRf

∂ϑ
=
[
ex ey ez × rvRf

e′z ex × rvRf
eθ × rPRf

eδ × rBRf
eδ 03,3

]

∂ωoRf

∂ϑ
=
[
03,2 ez 03,1 ex 03,1 eδ 03,2 eζf 03

]

eζ,f = Rϕ,θ,ǫ,δey
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