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Abstract

This paper deals with descriptive complexity of picture languages of any dimension by syntactical fragments
of existential second-order logic. Two classical classes of picture languages are studied:

- The class of recognizable picture languages, i.e. projections of languages defined by local constraints
(or tilings): it is known as the most robust class extending the class of regular languages to any dimension;

- The class of picture languages recognized on nondeterministic cellular automata in linear time : cellu-
lar automata is the simplest and most natural model of parallel computation and linear time is their minimal
time class allowing synchronization.

We uniformly generalize to any dimension the characterization by Giammarresi et al. (“Monadic Second-
Order Logic over Rectangular Pictures and Recognizability by Tiling Systems”, Inf. and Comput. 125(1):
3245, 1996) of the class of recognizable picture languages in existential monadic second-order logic.

We state several logical characterizations of the class of picture languages recognized in linear time on
nondeterministic cellular automata. They are the first machine-independent characterizations of complexity
classes of cellular automata.

Our characterizations are essentially deduced from normalization results we prove for first-order and
existential second-order logics over pictures. They are obtained in a general and uniform framework that
allows to extend them to other “regular” structures. These results show that in some sense the logics involved
can be made “local” with respect to the underlying regular structures.

Finally, we describe some hierarchy results that show the optimality of our logical characterizations and
delineate their limits.

Keywords: Picture languages, locality and tiling, recognizability, linear time, cellular automata, logical
characterizations, monadic second-order logic, existential second-order logic.
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1. Introduction: context and discussion

Locality is a useful and widespread concept common to many areas of science: physics, chemistry, math-
ematics, etc. In computer science, it is a unifying notion, connecting combinatorics, logic, formal language
theory, computational models, and complexity theory. For example, the local and combinatorial notion of
tiling allowed Hao Wang and al. to prove in 1962 the undecidability of the decision problem of some logics
[36, 74, 75, 3]. Locality is also a reference notion in computational complexity (e.g., see [72, 73]) and in
formal language theory with the notion of regular or recognizable language that has been extended to tree
or graph languages (see [68, 6]). Typically, as recalled by Borchert [2], Mac Naughton and Papert estab-
lished in their classical monograph [52] that a word language is regular “iff it consists of the words whose
positions can be colored so that the coloring respects the letters and obeys a given finite set of neighborhood
constraints”.

There is a wealth of notions of locality in logic and finite model theory. For first-order logic, Libkin’s
book [45] (see Chapters 4 and 5) identifies Hanf locality [32] and Gaifiman locality [19] and describes
a series of locality results for this logic [12, 16, 61, 33, 62, 44] and its order-invariant extension [31] or
counting extension [43].

As a striking result, Gaifman’s Theorem states in 1982 [19] that any first-order sentence is equivalent
to a boolean combination of local sentences: roughly, a local sentence states the existence of k elements
X1,...,X, at distance 2d from each other (for some fixed d) such that for each x;, the restriction of the
structure to the set of elements at distance d of x; has some fixed property .

When applied to a class of structures of bounded degree, e.g. the class of cubic graphs, the local feature of
first-order sentences can be even strengthened. As shown in [8, 46], such a sentence is essentially equivalent
to a boolean combination of cardinality formulas with only one variable, i.e. of the form I xy(x), meaning
“there exists k elements x that satisfy y(x)”.

An even stronger notion of locality in logic is presented by Borchert in [2]. There, a picture language
is local if it is defined as the set of pictures that do not contain any pattern belonging to some fixed finite
set. Borchert proves that a picture language is local iff it is definable by a first-order sentence with only



one variable that is universally quantified, provided each picture is represented on its pixel domain with
successor functions that encode the pixel adjacencies.

Computational models and computational complexity also involve several locality notions. Whereas it is
questionable whether the Random Access Machine (RAM) or the pointer machine (e.g., see [59]) are local
models, Turing machines and cellular automata are regarded as the prototypical models of local sequential
and local parallel computation, respectively. Notice the role of the underlying structure for deciding what is
local and what is nonlocal: while a configuration of a Turing machine or of a cellular automaton is essentially
a word or a picture, that are local structures, a configuration of a RAM (resp. pointer machine) is a function
from addresses to register contents (resp. from locations to locations). Clearly, such a function f allows
to access in one step any location b from any other one a, even it they are arbitrarily far from each other,
provided that f(a) = b: this contradicts the locality principle.

This paper! deals with locality in the context of words and pictures as underlying structures. For any
dimension d > 1, a d-picture language is a set of d-dimensional words (colored d-dimensional grids). We
study descriptive complexity of nondeterministic classes of word/picture languages by syntactical fragments
of existential second-order logic. First, notice the following results:

1. In a series of papers culminating in [23], Giammarresi et al. proved that a 2-picture language is recog-
nizable (i.e. is the projection of a local picture language) iff it is definable in existential monadic logic
(EMSO). In short: REC? = EMSO. This is a picture language variant of the classical characteriza-
tion of the regular/recognizable word language by (existential) monadic second-order logic, in short
REG = REC' = EMSO =MSO [4, 10, 71, 52].

2. In fact, the class REC? contains some NP-complete problems. More generally, one observes that for
each dimension d > 1, REC? can be defined as the class of d-picture languages recognized in constant
time by nondeterministic d-dimensional cellular automata. That means, for each L € REC? there is
some constant integer ¢ such that each computation stops at instant ¢ and a picture belongs to L iff it
has at least one computation that stops with each cell in an accepting state (see e.g. [66]).

The present paper originates from two questions about word/picture languages:

o How can we generalize the proof of the above-mentioned theorem of Giammarresi et al. to any
dimension? That is, can we establish the equality RECY = EMSO for d-picture languages of any
dimension d > 1?

o Can we obtain logical characterizations of time complexity classes of cellular automata ? This origi-
nates from a question J. Mazoyer asked the first author in 2001 (personal communication): exhibit a
logical characterization of the linear time complexity class of nondeterministic cellular automata.

As Cris Moore has pointed to us (personal communication), it is significant that those picture language
classes — recognizable languages and picture languages recognized by time bounded cellular automata —
were invented independently in the physics literature (see [47] for a survey). It is also well-known that those
two kinds of picture languages are strongly related: it is a folklore result that the set of time-space diagrams
of any time-bounded (nondeterministic) cellular automaton is a recognizable picture language.

A d-picture language is a set of d-pictures p : [1,n]? — X. There are two natural manners to represent
such an object as a first-order structure, both presented in the literature:

'A preliminary and much shorter version of this paper has appeared as a conference paper [29].



e asapixel structure (see e.g. [23,22,49, 2]): on the pixel domain [l,n]d where the sets p’l (s), s€X, are
encoded by unary relations (Q;)sex and the underlying d-dimensional grid is encoded by d successor
functions (see Definition 2.2);

e as a coordinate structure (implicitly defined and used in [2], Lemma 9.2(d)): on the coordinate domain
[1,n] where the sets p‘l(s) are encoded by d-ary relations (R;)sex. Moreover, one uses the natural
linear order of the coordinate domain [1, 7] and its associate successor function (see Definition 2.3).

1.1. Our main results

We establish two kinds of logical characterizations of d-picture languages, for all dimensions d > 1:

1. On pixel structures: REC? = ESO(arity 1) = ESO(var 1) = ESO(V!, arity 1). That means a d-picture
language is recognizable iff it is definable in monadic ESO (resp. in ESO with one first-order variable,
or in monadic ESO with one universally quantified first-order variable).

2. On coordinate structures: NLIN‘&l = ESO(vard + 1) = ESO(Y4*!, arity d + 1); that means a d-picture
language is recognized by a nondeterministic d-dimensional cellular automaton in linear time (see e.g.
[67,38]) iff it is definable in ESO with d + 1 distinct first-order variables (resp. ESO with second-order
variables of arity at most d + 1 and a prenex first-order part of prefix V¢*+1).

1.2. Significance of our results

Results of above Items 1 and 2 proceed from normalizations of first-order and ESO logics that we prove
over picture languages. Roughly speaking, they mean that the languages of the involved complexity/logical
classes are “projections” of local languages, or — in logical terms — are definable by ESO sentences whose
first-order part is a local formula.

More specifically, the normalization equality ESO(arity 1) = ESO(Y!, arity 1) of Item 1 is a consequence
of the fact that, on pixel structures (and, more generally, on structures that consist of bijective functions
and unary relations), any first-order formula is equivalent to a boolean combination of cardinality formulas
of the form: “there exists k distinct elements x such that ¥(x)”, where  is a quantifier-free formula with
only one variable. The normalization of the logic — reducing it to its “one first-order variable” fragment,
explicitly expresses the local feature of MSO on pictures. The results and methods of Item 1 can be summed
as follows: one exploits the homogeneous framework of logic for making simpler, more explicit — using
only one first-order variable — and more uniform the proof and ideas of the main result of Giammarresi et
al. [23, 22]; this allows us to generalize it to any dimension and, potentially, to other regular structures.

Intuitively, our characterization NLIN‘ja = ESO(Y¥*!, arity d + 1) of Item 2 naturally reflects a symmetry
property of the time-space diagram of any computation of a nondeterministic d-dimensional cellular au-
tomaton: informally, the single first-order variable representing time cannot be distinguished from any of
the d variables that represent the d-dimensional space. In other words, the d + 1 variables can be permuted
without increasing the expressive (or computational) power of the formula. This is the sense of the inclusion
ESO(V4*! arityd+1) C NLIN‘;’a whose proof is far from trivial: roughly speaking, it needs to normalize any
sentence of ESO(V?*!, arity d + 1) by “sorting” its d + 1 first-order variables so that the sentence so “sorted”
becomes local. As expected, this “sorted” ESO(Vd”,arity d + 1) characterization of NLIN‘Cia for coordinate
representation of pictures is the exact equivalent of the ESO(V',arity 1) characterization of recognizable
picture languages in pixel representation: the set of time-space diagrams of a (nondeterministic) cellular
automaton is recognizable.



Notice that Borchert [2] has stated some results to be compared with our logical characterizations of rec-
ognizable languages and of linear time bounded complexity classes of multidimensional cellular automata.
However, paradoxically, his paper never mentions cellular automata. To avoid technicalities in this introduc-
tion, we will describe and discuss the results of [2], less general than ours, in Section 11.

1.3. Additional results

The last part of this paper consists of an attempt to answer two natural questions related to each other
and concerning the frameworks/meaning of our main results and the possible extensions of these results:

o Question 1: Why two distinct frameworks? Why our logical characterizations of the class, on one
hand, of recognizable pictures, i.e. EMSO on pixel encoding, and on the other hand, of the linear-time
complexity class of nondeterministic d-dimensional cellular automata, i.e. ESO(var d) on coordinate
encoding, do not involve the same logical framework with the same encoding?

o Question 2: Strict hierarchies: Which strict hierarchy results can we prove among the various defin-
ability classes we have studied?

Question 1: two frameworks. First, notice that for dimension one, i.e. for word languages, the pixel repre-
sentation and the coordinate one trivially coincide. So the logical characterizations

REC! = REG = ESO(arity 1) = ESO(var 1) = ESO(Vl,arity 1) and
NLINéa1 = ESO(var2) = ESO(V?, arity 2)

are established in a unique framework for words. Let us now justify our distinct frameworks for any larger
dimension d > 1.

- Coordinate representation does not fit REC?: The class of recognizable d-picture languages cannot
be naturally characterized in logic with coordinate representation because of the following strict inclusions
established in Section 9.2:

ESO(vard — 1) € REC? C ESO(var d).

Intuitively, the logic ESO(var d) — or its equivalent restriction ESO(V¥, arity d) — is not local when it is
applied to the coordinate representations of d-pictures, for d > 2. However, we will establish in Proposi-
tion 9.11 that such a locality can be obtained by “folding” the pictures: a d-picture language L is definable
in ESO(var d) for coordinate representation iff the set of folded versions of pictures of L belongs to RECY.

- Pixel representation does not fit NLINfa: We will prove in Section 9.2 the following sequence of strict
inclusions for pixel representation of d-pictures and d > 1:

ESO(var1) C NLINY ¢ ESO(var2)

ca =

This justifies that no logic of the form ESO(var k) — or, equivalently, ESO(V*, arity k)) —, for any k, can

characterize the class NLINY, for pixel representation.



Question 2: Strict hierarchies. Our final result (see Section 10) is a strict hierarchy result for d-languages
represented by coordinate structures. It shows some subtile relationships between the number of first-order
variables and the arity of the ESO relation symbols.

Theorem 10.6. For each integer d > 2 and for d-languages represented by coordinate structures, the fol-
lowing (strict) inclusions hold:

RECY ¢ ESO(vard) =  ESO(YY arityd)
N
ESO(V**!, arity d)
N
NLINY, = ESO(vard+1) = ESO(Y¥*!,arityd + 1)

Theorem 10.6 straightforwardly yields the following separation result:
ESO(var d) ¢ ESO(arity d)

for coordinate representation of d-picture languages with d > 2. This striking result contrasts with the
equality ESO(var 1) = ESO(arity 1) for the pixel representation. To our knowledge, this is also the first
result that shows that the arity is strictly more expressive than the number of first-order variables in ESO
definability. We should mention that the proof of this separation result and of Theorem 10.6 involves in an
essential manner the hypothesis that the arity of the ESO predicates equals the arity of the input predicates.
If the ESO arity is greater than the input arity then those separation problems remain open.

1.4. Structure of the paper

After Section 2 recalls succinctly some definitions — pictures, picture languages, the two encodings of
pictures and logical notions —, Section 3 proves our first main result: logical characterizations of the class
REC of recognizable picture languages.

The long proof of our second main result, the logical characterizations of NLIN;Za, is presented along
Sections 4 to 8. A very long part of the proof consists in successively normalizing the logic ESO(var d) into
more and more restrictive forms, the last one being ESO(V", arity d, sorted ).

A recapitulation and a comparison of all the previous results is given in Section 9 with a formal proof
that the same — pixel or coordinate — representation cannot be used for characterizing both classes REC and
NLINga; however, we show how "folding" the pictures allows to relate in some manner the involved logics
and both picture representations.

Finally, some hierarchy results are proved in Section 10 and Section 11 presents some additional results,
open problems and final remarks.

2. Preliminaries

In the definitions below and all along the paper, we denote by Z, I' some finite alphabets and by d a
positive integer. For any positive integer n, we set [n] := {1,...,n}. We are interested in sets of pictures of
any fixed dimension d.

Definition 2.1. A d-dimensional picture or d-picture on X is a function p : [n]? — X where n is a positive
integer. The set dom(p)= [n)? is called the domain of picture p and its elements are called points, pixels or
cells of the picture. A set of d-pictures on X is called a d-dimensional picture language, or d-language, on .

Notice that 1-pictures on X are nothing but nonempty words on Z.



2.1. Pictures as model theoretic structures

Along the paper, we will often describe d-languages as sets of models of logical formulas. To allow this
point of view, we must settle on an encoding of d-pictures as model theoretic structures.

For logical aspects of this paper, we refer to the usual definitions and notations in logic and finite model
theory (see [9] [45], or [26]). A signature (or vocabulary) o is a finite set of relation and function symbols
each of which has a fixed arity. A (finite) structure S of vocabulary o, or o-structure, consists of a finite
domain D of cardinality n > 1, and, for any symbol s € o, an interpretation of s over D, often denoted by s
for simplicity. The tuple of the interpretations of the o-symbols over D is called the interpretation of o over
D and, when no confusion results, it is also denoted . The cardinality of a structure is the cardinality of its
domain. For any signature o, we denote by sTrRuc(o) the class of (finite) o-structures. We write MODELS(D)
the set of o-structures which satisfy some fixed formula ®. We will often deal with fuples of objects. We
denote them by bold letters.

There are two natural manners to represent a picture by some logical structure: on the domain of its
pixels, or on the domain of its coordinates. This gives rise to the following definitions:

Definition 2.2. The pixel structure, or pixel encoding, of a picture p : [n]? — X is the structure

pixel (p) = (1%, (Qy)ses, (succs)iciar, (miniejay (Maxyiera)-

where
e succj is the (cyclic) successor function according to the j™" dimension of [n)¢, mapping each (ay,...,aq) €
[n]d on (a(lJ),...,aEi’)) € [n]d, where we set : agj) = a; for i+ j and, beside, ay) =aj+1lifa;j<n; aE.J) =1
otherwise;

in other words, for a € [n]%, succ j(a) is the d-tuple a'? obtained from a by “increasing” its j™ com-
ponent according to the cyclic successor on [n];

o the min;’s, max;’s and Qy’s are the following unary (monadic) relations:
min; ={a€nl®:a;= 1) max; ={a €[nl?:a; =n); Q,={ac[n]?: p(a) = s}.
Definition 2.3. The coordinate structure, or coordinate encoding, of a picture p : [n]¢ — X is the structure
coord (p) = ([n],(Qy)ses, <, succ, min, max) (1

where

o forseX, Q;isad-ary relation symbol interpreted as the set of cells of p labelled by s; in other words:
Qs ={ae[nl’: p(a) = s};

e <, min, max are predefined relation symbols of respective arities 2, 1, 1, that are interpreted, respec-
tively, as the sets {(i,j): 1 <i< j<n}, {1} and {n};

e succ is a unary function symbol interpreted as the cyclic successor (that is: succ(i) =i+ 1 fori<n
and succ(n) = 1).

For a d-language L, we set pierd(L) = {pixeld(p) :p€L}and coord’(L) = {coordd(p) :peL}.



Remark 2.4. In the sequel, we often write, for some logical property P, that “P holds on pixel encodings”,
or “P holds on d-pixel encodings”. Naturally, it means the property P holds for all structure of the form
pixel(p) (or pixel(p) in the latter case). The same formulations occur for “coordinate encodings”

Remark 2.5. Several details are irrelevant in Definitions 2.2 and 2.3, i.e. our results still hold for several
variants, in particular:

e [n Definition 2.3, the fact that the linear order < and the equality = are allowed or not and the fact
that min, max are represented by individual constants or unary relations;

o [n both definitions, the fact that the successor function(s) is/are cyclic or not and isjare completed or
not by predecessor(s) function(s).

At the opposite, it is essential that, in both definitions:
o The successor(s) isjare represented by function(s) and not by (binary) relation(s);

o The min, max are explicitly represented.

2.2. Logics under consideration

Let us now come to the logics involved in the paper. All formulas considered hereafter belong to rela-
tional Existential Second-Order logic. Given a signature o, indifferently made of relational and functional
symbols, a relational existential second-order formula of signature o has the shape ® = dR¢(co, R), where
R =(Ry,...,Ry)is atuple of relational symbols and ¢ is a first-order formula of signature o U {R}. We denote
by ESOY the class thus defined. We will often omit to mention o for considerations on these logics that do
not depend on the signature. Hence, ESO stands for the class of all formulas belonging to ESO? for some .

We will pay great attention to several variants of ESO. In particular, we will distinguish formulas of
type ® = dR¢(0, R) according to: the number of distinct first-order variables involved in ¢, the arity of the
second-order symbols R € R, and the quantifier prefix of some prenex form of ¢.

With the logic ESO7 (¢, arity £), we control these three parameters: it is made of formulas of which first-
order part is prenex with a universal quantifier prefix of length d, and where existentially quantified relation
symbols are of arity at most £. In other words, ESO7 (¢, arity ¢) collects formulas of shape dRVx8(o, R, x)
where 6 is quantifier free, x is a d-tuple of first-order variables, and R is a tuple of relation symbols of arity
at most £. Relaxing some constraints of the above definition, we set:

ESO7 (V%) = UESO(’(vd ,arity £) and ESO7 (arity £) = UESO"(\/d arity £).
>0 d>0

Finally, we write ESOY (var d) for the class of formulas that involve at most d first-order variables, thus
focusing on the sole number of distinct first-order variables (possibly quantified several times).

In the following sections, we’ll prove that some logics have the same expressive power, as far as given
sets of structures are concerned. When a normalization of a logic £ into a logic £’ is thus relativized to
a specific class S of structures, we write: £ = £’ on 8. The next definition details the meaning of this
formulation.

Definition 2.6. Given a set of structures S and a formula ®, the set of models of ® that belong to S is
denoted by MODELS g(®). Two formulas ® and @’ are S-equivalent if MODELS s(®) = MODELSs(®’). Given two
logics L and L', we say that L C L' on S if each ® € L is S-equivalent to some ®' € L'. Furthermore, we
write L =L"on S ifboth LC L' and L' C L hold on S.



In some very rare cases, we will consider the extension of ESO obtained by allowing quantification
over functional symbols. The corresponding logic, ESOF, gathers all formulas of the form AR p(o, R, f),
where R (resp. f) is a tuple of relational (resp. functional) symbols and ¢ is any first-order formula of
signature o U {R,f}. The restrictions ESOF(var d) and ESOF(Vd,arity {) of ESOF are defined as for ESO.
The expressive power of these logics is quite high. A o —NRAM is a nondeterministic Random Access
Machine that takes o-structures as inputs in the following way: for each s € o of arity ¢ and each {-tuple
t € D, a special register [s,t] contains the value of s(t). Let NTIME” (n¢) be the class of problems on o-
structures decidable by a 0 —NRAM in time O(n?) where n is the size of the domain D of structures. The
following was proved in [28]:

Theorem 2.7 ([28]). For all d > 0, NTIME(n¢) = ESOF(var d).

In the same paper, a normalization of ESOF(var d) was stated:

Proposition 2.8 ([28]). For all d > 0, ESOF(var d) = ESOF(V, arity d).

3. Recognizable picture languages and their logical characterizations

In this section, we define the class of local (resp. recognizable) picture languages and establish the
logical characterizations of the class of recognizable picture languages.

3.1. Local and recognizable picture languages

Our notion of local picture language or tilings language is based on some sets of allowed patterns (called
tiles) of the bordered pictures. It is a simple generalization to any dimension of the notion of hv-local 2-
dimensional picture language of [41] (see also [22, 20, 21, 23, 24, 2]). To define it formally, we need to mark
the border of pictures.

Definition 3.1. By I* we denote the alphabet T U {#§} where § is a special symbol not in T. Let p be any d-
picture of domain [n]¢ on T'. The bordered d-picture of p, denoted by pﬁ, is the function pﬁ ([0,n+11¢ > T#
defined by pﬁ(a) = p(a) if a € dom(p) ; pu(a) = otherwise. Here, “otherwise” means that a is on the border
ofpu, that is, some component a; of a is 0 or n+ 1.

Here is our definition of local picture language or tilings language.

Definition 3.2. 1. Given a d-picture p and an integer j € [d], two cells a = (a;)ie[a; and b = (b))ic[a) of p
are j-adjacent if they have the same coordinates, except the j™ one for which |a ji—bjl=1

2. Atile for a d-language L on T is a pair in (T2,

3. Apicture p: [n]? - Tis j-tiled by a set of tiles A C (T2 if for any two j-adjacent points a,b € dom(pﬁ):
(Ph(@). pH(b)) € A.

4. Given d sets of tiles Ay,...,Ay C T2 a d-picture p is tiled by (Ay,...,Ag) if p is j-tiled by A; for
each j e [d].

5. We denote by L(Ay,...,Ay) the set of d-pictures on T that are tiled by (Ay,...,Aq).

6. A d-language L on T is local if there exist Ay,...,Aq C (l"ﬁ)2 such that L = L(Aq,...,Ag). We then say
that L is (Ay,...,Ay)-local, or (Ay,...,Ag)-tiled.



Remark 3.3. This notion of locality is more restrictive than that given by Giammarresi and al. [23]. How-
ever, this does not affect the notion of recognizability as defined below, a robust notion that remains equiv-
alent to that defined in [23].

Definition 3.4. A d-language L on T is recognizable if it is the projection (i.e. homomorphic image) of
a local d-language over an alphabet T'. It means there exist a surjective function 7 : I’ — X and a local
d-language L, on I such that

L={n(p): p€ Lo}

where of course n(p) means mwo p. Because of the last item of Definition 3.2, one can also write: L is
recognizable if there exist a surjective function m: I — X and d sets Ay,...,Aq C (T2 such that

L={n(p): peL(Ai,....,Aq)}.
We denote by REC? the class of recognizable d-languages.

3.2. Logical characterizations of recognizable picture languages

A characterization of recognizable languages of dimension 2 by a fragment of existential monadic
second-order logic was proved by Giammarresi et al. [23]. They established:

Theorem 3.5 ([23]). For any 2-language L: L € REC? & pixelz(L) € ESO(arity 1).

In this section, we return to this result. We simplify its proof, refine the logic it involves, and generalize
its scope to any dimension.

Theorem 3.6. For any d > 0 and any d-language L, the following assertions are equivalent:
1. LeREC%;
2. pixel(L) e ESO(Y',arity 1);
3. pixel(L) e ESO(arity 1).

Theorem 3.6 is a straightforward consequence of the forthcoming Propositions 3.9 and 3.14. The for-
mer states the equivalence of Items 1 and 2 above; the latter establishes the normalization ESO(arity 1) =
ESO(V!, arity 1) on pixel structures.

In order to prove Proposition 3.9, it is convenient to first normalize the sentences of ESO(Y!, arity 1).
This is the role of the technical result below, which asserts that on pixel encodings, such a sentence can be
rewritten in a very local form where the first-order part alludes only pairs of adjacent pixels of the bordered
picture.

Lemma 3.7. On pixel structures, any sentence ¢ € ESO(Y!,arity 1) is equivalent to a sentence of the form:

mini(x) — mi(x) A
JUVx A max(x) — Mi(x) A \. 2)
ield) | —maxj(x) — Yi(x)

Here, U is a list of monadic relation variables and m;, M;, ¥; are quantifier-free formulas such that

o atoms of m; and M; have all the form Q(x),
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o atoms of ¥; have all the form Q(x) or Q(succi(x)),
where, in both cases, Q € {(Qy)sex, U}.

Prook. Let ¢ € ESO(V!, arity 1) be a sentence on pixel structures.
Suppression of equalities: Without loss of generality, assume that ¢ is in negative normal form?> JUY xy
and that each equality in ¢ is of the form

Ci Ci
succl.l'1 ...succl.;" (x)=x 3)

where the k indices iy,...,i (k > 0) are pairwise distinct, and the exponents c;,,...,c;, are positive integers.
Equation (3) holds in some pixel structure pixeld(p) of domain [1]? for some x (or, equivalently, for all x),
iff the side n of p satisfies equalities n = ¢;; = ¢;, =+ = ¢;,. So, we have to suppress any equality/inequality
of the form n = c or n # ¢, for ¢ > 1, in ¢. First, notice that the inequality n # ¢ can be rewritten as

n>cv \/ n=j.

jele-1]

So, there remains to suppress such an equality/inequality n = ¢ or n > ¢, for ¢ > 1. This can be done by
introducing ¢+ 1 new unary relation symbols denoted coordfj (x), for j € [c+ 1]. Intuitively, coord? (x)

means: “the first coordinate of point x is j”. Clearly, for any c¢ > 0, the unary relations coordlz" are defined
by induction on j € [c¢ + 1] with the formula Vx ¢°(x) where

6¢ = (min; (x) © coordTl(x)) A /\ (—max;(x) — (coord?j (x) & coord?j +1(succl(x)))).
Jelel

Using those relations, it is rather easy to see that the two formulas

Vx (max; (x) — coord;“(x)) and ¥x /\ (coordlzj (x) = coordlzj *!(suce; (x)))
Jelel

express the assertions n = ¢ and n > ¢, respectively. Hence, the first-order sentence Vxy(x) is equivalent to
the ESO(Y!, arity 1)-sentence:

deoord Yx: 5(x) Ay (x)

where coord denotes the list of unary relation variables coordlzJ introduced in the required formulas 6°(x),
the conjunction of which is denoted §(x), and ¥’(x) is the formula ¥(x) where each “sub-formula” n=
c (resp. n > c¢) is replaced by the equivalent formula max;(x) — coord;“(x) (resp. A je[] (coordlzj (x) —
coord,”’ 1 (suce; (x)))).

So, our sentence ¢ can be assumed to be in prenex conjunctive normal form AUV xy without equality,
that means ¢ is a conjunction of clauses with literals of the form Q(7(x)) or =Q(7(x)) where Q belongs to
the set of relations {(min;);e[q], (Max;)ie[q], (Qs)sex, U} and 7 is a (possibly empty) composition of function
symbols succ;, i € [d]. The idea is to introduce for each atom Q(7(x)) that occurs in ¢ a new unary relation
variable denoted Ug . so that the atom Ug -(x) is equivalent to (can replace) the atom Q(7(x)).

The Ug’s are defined inductively by the conjunction of the following equivalences, denoted by basic
and succ;-induct:

2That means the scope of each negation is an atomic formula.
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e basic: Ug a(x) & Q(x),
o succi-induct: Ug rsuce;(X) < Ug (succi(x))

from which the equivalence claimed Ug ;(x) <> Q(7(x)) can be deduced.

Let §(x) denote the conjunction of all the equivalences that define the Ug’s and let ¢’(x) denote the
formula y(x) where each atom Q(7(x)) is replaced by the atom Uy (x). Clearly, the sentence ¢ = JUYxy)(x)
is equivalent to the sentence

¢ = AUAUg,0), Yx (' (1) AS(x).

Now, put ¢, that means i’ (x) A §(x), in conjunctive normal form. In order to organize and transform the
clauses of ¢’, some terminology is required about clauses:

e aclause is x-pure (resp. i-cyclic) if it only contains atoms of the form Q(x) (resp. Q(x) or Q(succ;(x)))
where Q is a unary relation symbol which is neither any min; nor any max ;;

e an i-local clause is of the form —max;(x) — C(x) where C(x) is an i-cyclic clause;

e an i-min (resp. i-max) clause is of the form min;(x) — C(x) (resp. max;(x) — C(x)) where C(x) is an
x-pure clause.

Using those definitions, we observe that
e the clauses of the conjunctive normal form of ¢’(x) are x-pure;
o the succ;-induct clauses of §(x) are i-cyclic;

e cach basic implication of 6(x) of the form Ug j4(x) — O(x) or Q(x) — Ug j4(x) is an x-pure clause
except in case Q is min; or max; (i € [d]); clearly, in this case, the implication can be rephrased in one
of the following four forms:

1. min;(x) = C(x),
2. max;(x) —» C(x),
3. —min;(x) = C(x),

4. —-max;(x) — C(x),

where C(x) is an x-pure clause (literal). Clauses 1 and 2 are i-min and i-max clauses, respectively.
Clause 4 is i-local. Clause 3 can be replaced by the i-local clause —max;(x) — C(succ;(x)); this is
justified by the equivalence (easily proved) of the universally quantified versions of those implications:

Yx(—min;(x) — C(x)) © Yx(—-max;(x) = C(succ;(x))).

So, we have shown how to rephrase the first-order part (that is ¥’(x) A §(x)) of ¢’ as a conjunction of
x-pure clauses, i-cyclic clauses, i-local clauses, i-min clauses and i-max clauses. In fact, all those clauses
are local with the exception of i-cyclic clauses. Recall that an i-cyclic clause C(x,succ;(x)) only contains
atoms of the two forms Q(x) or Q(succ;(x))) where Q is a unary relation symbol which is neither any min;
nor any max;. Its nonlocality is due to the following fact: if for a d-picture p we have a € max; for any
pixel a € dom(p), then the pixel succ;(a) is not adjacent to a in p since we have succ;(a) € min; by cyclicity
of the function (permutation) succ;. In order to recover locality, let us first replace each i-cyclic clause
C(x,succ;i(x)) by the equivalent conjunction of the following two clauses:
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1. the i-local clause —max;(x) — C(x,succ;(x));
2. the “nonlocal” clause max;(x) — C(x,succ;(x)).

So, there remains to get rid of the “nonlocal” clause 2. The trick consists in making available in all the points
of any succ;-cycle the value of each unary relation Q for the min; point of this cycle. This can be done by
using a new unary relation symbol Un%.n’l.(x) defined inductively by the conjunction of the following min;
and i-local clauses

min;(x) — (U,%n’i(x) < 0(x))

—max;(x) = (U2 (x) & U2 (succi(x))).

min,i min,i

Clearly, for each point a of any succ;-cycle y, we have the constant value Ugm [(a) = O(b) where b is the

unique point in yNmin;. A new unary relation symbol U,%lm can be defined similarly for max;. This justifies
that each “nonlocal” clause max;(x) — C(x,succ;(x)) can be replaced by the x-pure clause C’(x) obtained by

substituting in the clause C(x,succ;(x)) each atom Q(x) (resp. Q(succ;(x))) by U’gax ;(x) (resp. U’gm ().
Let us recapitulate what we have obtained. Our initial sentence ¢ = JUVx y(x) of ESO(Y!, arity 1) is
logically equivalent to a sentence of the form JU’Vx ¥(x) where

i

o U’ is the union of the set of ESO unary symbols of ¢’, that are U and the Ug;’s, and of the U 0 o

min,i

o > : . .
and Umax’l. s we have just introduced;

e Y(x) is a conjunction of x-pure clauses, i-min clauses, i-max clauses and i-local clauses.

Now, it is easy to transform the conjunction of clauses ¥(x) into the conjunction of formulas required:

/\ [(min;(x) = W™ (20)) A (max;(x) = P (x)) A (~max;(x) = ¥i(x)].
i€[d]

More precisely, for each i € [d],

o the conjunction of the i-min clauses (resp. the i-max clauses) and the x-pure clauses of W(x) is trivially
transformed into the required form min;(x) — ‘I—’;"i”(x) (resp. max;(x) = P7"**(x));

o the conjunction of the i-local clauses and the x-pure clauses of W(x) is similarly transformed into the
required form —max;(x) — ¥;(x).

This completes the proof of Lemma 3.7. O
Remark 3.8. The normal form of the formula obtained in Lemma 3.7 guarantees its local feature. In par-
ticular, notice that any successor symbol succ; can only apply to arguments assumed to be not in max;. That

means we get the same normal form if the cyclic successor functions succ;, i € [d], are replaced by successor
functions for which succi(a) = a (instead of a) if a € max;.

Using the normal form so obtained for ESO(Y!, arity 1) formulas on pixel structures, it is rather easy to
prove the following equivalence.

Proposition 3.9. For any d > 0 and any d-language L on X: L € REC & pixelF (L) € ESO(Y!, arity 1).
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ProoF. A picture belongs to L if there exists a tiling of its domain whose projection coincides with
the content of it cells. In the logic involved in the proposition, the “arity 1" corresponds to formulating the
existence of the tiling, while the “V!” is the syntactic resource needed to express that the tiling behaves as
expected. Let us detail these considerations.

By Definition 3.2, there exist an alphabet I" (which can be assumed disjoint from ), a surjective function
7:T — X and d subsets Ay, ...,Ay € (T%)? such that

L={nop :p €L(A,...,A)) “4)

The membership of a picture p’ : [n]? — I to L(A1,...,Ay) is easily expressed on pixel?(p’) by a first-
order formula that asserts, for each dimension i € [d], that, for any pixel x of p’, the couple (x,succ;(x)) can
be tiled with some element of A;. Namely,

,,,,,

min() - \/ Q) A
(#,5)€A;
Varg@= \ | mme - \/ (@) A Qylsucei(x) A
"""" (s,8")eA;
ie[d]
max(x) - \/ Q)
(s.eA;
Now, by (4), a picture p : [n? -2 belongs to L iff it results from a 7-renaming of a picture p’ € L(Ay,...,Ay).

It means there exists a I'-labeling of p (that is, a tuple (Qjg)ser of subsets of [n]d) corresponding to a picture
of L(Ay,...,Ag) (.e. fulfilling Vxya, .. a,(x,(Qy)ser)) and from which the actual Z-labeling of p (that is, the
subsets (Qy)sex) is obtained via r. More precisely:

p € Liff pixel‘(p) £ O, where:

Or= (A0)ser Vx: Yia...a0(0) A A[Qs<x>—>[ P ovwon N\ —ovm]|.

sEX s'en—1(s) s’el\n~1(s)

Here, EB denotes the exclusive disjunction. Notice that since X NI = @, the tuples (Q;)sex and (Qj)ser are
also disjoint. As @; clearly belongs to ESO(V!, arity 1), the proof is complete.

Consider L such that pixel?(L) € ESO(V!, arity 1). Lemma 3.7 ensures that pixel?(L) is characterized
by a sentence of the form:

min;(x) — m(x) A
Fovx A4 max(n - M) A
ie[d] —|maxl~(x) - lI‘,’(X)

&)

Here, U is a list of monadic relation variables and m;, M;, ¥'; are quantifier-free formulas such that atoms of
m; and M; have all the form Q(x) and atoms of ¥; have all the form Q(x) or Q(succ;(x)), wih Q € {(Q;)sex, U}

We have to prove that L is the projection of some local d-language Ljo. on some alphabet I, that is a
(Aq,. .., Ag)-tiled language for some Ayp,..., Ay C 2. Let Uy,..., Ui denote the list of (distinct) elements
of the set {(Qs)sex, U} of unary relation symbols of ¢, so that the first ones Uy, ..., U, are the Qy’s (here,
min; and max; symbols are excluded). The trick is to put each subformula m;(x), M;(x) and ¥;(x) of ¢ into
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its complete disjunctive normal form with respect to Uy,...,Uy. Typically, each subformula ¥;(x) whose
atoms are of the form U (x) or U j(succ;(x)), for some j € [k], is transformed into the following “complete
disjunctive normal form”:

\ |\ eUin N\ €usuce ). (6)

(€.€")eA; \ je[K] Jelk]
Here, the following conventions are adopted:
e ¢=(ep,...,) €10, 1}¥ and similarly for €’;
o for any atom a and any bit €; € {0, 1}, €;a denotes the literal « if €; = 1, and the literal -« otherwise.

For € € {0,1}*, we denote by ©.(x) the “complete conjunction” A jetk €U j(x). Intuitively, ©g(x) is a
complete description of x and the set

r= U{of—‘lom-i}x{o,nk-m
ie[m]

is the set of possible colors (remember that the Q’s that are the U;’s for j € [m] form a partition of the
domain). The complete disjunctive normal form (6) of ¥;(x) can be written into the suggestive form

\/ (0 A O (succi(x))).
(e,€")eN;

If each subformula m;(x) and M;(x) of ¢ is similarly put into complete disjunctive normal form, that is
V teea; Oc(x) and V¢ pea, Oc(x), respectively (there is no ambiguity in our implicit definition of the sets A;,
since ff ¢ I'), then the above sentence (5) equivalent to ¢ becomes the following equivalent sentence:

min;(x) — v 0.(x) A
H#eeA;
¢ = JUVx /\ max;(x) — \/ BOc(x) A
ield] (e.heA;
—maxi(x) = \/ (00 A (succi(x)))
(€,€))eA;

Finally, let Lo, denote the d-language over I' defined by the first-order sentence ¢jo. obtained by replacing
each @, by the new unary relation symbol Q. in the first-order part of ¢’. In other words, pixeld(Lloc) is
defined by the following first-order sentence:

min(x) - \/ Q) A
(#e€h;
wloczvx/;] max;(x) — (E})Qi Qe(x) A
—max(x) = \/ (Qe0) A Qe (succi(x)))
(€,€')eA;

Hence, Lioc = L(A1,...,Ay). Thatis, Lo is indeed local and the corresponding sets of tiles are the A;’s of the
previous formula. It is now easy to see that our initial d-language L is the projection of the local language
Lioc by the projection 7 : I — X defined as follows: n(e) = s iff ¢, = 1 for i € [m] and U, is Qy. This completes
the proof. O
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3.3. A normalization of ESO(arity 1) on pixel structures

Let us now come to the last step of the proof of Theorem 3.6. A key point of this step is a quantifier
elimination result for first-order logic, proved independently in [8] and in [46]. Its statement needs two new
definitions.

Definition 3.10. A bijective structure is a finite structure of the form

S= (dom(S)9fl3---9fd3f1_19-~'vfd_1’ Ul,---,Um),

where each f; is a unary bijective function of inverse bijection fl.‘1 and the U;’s are unary relations.

Definition 3.11. A cardinality formula is a first-order formula of the form 3 xyi(x), where k > 1 and y(x) is
a quantifier-free formula with only one variable x. The quantifier 3*x means “there exist at least k elements
x such that”.

Let us present without proof the following normalization of first-order logic on bijective structures which
was proved in [8, 46] and extends a pioneering result by Seese [63, 64].

Proposition 3.12 ([8, 46]). On bijective structures, each first-order sentence is equivalent to a boolean com-
bination of cardinality formulas.

Clearly, a pixel structure expanded by the inverse functions of its successor functions, that is by the
predecessor functions pred; = succl.‘l, i € [d], is a bijective structure. Therefore:

Corollary 3.13. On pixel structures, each first-order sentence is equivalent to a boolean combination of
cardinality formulas.

Proor. By Proposition 3.12, each first-order sentence on pixel structures is equivalent to a boolean com-
bination of cardinality formulas on pixel structures expanded by the predecessor functions. It is easy to see
that any occurrence of a predecessor symbol pred; in a formula 3>%x y(x) can be eliminated: this can be
done by replacing each occurrence of x in ¢(x) by succ;(x) (this is justified by the bijectivity of the suc-
cessor function) and simplifying pred;(succ;(x)) = x (this is justified by the fact that all the predecessor and
successor functions commute each other). O

This allows to prove the following proposition.
Proposition 3.14. ESO(arity 1) C ESO(V!, arity 1) on d-pixel structures, for any dimension d > 0.

Proor.  Let JU¢p be an ESO(arity 1)-sentence. It is sufficient to prove that its first-order part ¢ can be
transformed into an equivalent formula in ESO(V!, arity 1). By Corollary 3.13, ¢ is equivalent to a boolean
combination of sentences of the form =% = 3**x y(x) (for k > 1) where ¥(x) is a quantifier-free formula
with the single variable x. Therefore, it is easily seen that proving the proposition amounts to show that each
sentence of the form =% or —/=* can be translated in ESO(Y',arity 1) on pixel structures. This is done as
follows.

For a given sentence 3% x y/(x), we introduce k new unary relations U=, U=!, ..., U7*! and U>*, with

the intended meaning:

A pixela € [n]¢ belongs to U=/ (resp. UZk) iff there are exactly j (resp. at least k) pixels b € [n]¢
lexicographically smaller than or equal to a such that pixeld (p) Ew(b).
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Then, we have to compel these relation symbols to fit their expected interpretations by means of a
universal first-order formula with a single variable. First, we demand the relations to form a partition of the
domain:

M A (U@ v=UTi@)a A (~UT) VU W),

i<j<k i<k

Then, we temporarily denote by <iex the lexicographic order on [1]? inherited from the natural order
on [n], and by succiex, minjex, MaXje its associated successor function and unary relations corresponding
to extremal elements. Then the sets described above can be defined inductively by the conjunction of the
following six formulas:

(2) (mingex (%) A =g (x)) = U(x)
(3) (minjex(x) Ag(x)) = U= (x)

@ N\ ((maxie () A UT(0) A ~g(suciex(x))) = Ui (succiex(x))

i<k

5) /\ ((Fmaxiex(x) A UZ(x) A g(succies (1)) = U=+ (succies (1))
i<k—1

(6) ((~maxiey (x) A U™ () Ath(suceien (x))) — U (stceies (x))

(7) ((~maxiex(x) A U(x)) = U (succiex(x))

Hence, under the hypothesis (1) A ... A (7), the sentences /=¥ and —y=* are equivalent, respectively, to
Vx : maxpex(x) = UZX(x) and Vx : maxjex(x) = =UZ(x).

To complete the proof, it remains to get rid of symbols succiex, minjex and maxjex that are not allowed in
our language. It is done by referring to these symbols implicitly rather than explicitly. For instance, since
SUCClex (X) = SUCC;SUCC;4] . . . SUCCy(x) for the smallest i € [d] such that A ;,;max ;(x), each formula ¢ involving
succyex (x) actually corresponds to the conjunction:

/\ (—max;(x) A /\ max ;(x)) = ¢; |,

i€[d] i<j<d
where ¢; is obtained from ¢ by the substitution succiex (x) ~» succ;...succy(x). Similar arguments allow to
get rid of minjex and maxjex. O
Remark 3.15. In this proof of ESO(arity 1) € ESO(Y!, arity 1) on pixel structures pixel(p), two crucial

features of such a structure are involved:

e its bijective nature, which allows to rewrite first-order formulas as (boolean combinations of) cardi-
nality formulas with a single first-order variable;
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o the regularity of its predefined arithmetics (the functions succ; defined for each dimension), that en-
dows pixel’(p) with a grid structure: it enables us to implicitly define a linear order of the whole
domain dom(p) by means of first-order formulas with a single variable, which in turn allows to ex-
press cardinality formulas by “cumulative” arguments, via the sets U~ and U=,

Proposition 3.14 straightforwardly generalizes to the various structures that fulfill these two properties.

To conclude this section, let us mention that we can rather easily derive from Theorem 3.6 the following
additional characterization of REC?:

Corollary 3.16. For any d > 0 and any d-language L,
L e REC? & pixel'(L) € ESO(var 1).

4. Linear time of cellular automata and its logical characterization

Beside the notion of recognizable picture language, the main concept studied in this paper is the clas-
sical notion of linear time complexity on nondeterministic cellular automata of any dimension (see for
instance [37, 67, 38, 7, 66, 54, 47, 55]). We first present some general and informal considerations about
cellular automata. In Subsection 4.2, we will give a precise definition of a specific model, the d-dimensional
one-way cellular automaton. Then, in Subsection 4.3, we will state our main logical characterization theorem
and will prove its first implication.

4.1. General considerations about cellular automata

Cellular automata are the simplest model of local and massively parallel computation. Basically, a
cellular automaton is a regular array of identical cells called cellular array. Each cell is a copy of the same
finite state automaton. At each step of a computation, the next state of each cell is produced by a local
transition rule according to the current states of its neighbor cells. There are various definitions of cellular
automata, depending essentially on the form of the cellular array, in particular on its dimension, on the
chosen neighborhood, and on how the input is given to the cellular array.

In general, the cellular array is a finite line of cells (dimension d = 1), or is a finite rectangular grid of
some fixed dimension d = 2,3, or more. So, at each step of a computation, the states of the cellular array
constitute a rectangular picture of dimension d over the state alphabet. It is natural to assume that the input
of a d-dimensional cellular automaton is a d-picture on an alphabet X included in the state alphabet.

Remark 4.1. By definition, the space used by a d-dimensional cellular automaton is exactly the space (set
of cells) occupied by its input d-picture.

Recall that all input d-pictures are assumed of the form p : [n]¢ — Z. The integer n is called the side of
the picture p and is the reference parameter for measuring complexity.

In the literature (e.g. [37, 67, 38, 7, 55, 47]), one essentially uses two different kinds of neighborhoods
(each with two variants):

e a rwo-way neighborhood: the neighbors of a cell a = (ay,...,ay) are the cells b= (by,...,by) such that
maxepq) la; — bil < 1, this is the so-called Moore neighborhood (resp. Z;c[q; la; — b;| < 1, this is the von
Neumann neighborhood);
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e a one-way neighborhood 3. the neighbors of a cell a = (ay,...,ay) are the cells b = (by,...,by) such
that b; > a;, for each i € [d], and maXe[q) (b; —a;) < 1(resp. Zic(q) (bi—a;) < 1).

A cellular automaton is called two-way or one-way according to its specified neighborhood. A d-dimensional
cellular automaton runs within time 7'(n) if any of its computations stops within exactly 7 (n) — 1 steps, for
any input d-picture of side n. The most studied time bounded classes of picture languages are the following:

o the class of picture languages recognized by cellular automata in linear time, that means time O(n);

o the class of picture languages recognized by cellular automata in real time, that means the minimal
time necessary for that the content of every cell of the input picture can be communicated to the
reference cell 19 = (1,...,1): e.g., it is time n+ 1 if the chosen neighborhood is one-way with the
above-mentioned condition max;e[q) (b; —a;) < 1.

As the other computational models, cellular automata can be deterministic or nondeterministic. In this
paper, we are interested in the nondeterministic case. While most relationships between the above complex-
ity classes, linear/real time on one-way/two-way cellular automata, are open questions in the deterministic
case (e.g., see [55] and the nice survey [67] that describes what is known in the deterministic case), the situa-
tion is much simpler and well-known in the nondeterministic case, as expressed by the following proposition
given here without proof.

Proposition 4.2 (folklore). For any dimension d and every d-picture language L, the following conditions
are equivalent:

1. Lis recognized in linear time by a nondeterministic d-dimensional two-way cellular automaton;
2. L is recognized in linear time by a nondeterministic d-dimensional one-way cellular automaton;

3. L is recognized in real time by a nondeterministic d-dimensional two-way cellular automaton (with
either above Moore or von Neumann neighborhoods);

4. L is recognized in real time by a nondeterministic d-dimensional one-way cellular automaton (with
either above neighborhoods).

So, the linear time complexity class of nondeterministic cellular automata is a very robust notion; in par-
ticular, as it is equal to the real time class, it is the minimal time complexity class that allows to synchronize,
i.e. to communicate to a reference cell the content of each other cell.

4.2. Linear time of nondeterministic cellular automata of any dimension

For simplicity of notation, we only present formally the notion of one-way d-dimensional cellular au-
tomaton, instead of the more usual notion of two-way d-dimensional cellular automaton. There are some
technicalities in our definition of the transition function of such an automaton. This is due to the need to
distinguish the different possible positions of the pixels of a picture w.r.t. its border: the chosen one-way
neighborhood of a cell x = (x1,...,x4), that is the set of cells y = (y1,...,y4) such that 0 < y; —x; < 1 for each
i € [d], may be incomplete according to the position of the cell x w.r.t. the border of the picture. This is
defined as follows.

31t is called one-way because each information can only be communicated along each coordinate in one direction, here the decreasing
direction. At the opposite, each information can be communicated in both decreasing and increasing directions in the two-way case.
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Definition 4.3. (See Figure 1.) A pixel X = (x1,...,xq) € [n]? is in position a = (ai,...,ay) € {0,1}¢ in a
picture p : [n]¢ = T or in the domain [n]¢ if foralli e [d] we have a; =0if x;=nand a; = 1 if x; <n.

We are going to define the transition function on a pixel x of a picture p according to some “neighbor-
hood” denoted p,x (it is a subpicture of p) whose domain, denoted by Dom,, depends on the position a of
the pixel in the picture.

Definition 4.4. For eacha = (aj,...,az) €{0,1}¢, let us define the a-domain as Dom, = [0,a;] X --- X [0,a4].
The a-neighborhood of some pixel x € [n]? in position a in a picture p : [n]® — T is the function
Pax : Domy — I defined as pax(b) = p(x+b), where X +b denotes the sum of the vectors X and b.
We denote by neighb,(I') the set of all possible a-neighborhoods on an alphabet T, that is the set of
functions v: Domy — T.
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Figure 1: pixels X, y, z and t are, respectively, in position (1, 1), (0,1), (1,0), and (0,0). Whence their associated neigh-
borhoods, which appear as colored pixels on the figure.

Such neighborhoods are used to describe the “transition function” of the cellular automata that we now
define:

Definition 4.5. A one-way nondeterministic d-dimensional cellular automaton (d-automaton, for short) over
an alphabet X is a tuple A = (Z,T,0, F), where

o the finite alphabet T called the set of states of A includes the input alphabet X and the set F of
accepting states: X, F C T

o § is the (nondeterministic) transition function of A: it is a family of a-transition functions 6 = (63)36{0,, 1
of the form 6, : neighb,(I') — P(I).

Let us now define a computation.

Definition 4.6. Let A = (X,T',6,F) be a d-automaton and p,p’ : [n]? = T be two d-pictures on I. We say
that p’ is a successor of p for A, denoted by p’ € A(p), if. for each position a € (0,1} and each point x
of position a in [n]?, p'(x) € Sa(pax). The set of j"-successors of p for A, denoted by Al(p), is defined
inductively:

Ap) = {p) and, for j= 0, A (py= | | AG).
p'eAI(p)
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Definition 4.7. A computation of a d-automaton A = (,T,6,F) on an input d-picture p : [n]Y = X is a
sequence pi, p2, p3, -..of d-pictures such that p1 = p and piy1 € A(p;) for each i. The picture p;, i > 1,
is called the i"™ configuration of the computation. A computation is accepting if it is finite — it has the form
P12D2s- .. Pk for some k — and the cell of minimal coordinates, 14 = (1,...,1), of its last configuration is in
an accepting state: py(1¢) € F.

Definition 4.8. Let A= (Z,1,6,F) be a d-automaton and let T : N — N be a function such that T(n) > n. A
d-picture p on X is accepted by A in time T'(n) if A admits an accepting computation of length T (n) on p.
That means there exists a computation p = p1,p2,...,PT@) € ATO=Y(pY of A on p such that pT(n)(ld) eF.
A d-language L on X is accepted, or recognized, by A in time T (n) if it is the set of d-pictures p accepted
by Ain time T(n), i.e. such that there exists p’ € AW~ (p) where n is the size of p and with p’(1¢) € F.
If T(n) = cn+c’, for some integers c,c’, then L is said to be recognized in linear time and we write
L eNLINY,.

The time bound 7T'(n) > n of the above definition is necessary and sufficient to allow the information of
any pixel of p to be communicated to the pixel of minimal coordinates, 1¢.

Remark 4.9. As stated in Proposition 4.2 above, the nondeterministic linear time class NLINY, is very

robust, i.e. is not modified by many changes in the definition of the automaton or in its time bound. In
particular, the constants c,c’ defining the bound T (n) = cn+ ¢’ can be arbitrarily fixed, provided T (n) > n.
For example, the class NLINfa does not change if we take the minimal time T'(n) = n+ 1, called real time.

4.3. A logical characterization of nondeterministic linear time for cellular automata

With Theorem 3.6, we have stated a logical characterization of REC, the class of recognizable picture
languages. The four forthcoming sections (including the present one) are devoted to the second central issue
of this paper: a logical characterization of NLIN,,, the linear time complexity class of nondeterministic
cellular automata. To be precise, we will soon establish:

Theorem 9.1. For any d > 0 and any d-language L,
L eNLINY, & coord(L) € ESO(vard + 1).

By abuse of language, we will write “NLIN‘Za = ESO(vard + 1) on d-coordinate structures” to mention the
above equivalence.

There are many such logical characterizations of complexity classes, see e.g. [11, 25, 42], or the sur-
veys [34, 14]. In most cases, the right-to-left implication, i.e. the inclusion of the logically defined class in
the complexity class, is easier than the converse one. This is due to the great flexibility of computational
models, that allows to easily translate, in most cases, syntactic properties of the logic into bounds over
computational resources. As a significant example, in the proof of Fagin’s statement that ESO C NP [11]:

e cxistential second-order quantifications relate to nondeterminism;
o universal first-order quantifications give rise to deterministic for loops;
e arities of relation symbols are interpreted in terms of the size of handled objects;

e in particular, arities of existentially quantified relation symbols determine the size of objects to be
guessed, that is, somehow, the “amount” of nondeterminism involved in the computation.

21



Those correspondences hold even more tightly when computation resources are tighter : see for instance
the proof of the inclusion SO(HorN) C P by Gridel [25], or that of ESOF(var 1) € NLIN by the present
authors [27, 28]. However, in either of those two cases some preliminary normalization result about the
logic, actually SO(HorN) C ESO(sorN) and ESOF (var 1) € ESOF(V!, arity 1), respectively, appears as a cru-
cial point of the proof; in either case, it is the condition to make logical formulas “handleable” for the
computation model that has to evaluate them.

At the opposite of most cases, the right-to-left implication of Theorem 9.1, i.e. the inclusion ESO(var d +
1) € NLIN?,, is far more difficult to demonstrate than the converse one: it is a very hard task to prove
that an ESO(vard + 1)-sentence can be evaluated, over a d-coordinate structure taken as input, by a linear
time cellular automaton. This is mainly due to the “local” behavior of cellular automata, which seems not
adapted to the evaluation of an ESO(vard + 1)-formula over a d-picture. Indeed, such a formula possibly
connects pixels of the picture that may be arbitrarily far away from each other; and dealing with pixels
that do not belong to a same neighborhood is seemingly out of the ability of our computational device. As
outlined above, the proof of the right-to-left implication of Theorem 9.1 compels us to normalize the logic
under consideration, in such a way that the formulas to be evaluated are rewritten under a form that can be
“handled” by a cellular automaton. This will be done in several steps. We will cope with these successive
normalizations in the forthcoming sections. For now, let us establish the “easy part” of the theorem, with
Proposition 4.10 below.

Proposition 4.10. For any d > 0 and any d-language L,
L eNLIN? = coord?(L) € ESO(vard + 1).

Proor. LetL e NLINga. By Proposition 4.2, we can assume without loss of generality that L is recognized
by a d-automaton A = (Z,T,4, F) in real time, i.e. in time n+ 1. The ESO(var d + 1)-sentence to be constructed
is of the form A(R;)ser VXVt ¥(Xx,1), where ¥(x,?) is a quantifier-free formula such that:

- ¢ uses a list of exactly d + 1 first-order variables x = (x1,...,x4) and . Intuitively, the d first ones
represent the coordinates of any point in dom(p) = [n]? and the last one represents any of the first n instants
t € [n] of the computation (the last instant n + 1 is not explicitly represented);

- i uses, for each state s € I', a relation symbol R of arity d + 1. Intuitively, Ry(ay,...,aq4,t) holds, for
any a = (ag,...,aq) € [n] and any t € [n], iff the state of cell a at instant ¢ is s.

- (X, 1) is the conjunction y¥(X, ) = INIT(X, 7) A STEP(X, ) AEND(X, 7) of three formulas whose intuitive mean-
ing is the following.

e VxVr INT(X,?) describes the first configuration of A, i.e. at initial instant 1, that is the input picture
P1=D;

e VxV1 sTEP(X,?) describes the computation between the instants ¢ and ¢+ 1, for t € [n — 1], i.e. describes
the (7 + 1)™ configuration p;, from the " one Di, 1.€. says pr1 € A(pr) ;

e VxV1 END(X,?) expresses that the n'h configuration p, leads to a (last) (n + 1t configuration p,;| €
A(p,) which is accepting, i.e. with an accepting state in cell 1¢: p,,1(19) € F.

Let us give explicitly these three formulas. The first one is straightforward:

INIT(X, 1) = min(f) — /\(Rs(x,t) o QX)) A /\ -R(x,1)

s sel\T
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The second formula is

STEP(X, 1) = A /\ ( =max(f) A Pa(x) A /\ Rypy(x+b,1)) — @RS(X,succ(t))

ae({0,1)4 veneighb,(I') beDom, $€E64(V)
Here, P denotes the exclusive disjunction. Furthermore:

e Forx e [n]d and a = (ay,...,aq) €1{0, l}d, the formula P,(x) claims that the pixel x is in position a.
Namely: P,(x) = /\ (=j)max(x;), where (—;) is = if @; = 1, and nothing otherwise.
i€[d]
e Forb = (by,...,bg) €{0,1}4, x+b abbreviates the tuple of terms (6, ...,68,) where, for each i, the term
6; is x; if b; = 0, and succ(x;) otherwise.

It is easy to verify that the formula Yx sTEP(X, ) means p;y1 € A(p;).
Finally, here is the last formula :

(min(¢) - \/ R0 (X,0)) A

—_ . NU
END(X,?) = {max(¥) A /\ min(x;)} — ) ve
i€/[>] i (—|m1n(l) - \/ /\ Rv(b)(x +b, [))
vEN] be(0,1)4

In this formula, the sets Ny and N; are defined by:
No = {v € neighby(I') : 6pa (V) N F # @}; N1 = {v € neighb;s(I') : 6,«(v) N F # @}.

Let us explain the meaning of the formula ENp(X, #) which is rather technical due to the need to distinguish
two cases according to the size n of the input picture: if n = 1 then the position of the reference pixel 1¢
is 07; otherwise, i.e. if n > 1, it is 14. Under the hypothesis max(z), the condition min() (resp. —min(?)) is
equivalent to n =1 (resp. n > 1). In either case, the disjunction \/,ey, (resp. V,ey,) expresses there exists
Pn+1 € A(py) such that p,y1(19) € F.

Therefore, we have proved that, for any d-picture p on Z, the structure coord? (p) satisfies the ESO(vard +
1)-sentence IA(R;)ser VXVt (X, 1) if and only if A has an accepting computation p = py, p2,..., pp+1 Of length
n+1on p,ie. Aaccepts p in time n + 1, or, by definition, p € L. Hence, L € ESO(vard + 1), as required. O

Let us conclude this section with three remarks.

Remark 4.11. The proof of Proposition 4.10 is almost straightforward because, by Proposition 4.2, it is
sufficient that our logic can define an accepting computation of a one-way cellular d-dimensional cellular
automaton of real time n+ 1, which is, up to 1, the side n of the input picture. In contrast, proving directly
that an accepting computation of linear time O(n) of a (more natural) two-way d-dimensional cellular
automaton can be defined in ESO(var d + 1) would be possible but much more technical. Therefore, similarly
to normalizations of logically defined classes, the robustness property expressed by Proposition 4.2 can be
regarded as a “normalization” of the linear time complexity class of nondeterministic cellular automata.

Remark 4.12. One observes that the formula constructed in the proof of Proposition 4.10 belongs to the
logic ESO(Y4*! arity d + 1) that is seemingly more restricted than ESO(var d + 1). Actually, we will prove in
the next section that these two logics coincide on coordinate d-structures.

Remark 4.13. The respective roles of time and space are seemingly dissymmetric in the sentence we have
just constructed. However, the proof and the meaning of the converse implication coord?(L) € ESO(vard +
)=Le NLIN‘Cia that will be presented in the next sections show that actually the d dimensions of space are
— or can be made — symmetrical w.r.t. time.
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5. A first normalization of ESO sentences with d variables on coordinate structures

From now on, we aim at establishing the converse of Proposition 4.10. It amounts to prove that for
each ESO(var d)-formula, there exists a d-automaton able to evaluate this formula on any (d — 1)-coordinate
structure in linear time. As mentioned before Proposition 4.10, this result necessitates a preliminary nor-
malization of the logic ESO(var d). Indeed, the main feature of a cellular automaton is its ability to perform
parallel computations on the pixels of an input picture, as far as the data to be considered when dealing with
a pixel are locally supplied, that is, can be collected in a neighborhood of the pixel. But it appears that the
properties encoded by an ESO(var d)-formula ® do not fulfill this last prerequisite. For instance, assume that
@ is the ESO(var 2)-formula Yx,y : U(x,y) < U(y, x). In order to evaluate ®@ on a picture p, A has to check,
for every couple (x,y), whether pixels of coordinates (x,y) and (y, x) have the same “color” with respect to
U. That is, A has to check a property that relates pixels far from each other. And such a test seems to exceed
the capacity of A.

It should now be clear that making this evaluation possible means preventing that the cellular automaton
has to check constraints connecting arbitrarily distant pixels. With this purpose, we must initially normalize
the logic ESO(vard + 1), so as to force its formulas “to speak locally”, that is, to assert local properties,
which bring into play only adjacent cells, or at least pixels at a constant distance, namely, pixels belonging
to the neighborhood of a given pixel x.

We now go into this normalization task. The present section is dedicated to the proof of the following
statement:

Theorem 5.1. For any d > 0, ESO(var d) = ESO(V, arity d) on coordinate structures.

This theorem will result from the forthcoming Proposition 5.2 and Proposition 5.4. The former states
that each formula of ESO(var d) can be written in such a way that its first-order part is prenex, universal,
with no more than d universal quantifiers. With the latter, we rewrite each formula of ESO(V?) in such a
way that the arity of each guessed relation symbol of the formula is at most d.

5.1. Skolemization
Proposition 5.2. For any d > 0, ESO(vard) C ESO(Y¥9) on coordinate structures of any dimension.

Proor.  The proof amounts to establishing that each ESO(var d)-formula is equivalent to an ESO(VY)-
formula on any coordinate structure. Clearly, we can assume without loss of generality that the initial
ESO(var d)-formula is first-order. So let’s consider a first-order formula ¢ written with at most d variables.
We first aim at writing ¢ under prenex form, without introducing new first-order variables. This entails
introducing second-order variables existentially quantified. More precisely, the rewriting procedure is based
on a depth-first traversal of the tree decomposition of ¢. Each internal node of this tree corresponds to some
subformula of ¢ of arity k — say 6(xy,...,xx) —, and gives rise to a new relation symbol Ry of the same arity.
This relation is forced to encode the set {x s.t. 6(x)} via a formula defy(Ry) defined as follows:

o If 0 = Qy#’'(x,y) where Q is a quantifier, then defy(Ry) = VX : Ry(X) & Oy0'(X,y)
e If § = 6'(x) 0 8”(x) for some connective o, then defy(Ry) = VX : Ry(X) < (6'(X) 0 67(x)).

If 8 has no free variables, the relation symbol Ry is choosen with arity 1 and its definition is written either
Yx: Rg(x) & Qyb(y) or Vx : Ry(x) & (6’ 06”), according to the form of 4. Here, x is any variable of ¢ distinct
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from y. Each time a node 6(x) has been visited, the corresponding Ry and defy are generated and ¢ is updated
by the substitution 8(x) ~» Ry(x). Then, the procedure is run recursively on the formula so obtained.

Let us illustrate this procedure by running it on the first-order formula with three variables:

¢ =Ax(VyAzU(x,y,z) VAyD(x,y)) = Yy(D(y,y) VAxU(x,y,x)). @)

We merely display the definition formulas generated by the procedure, along with the relation symbols
R1,...,Ry corresponding to the nine internal nodes of ¢. The successive updates of ¢ are implicit.

defl(Rl)va,)“ Rl(x,)’) Ad HZU(X,)%Z)

defr(Ry)) =Vx: Ry(x) o YyRi(x,y)

def3(R3) =Vx: R3(x) o AyD(x,y)

defs(Re)=Vx:  Ry(x) o (Ra(x)VR3(x))

defs(Rs)=Vy:  Rs(y) © dxRs(x)

defg(Rg) = Vy: Rs(y) o AxU(x,y,x)

def7(R7)=Vy:  Ri(y) o (DO,Y)VRs(Y)

defg(Rg) =Vx: R3(x) o YyR:(y)

defo(Rg)=Vx:  Ro(x) < (Rs(x)— Rs(x))

Now, our initial formula can be rewritten:

¢=3Ry,...,Ro ;{ A def,-(R[-)] AYx Ro(x). (8)

1<i<9

Notice that for each i, either def; is prenex and universal, or it has the form Yu : a(u) & QvB(u,v). Itis
easily seen that this last form is equivalent to the conjunction:

YuQv(a(u) = Bu,v)) A YuQ*v(Bu,v) — a(u)),

where Q" is V if Q is 3 and vice versa. Therefore, following Equation (8), ¢ can now be written as a
conjunction of prenex formulas, each of which involves no more than three variables and has a quantifier
prefix of the shape Vx or Yx3y. In order to write this conjunction under prenex form without adding new first-
order variables, we have to “replace” existential quantifiers by universal ones. Afterward ¢, as a conjunction
of formulas of the type Vx,y,z6, could be written under the requisite shape. We show below how to deal
with this specific formula. The general case is strictly similar.

To get rid of existential quantifiers occuring in (some of) the def;’s, we will invoke the arithmetical
symbols of the signature of ¢. Remember that the conjuncts that are not still universal all have the form
Vx3dyf(x,y), where x and y are tuples of first-order variables of respective arities k and 1. The predefined
arithmetics included in coordinate signatures allow to defining, for any such conjonct, a relation of arity k + 1
that witnesses the existence of some y fulfilling 6(x,y) for a given x. This idea is completed as follows: Let
W be a new (k + 1)-ary relation symbol associated with Jyf(x,y). We want the assertion W (X, y) to signify
that there exists z < y such that 6(x, z) holds. This interpretation is achieved thanks to the following formula:

y min(y) = (W(x,y) & 6(x,y))
MV A Wix,suce(y) © (0(x, suce(y)) V W(X,y))

We denote by W = witness(3y0) this last formula. When it is satisfied, the assertion Yxdy#(x,y) is clearly
equivalent to VxVy : max(y) —» W(x,y).
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For instance, the above formula def;(R;) gives rise to the non-universal formula def{ (Ry) =Vx,ydz:
Ri(x,y) = U(x,y,z). This shoud be managed as follows: A ternary relation symbol W is introduced (i.e.,
existentially quantified) and compelled to fit its intended interpretation via the formula: W = witness(d;),
where 01 = dz: Ri(x,y) — U(x,y,z). Afterwards, the formula def% (Ry) is replaced by Vx,y,z : max(z) —
Wi(x,y,z). When this task has been achieved for each non universal formula def;, the formula displayed
in (8) becomes:

AR))jer EI(Wj)jeJ : [/\WJ = witness(éj)] A (/\def,) A VX Re(x).

jeJ iel
Here, I ={1,...,9}, J ={1,3,5,6} (the j € J correspond to formulas def that are non-universal), £ =9, and ¢
is the existential part of the (old) formula def;. Clearly, this formula can be written in ESO(V9) ford =3. 0

5.2. Arity vs number of first-order variables

We prove here a normalization of the logic ESO(V?), similar to that of Proposition 2.8. This proof
involves the following easy fact:

Fact 5.3. Suppose we are given a family of functions (f; : X; = Y)icr and a family of relations (R; C X;)ic7,
indexed by the same finite set I. The following assertions are equivalent:

() Vi, jel VxeX;, VyeX;: fi(x)=fiy)=Ri(x)=R;(y);
(ii) ARCY such thatVie I, Vx e Y: Ri(x) = R(fi(x)).
Proor.  (ii) = (i) is clear. For the converse implication, we define R on each set fi(X;) = {fi(x), x € X;} by:

Vx € Xi, R(f;(x)) = Ri(x). Hyptothesis (i) guarantees the coherence of this definition. To complete it, we set
R(x) =0 for every x € Y \ U;cs fi{Xi). The relation R thus defined clearly witnesses to condition (ii). |

Proposition 5.4. For any d > 1, ESO(Y?) C ESO(Y, arity d) on coordinate structures.

Proor. Let ® € ESO(Y9). To fix ideas, let us assume that ® has the very simple shape:
® = 3ARVxy,...,x0¢(X,R), ©)]

where R is a single k-ary relation symbol for some k > d, and ¢ is a quantifier free formula. The formula to
be built must have the form:

Y =JoVxy,...,xq¥(X,p),
where p is a tuple of d-ary relation symbols and y is quantifier free.

The substitution of d-ary symbols for R rests in the limitation of the number of first-order variables in
®: each atomic formula involving R has the form R(7q,...,#) where the #;’s are terms built on xp,...,x4.
Therefore, although R is k-ary, in each of its occurrences it behaves as a d-ary symbol, dealing with the
sole variables x1,...,x4. Hence, the key is to create a d-ary symbol for each occurrence of R in ® or, more
precisely, for each k-tuple of terms (¢1,...,#) involved in a R-atomic formula.

More formally, let us denote by T(®) the set of terms occuring in @, and by Tr(®) the set of tuples of
terms involved in a R-atomic subformula of ®. That is, each element of Tz(®) is a k-tuple

t(X) = (t1 (X153 X2)s e s (X1, -, X)) € T(D)F
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such that the formula R(t(x)) appears in @. For each t(x) € Tg(®), consider a new d-ary relation symbol
Ry(x). Now, consider a o-stucture S of domain [n], and denote by (S,R) some expansion of S to o U ({R}.
(That is, we denote by R both the relationnal symbol and its interpretation on [n].) Furthermore, fix the
S -interpretation of each Ry, for t(x) € Tr(®), by

¥x € [n]? 1 Ry (%) = R(H(X)), 10)
and denote by R the tuple (Ryx))tx)eTx(@) thus defined. Then clearly:
(S,R) F Vxp(x,R) = (S,R) F Vxg(x,R, ), an

where § is obtained from ¢ by substituing the formula Ryx)(X) for each occurrence of the formula R(t(x)).
Before continuing with this proof, let’s illustrate the previous definitions with a simple example.

Example. Consider the ESO(Vz)-formula: ARV x,yp(x,y,R), where
© = R(x,y,x) A =R(y, x,y). (12)

According to the notations used so far, we have: d =2, k =3, T(®) = {x,y} and Tg(®) = {(x,y,x),(y, x,y)}.
The binary relation symbols associated to the tuples of terms in Tz(®) are denoted R(yy,x) and Ry xy). The
formula @ obtained from ¢, following (11), is written:

® = Rixy0(X,9) A =Ry x ) (X, ).
If, for any interpretation of R on [n], we fix the interpretations of Ry, y) and Ry x,) as in (10):
Ya,b <n:Ryx(a,b)=R(a,b,a) and Ry (a,b) = R(b,a,b),
then it is easily seen that (S,R) = Vx,yo(x,y,R,0) iff (§,R) E Vx,y@(x,y,R(xy,x), R(y,x,y) 0)- <
Let’s come back to the proof of Proposition 5.4. Equations (10) and (11) yield:
S E IRVx¢(x,R) = S F IRVx@(x,R,0), (13)

where R is a tuple of d-ary relation symbols indexed by Tr(®), say (R¢)teT,@). Unfortunately, the converse
implication does not hold in general. For instance, one can check, with the formula ¢ displayed in (12),
that the formula JR(yy IRy, x,)VXVy P has a model, while ARVxVy¢ doesn’t have. To get the right-to-
left implication in (13), we have to strengthen the hypothesis with some assertion that compels the tuple
(Rp)teTr(@) to be, in some sense, the d-ary representation of some k-ary relation. All in all, we confront the
following question: Given a o-structure S, a set T C T(®)Y* and a family (Re)er of d-ary relations over the
domain [n] of S, what are the conditions on (R¢)ier that ensure

AR C [n]* such that Yt € T,Ya € [n]? : Ry(a) = R(t(a)) (14)

Each k-tuple t € T defines a function from [n]¢ to [n]¥, via the process of interpretation of terms. (For
instance, the triple of terms t = (succ3x, X, succ2y) maps each couple (a,b) € [n]2 onto the triple (a+3,a,b+
2)e [n]3, where + is the addition modulo n.) Therefore, if in the statement of Fact 5.3 we set:

X; = [n] for each i, ¥ = [n]" and (fiier = (ther,
we get the equivalence of (14) with the following assertion:

Vt,t' €T, Va,a’ € [n]?: t(a) =t'(a’) = Re(a) = Ry (a’),
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which is translated into the logical formula:

/\vxy:t@):ﬂ@ﬁ-ukgmeeRmy», (15)
tt'eT

where x, X’ are d-tuples of first-order variables.

In order to express condition (15) in the required formalism, it remains to reduce the number of quan-
tifiers (remember our logic allows only d universal first-order quantifiers). Since the conjunction and the
universal quantification commute, we just have to tackle the case of a single conjunct

vx,x 1 t(x) = t'(x") - (Ri(x) & Ry (x)). (16)

To process, we invoke the specificity of coordinate encodings, which has not been mentioned so far
in our reasoning. Since succ is the only function symbol in the signature of coordinate structures, all the
terms under consideration have the form succi(x) for some i € N and some first-order variable u. Hence, the
equality t(x) = t/(x’) is a conjunction A, 6; of k atomic formulas of the type succ®(x) = succ’(y), with x € x,
yex’ and a,b > 0. Thus the formula displayed in (16) can be written as:

WX%A@%W@H&@» a7

i<k

Since the successor function is cyclic, the assertion succ?(x) = succ?(y) is equivalent to x = succ?~%(y) if
a<b,andtoy= succ?(x) if a > b. Using this fact, we can eliminate some variables from formula (17).
For instance, assume that ; = succ?(x) = succ”(y) with x € X, y e X’ and a < b. Then, (17) is equivalent to
¥x,x'iy, where  is the formula obtained from (17) by suppressing 8, from the conjunction A ;¢ 6; (which
therefore becomes A,<;<; 6i) and by replacing, in the resulting formula, each occurence of x by the term
succ’~“(y). Notice that the formula thus obtained has the same form as (17). Hence, we can iteratively
repeat this procedure until there is no more equality of type succ®(x) = succ?(y) in the conjunction A 6; (but
it may remain some equalities of the form succ®(x) = succ?(x), with x e xUX').

Example. In order to illustrate this procedure, assume the arity of Ry and Ry (and hence, that of x and x’) is
2, and consider the two triples of terms t = (succ’x,y,succ’y) and t’ = (succ®y, succ?y, succ’x). Suppose we
are given the following formula:

O =VYx,y,x,y : tx,y) =t'(x,y) = (R(x,y) & Ry (x',y"))

in which we want to eliminate as much first-order variables as possible. We first write @ as:

suce’x = succ?y’ A

Vx,y,x',y 1§ succly =succ®x’ A p — (R(x,y) < Ry (x',y)).

succ?x = succ’y’

Starting the substitution described above, we suppress the first equality in the conjunction and replace each
occurence of y’ by succ>~2x = succ®x. Thus we get the equivalent formula:

succ®y = succ?x’

A
Yx,y,x,y : { ey = succdx } — (Rt(x,y) < Ry (x',succ3x)),

An iteration of the process provides the formula:

Vx,y,x’,y" : succx = succdx — (Rt(x,y) & Ry (succty, succ3x)) ,
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which can be more simply writen:
Vx,y,x',y : x=succlx — (Rt(x, y) & Ry (succty, succ3x)).

Afterward, we can obviously get rid of the quantifications over variables that do not appear any more in the
matrix of the formula. This finally gives the following formula, equivalent to ® on coordinate structures:

Vx,y:x= succlx — (Rt(x, y) & Rtr(succ4y, succ3x)).
Here, the number of first-order variables agrees with the arity of Ry and Ry . <
To conclude, it remains to make the following three remarks:

(1) In the previous example, the number of first-order variables after the elimination procedure equals
the arity of R¢. This is not a coincidence: In all cases, the procedure provides us with a universal fist-order
formula whose number of variable is at most d, the arity of R and Ry. This is because the procedure
reduces to a single variable each set of variables in x Ux’ that are connected by equalities of the form
succ®x = succ’y, via the initial conjunction A, 6;. For instance, if this conjunction initially contains the
equalities succ®x = succ>x’, succ*x = succ?y’ and succ’y = succ®y’, then the four variables x, y, x’, y" will
reduce to one during the procedure. More precisely: let us consider the bipartite graph G build on the set
of variables x UX’, by linking two variables u € X, v/ € X’ when there is an equality succ’u = succ?V in the
conjunction /\; 6;. It is easily seen that the elimination procedure reduces to one variable all variables lying
on a same connected component of G. Hence, the number of variables left by the procedure is bounded by
the number of connected components of G. Since each connected component contains at least one variable
of x (for G is bipartite between x and x’), this number of connected components is itself bounded by the
cardinality of x, which is d.

(2) Using the strategy described above, each conjunct of (15) can be rewritten with only d universal
first-order variables. These rewriting results in a new first-order formula Repfl, equivalent to Condition (15)
(which ensures that the relations Ry, t € Tg(®), constitute a “d-ary representation of a k-ary relation) and has
a universal prefix Vxq,...,x; of length d. Clearly, the ESO(¥¢, arity k)-formula initially considered in (9),
® = 3RVxy,...,xg¢(X,R), is equivalent on picture encodings to the following ESO(\/d ,arity d)-formula:

AR eeTr@) : REPS(ROteT(@) A YXP(X, (ReheTr(@)),
where @ is obtained from ¢ by replacing each R(t(x)) by R¢(x).

(3) Finally, we let the reader to verify that this procedure can be extended to any number of relation
symbols existentially quantified in . O

Theorem 5.1 immediately proceeds from Propositions 5.2 and 5.4 above. We will remember that:

Over coordinate structures, each ESO(var d)-formula can be written:

min(succi(x)), max(succi(x)),

3 succ!(x) = succ/(y),
®= EIRVX/\ \/ * Qu(succ! (x;)),...,succ’ (x;,), (18)
R(succ’ (xj,),...,succ(x;,)

where Q, € o, R € R and x, y and the x;’s are all components of x.

Remark 5.5. Notice that Theorem 5.1 and, more generally, the results of this sections hold with exactly the
same proof whatever the arity of the input relation symbols (Qy)ses is. This won’t be the case in some of the
forthcoming normalization results, which will heavily depend on the arity of the input structure.
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6. ““Sorting” the logic: some motivations and a preliminary example

6.1. Motivations

When introducing Section 5 (see p. 24), we mentioned a particular source of “non-locality” in the logic
ESO(vard), due to possible occurences in a given ESO(var d)-formula ¢, of both subformulas R(x,y) and
R(y, x), for some relation symbol R. Indeed, evaluating such a ¢ brings about comparing the contents of the
two non-adjacent pixels of respective coordinates (x,y) and (y,x). For a cellular automaton, this situation
appears as a major obstacle for achieving the evaluation of ¢. Of course, this non-local feature persists
in ESO(¥4, arity d)-formulas. That’s why we now engage in a normalization of ESO(VY¢, arity d) into an
equivalent logic in which such failure to locality is prevented.

Let us detail our goal. We deal with ESO(¥4, arity d)-formulas conceived to “talk” about (d — 1)-pictures.
Such formulas involve two kinds of relation symbols: the “guessed” ones (those that are existentially quan-
tified) of arity d, and the “input” ones (which are part of the signature), of arity d — 1. In both cases, we
demand that an atomic subformula R(¢y,...,f;), where k is either d or d — 1 according to the arity of R and
where the #;’s are terms build on the first-order variables xi,...,xy, fulfill the sorting condition: for each
1 <i <k, the term ¢; is formed with the variable x;. That is, the variables x1,..., x; always occur in the same
order in atomic subformulas.

There is a less important cause of non-locality of ESO(V, arity d)-formulas, owing to terms that in-
volve iteration of the successor function. For instance, a cellular automaton that attempt to evaluate a for-
mula containing the subformulas R(x,y) and R(x, succ? (3)), has to check the pixels of coordinate (x,y) and
(x,succ?(y)), which are not adjacent. Actually, this apparent difficulty could be circumvent, since the cellular
automaton could carry on this check in constant time. But we choose to include this last characteristic in
the objectives of our normalization, because it can be achieved with minor cost, and because it will lighten
the proof of Proposition 9.2, which is — we must keep that in mind — the aim of this whole normalization
process.

The reader should be now in a position to get the motivation of the technical Definition 6.2 below, which
formalizes the requirements that an ESO(V, arity d)-formula must fulfill to pretend to “locality”. Before
coming to that definition, let us introduce a notation that describes pixel which differs from a given d-pixel
x by one unity in one dimension:

Definition 6.1. Let n,d > 0 and x = (xq,...,Xxq) € [(n]?. For anyie{l,...,d}, x? denotes the tuple obtained
from x by replacing its i" component by its own successor. That is:

XD = (21,0, Xim 1, SUCC(X), Xt 15 - - X)-

We now define a sorted version of ESO(V, arity d). It has very strict requirements on tuples of first-order
variables involved in the atoms of the formulas: they must represent pixels that differ by at most one in at
most one dimension. That is:

o their components are in the same order;
e there is at most one occurrence of succ in each atom.

These requirements (and a little more) are formalized below.

Definition 6.2. Let k,d be two integers such that d > k > 1. A sentence over coordinate structures for k-
pictures is in ESO(V¢, arity d, sorted ) if it is of the form ARYXy/(X) where
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1. Ris a list of relation symbols of arity d;
2. Y is a quantifier-free formula whose list of first-order variables is X = (x1,...,Xq);

3. each atom of ¥ is of one of the following forms:

@) Qs(x1,...,xx), for s€ X,
(ii) R(x) or R(x®) where R € R and i € [d),

(iii) min(x;) or max(x;), for i € [d].

(Remember that beside arithmetic symbols, the tuple of k-ary relations (Qy)ses constitutes the core of the
signature in the coordinate representation of a k-picture — see Definition 2.3.)

In the two following sections, we prove the normalization ESO(Vd,arity d) = ESO(\/d,aIity d,sorted )
for (d — 1)-pictures (i.e. for k = d—1). In Proposition 7.7, we’ll deal with conditions (3ii) and (3iii) of
Definition 6.2. At this point, we’ll get a normalization of ESO(V¢, arity d) into the so-called “half-sorted
logic”, denoted by ESO(Vd,arity d,half-sorted ). It will remain to manage with the input relation symbols.
This will be done in Section 8, where we tackle Condition (3i).

To facilitate the presentation of the forthcomming results, let’s first introduce some notations about tuples
and permutations.

Definition 6.3. Let n,d > 0 and x € [n]°.
(i) We denote by [X]; the i component of X. E.g. (5,7,2), =17.
(if) We say that x is increasing, and we write X1, when [x]; < --- < [X]4.

(iii) S(d) stands for the set of permutations of {1,...,d}. Given pairwise distinct ay, ..., ag in{l,...,d}, we
denote by a| ...ay the permutation a € S(d) that maps each i on a;. Conversely, for a € S(d) we set
a; := a(i). By 7 (d) we denote the set of transpositions of {1,...,d}. Finally, for k <d we write I (k,d)
for the set of injections from {1,...,k} into {1,...,d}.

(v) If @ € S(d) and X is a d-tuple, we denote by X, the d-tuple whose i"" component is the a/ﬁh component
of X. That is: if X = (x1,...,Xq), then Xo = (Xq,,...,Xa,). It is less ambiguous to define X, by the
assertion: for any i€ {l,...,d},
[X(y]i = [X](y(i)-

Thus, if B also belongs to S(d), we get [(Xo)pli = [Xalgi) = [Xlapi). Whence the identity:
(Xa),B = Xop-

In particular, (Xq),-1 = X.

(v) For @ € S(d) and n > 0, we set [] = {x € [n]¢ s.t. X, T). Clearly, [n]? = Uaeswlal. Beside, denoting
by id the identity on {1,...,d}, we get x € [id] iff xT and therefore

X € [a] iff x, € [id].
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In coherence with Definition 6.1, the arrangement of X according to the permutation « is denoted by (x),.

Example. Take x =(5,3,7,2) in [9]* and @ = 4213, B =1432 in S(4). Then x, = (2,3,5,7) is increasing
while x5 = (5,2,7,3) is not. Besides, x*® = (5,3,8,2) while (x,)® =(2,3,6,7) and (x¥), = (2,3,5,8) =
xa)@. <

The two upcoming sections are devoted to the normalization ESO(var d) = ESO(Y, arity d, sorted ) on
coordinate structures of dimension d — 1. This result is stated in Theorem 8.7. Because of the previous steps
of normalization (Propositions 5.2 and 5.4), it amounts to proving that ESO (Y9, arity d) = ESO(¥¢, arity d, sorted )
on (d — 1)-coordinate structures. Remember this essentially means that R-atoms of an ESO(Y, arity d)-
formula can be compelled to fit the form R(x1,...,x;) if R is in the signature, or R(x) (resp. R(x(i))) if R is
existentially quantified (see Definition 6.2). It will appear that the technics involved in this normalizations
of R-atoms are quite different, depending on whether R is part of the input or not. Hence, we’ll prove this
result in two steps, matching the two above mentionned cases:

In Section 7, we state a weaker form of the inclusion ESO(Vd,arity d)C ESO(Vd, arity d, sorted ). There,
we relax one of the constraints on the target logic. Namely, we replace constraint (37) of Definition 6.2 by
the more liberal requisit that each Q,-atom has the form Qy(x,,,...,x, ), where ¢ is an injection from [k] into
[d]. This gives rise to the definition of the so-called half-sorted logic:

Definition 6.4. Let k,d be two integers such that d > k > 1. A sentence over coordinate structures for k-
pictures is in ESO(Y4, arity d, half-sorted ) if it is of the form ARVXyY(X) where

1. R is a list of relation symbols of arity d;
2. Y is a quantifier-free formula whose list of first-order variables is X = (x1,...,X4);
3. each atom of ¥ is of one of the following forms:

(a) Qs(x,), where s € X and v is an injection from [k] into [d],
(b) R(x) or R(x)) where R € R and i € [d],

(c) min(x;) or max(x;), for i€ [d].
Proposition 7.7 state the equality
ESO(V?, arity d) = ESO(V¢, arity d, half-sorted )
on coordinate pictures while Proposition 8.6 completes the process of normalization by stating the equality
ESO(\/d, arity d, half-sorted ) = ESO(\/d, arity d, sorted )

on coordinate pictures of dimension d —1. We chose in both case to introduce the proofs with a simple
example illustrating some important features.

6.2. An example

Let’s now illustrate the first step of the normalization. We want to prove that each formula @ in
ESO(V¢, arity d) can be written in ESO(Y, arity d, half-sorted ) on coordinate structures. Assume d = 2 and
@ is a formula in ESO(V¥2, arity 2) that has the simple form ® = ARVxVyy(x,y), where R is a binary relation
symbol and ¢ is a quantifier-free formula in which the R-atoms have the following forms:

(1) R(x,y); (2) R(succ(x),y); (3) R(x,succ(y)); @ R(y,x).
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| Rxy) | Rsuce(o).y) | Rexsuce() | R0
Y<(x,9) || Ri(x,y) | Ri(succ(x),y) | Ri(x,succ(y)) | Ra(x,y)
Y=(x,y) || Ri(x,y) | Ra(x,succ(y)) | Ri(x,succ(y)) | Ri(x,y)
Us(x,y) || R2(v,x) | R2(y,succ(x)) | Ra(succ(y),x) | Ri(y,x)

Table 1: Replacement of R-atoms by R;- or Ry-atoms

(We don’t evoke the form of others atoms since we focus here on the treatment of the guessed relation R.)
For given x and y, the pixels (x,y), (succ(x),y) and (x,succ(y)) are adjacent, while (y, x) is arbitrarily far from
the former, since it is symmetric of (x,y) with respect to the diagonal x = y. Hence we have to eliminate
subformulas ot type (4). The intuitive idea is to “fold” the picture along this diagonal. Then R is represented
by two “half relations” Ry and R, that are superposed in the half square x <y above the diagonal.

Thus, R; and R, are binary relations whose intuitive meaning is the following: for points (x,y) such
that x <y, one has R;(x,y) = R(x,y) and R>(x,y) = R(y, x). By this transformation, both informations R(x,y)
and R(y, x), dealing with symmetric pixels (x,y) and (y, x), are accessible by checking the validity of the
assertions R1(x,y) and R(x,y) on the sole pixel (x,y), where x <y. The case y < x is similar. This solves the
problem of neighborhood.

Formaly, the sentence @ = ARV xVy(x,y) is normalized as follows. Let coherent(x,y) denote the formula
x =y — (Ri(x,y) © Rx(x,y)) whose universal closure ensures the coherence of R; and R, on the common
part of R they both represent, that is the diagonal x = y. Using R and R», it is not difficult to construct a
formula

x < y - ¢’<(x,)’) A
Y’ (x,y) = coherent(x,y)) Al x=y—ouw_(x,y) A
x>y —=ys(x,y)

such that the sentence @’ = ARy, R,V x,yy’(x,y), which belongs to ESO(Vz,arity 2), is equivalent to @. Let
us describe and justify its precise form and meaning.

The formulas ¥ (x,y), ¥=(x,y) and ¥~ (x,y) are obtained from formula (x,y) by substitution of R;- or
R>-atoms for R-atoms, according to the cases described in Table 1. It is easy to check that each replacement
is correct according to its case. For instance, it is justified to replace each atom of the form R(x,succ(y)) in
by R>(succ(y), x) when x >y (in order to obtain the formula ¢~ (x,y)), because when x >y we get succ(y) < x
and hence the equivalence R(x,succ(y)) = Ra(succ(y), x) holds, by definition of R».

Notice that the variables x,y always occur in this order in each R;- or Ry-atom of the formulas . and
Y= (see Table 1). At the opposite, they always occur in the reverse order y,x in the formula . (x,y). This
is not a problem because, by symmetry, the roles of x and y can be exchanged and the universal closure
Yx,y:x>y— i (x,y) is trivially equivalent to Yx,y : y > x = ¢~(y,x). So, the above sentence @’ — and
hence, the original sentence ® — is equivalent to the sentence denoted ®” obtained by replacing in @’ the
subformula x >y — ¢~ (x,y) by y > x = ¢~ (y, x). By construction, relation symbols R; and R, only occur in
@ within atoms of the three required “sorted” forms: R;(x,y), R;(succ(x),y) or R;(x,succ(y)).

Finally, notice that the resulting sentence involves equalities and inequalities although it shoud not be
the case, according to Definition 6.4. We will see how to fix this point in the next section, when dealing with
the general case.
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7. Sorting guessed relations

For the general case, the steps of the proof are similar to those presented above, but the notations and
details of the proof are more involved. Let us succinctly describe the ESO relations of arity d to be introduced
in the main normalization step, and corresponding to the relations R; and R; defined in Subsection 6.2.
Here again, each ESO relation symbol R of the original sentence ® in ESO(V,arity d) is replaced by —
or, intuitively, “divided into” — d! new ESO relation symbols R, of the same arity d. Here, a ranges over
permutations of the set of indices [d]. The intended meaning of each relation R, is the following: for each
tuple (ai,...,aq) € [n]? such that a; < ay... < ag, we have

Ro(ay,...,aq) = R(an1), - - - Gaa))-

Then, we introduce a partition of the domain [n]? into subdomains, similar to the partition of [n]? into
the three subsets of equation x <y, x =y, x >y, described in Subsection 6.2. According to the case (i.e.,
to the subdomain of the partition), this allows to replace each R-atom in ® by an atom of the sorted form
Ro(x) or Ry(x®), where x = (x1,...,x;) and 1 < i < d (remember x) is the tuple x where x; is replaced by
succ(x;) — see Definition 6.1). Finally, the equalities are eliminated in order to obtain a sentence that fully fit
the syntactical restrictions of ESO(Vd ,arity d, half-sorted ).

Fact 7.1. On coordinate structures, any formula ® = ARYxp(x,R) € ESO(VY, arity d) can be written in such
a way that:

(a) Each atomic subformula P(t1,...,t,) of ¢, where P is either an input or a guessed relation symbol, fulfills
Var(t;) N\ Var(t;) = @ for every 1 <i< j< p.

(b) Each guessed relation symbol R € R has arity d exactly.

Proor. The proof of (a) is quite immediate and we just illustrate it with an example. Assume that ® involves
the P-atom P(succle,xz,succ xl,succ3x2) for some relation symbol P. Then clearly @ is equivalent, on
picture-structures, to:

ARFAVx : p(x,R,A) A(x] =succxzAxg= succ3xp) = (A(xp, x3) © P(x1,X2,x3,X4))

where ¢ is obtained from ¢ by substituting the formula A(x,,succ(x1)) for each occurrence of the atom
P(succ?xy, xp, succ xy, suce> xp).

In order to prove (), assume for simplicity that R reduces to a single relational symbol R of arity p < d.
The idea is to replace R by a d-ary relation symbol R’ with d — p dummy arguments. Clearly, ® is equivalent
to the formula:

AR'Yx: @A /\ R (x1,...,%i,...,xq3) © R (x1,...,succ(x;), ..., xq).

p<i<d
Here, § is obtained from ¢ by replacing each atomic subformula R(#1,...,7,) by R'(t1,...,1p, X, ... ,xid_p),
where x;,,...,x; dp is the complete list of distinct variables among x that do not occur in ?y,...,1. O

Remark 7.2. Considering this proof, we can sharpen the statement of Fact 7.1 by adding the following
requirement: if the Qs’s have arity k < d,

(¢) Each Qg-atom of @, for s € Z, has the form Qy(x,,,...,x,,_,) where 1 € 1(k,d).
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(Remember that I (k,d) is the set of injections from {1,...,k} into {1,...,d} — see Definition 6.3(iii).)

Fact 7.3. On coordinate structures, any formula ® = ARYx¢p(x,R) € ESO(V¢, arity d) can be written in such
a way that each R-atom of @, with R € R, has one of the two forms: R(x?) or R(x,), where a € S(d).

Proor. 'We prove the result for d = 3. The general case is similar. Let £ be the maximal value of an i € N
such that succ’(x) occurs in @, for any x € x. For each R € R, we introduce new d-ary relation symbols R; ;x
for every i, j,k < £. We want to force the following interpretations of the R; j’s:

R; ji(uy,uz,u3) = R(succ'uy, succ/uy, succkuz).
This is done inductively, with the formulas:

® VX :Rp0(x1,x2,X3) < R(x1,x2,%3)

° Vx: /\ /\(Ri+1,j,k(x1,x2,x3) © R; jr(succ(xy), x2,x3))
i<€ kst

o Vx: N\ A\ Rijeraor o, x3) © R ja(n.suce(x). x3))
j<t ikst

® Vx: /\ /\(Ri,j,k+1(xlax2,x3)“’Ri,j,k(xl,XZasucc(x?»)))
k<t i,j<t

Factorizing the quantifications and using notations of Definition 6.3, the conjunction of these formulas can
be written:
Ro,0,0(x) & R(X)A

/\ /\ (Riy1,jx(X) & Ri,j,k(X(l)))/\

i<t jkst

VX /\ /\(Ri,/+1,k(x) o Rijrx?)A

<t ik<t

/\ A (Ri jir1(X) & R jx(x?))

k<t i,j<t

Let us denotes by decomp(R, (R; ;)i j«<¢) this last formula. It clearly fulfills the condition of the statement.
Now, consider the formula

ARA((R; k)i, jk<t))ReR : /\decomp(R,(Ri,j,k)i,j,ksf) A VX@, (19)
ReR

where ¢ is obtained from ¢ by the substitutions:
R(succix, succ’ v, succkz) ~ R jx(%,Y,2).

Then, the formula (19) is equivalent to @ and also fits the requirements of Fact 7.3. It is the rewriting of @
announced. O

Notice that in the so-obtained formula, one can assume that each equality has the form x = succ’y: it
suffices to replace each general equality succ'(x) = succ’/(y) by succ’™/(x) =y or x = succ’/7'(y) according
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to the sign of i — j. Thus, Fact 7.1, Remark 7.2 and Fact 7.3 finally result in: On coordinate structures of
dimension k < d, any formula ® € ESO(Vd,arity d) can be written:

x = succ'(y), (20)
0s(x,), R(xa), Rx?)

where seZ, ReR, x,yex, 1€ I'(k,d),a € S(d)andie{l,...,d}.

Toward a last refinement, we can use the trick of the proof of Fact 7.3 to further simplify atomic formulas
involving the predicate symbols =, min and max. In order to deal with =, for instance, we existentially
quantify over new binary relation symbols S1,...,S¢, where € is the maximal integer such that an equality
of the form x = succ’(y) occurs in the formula. We force these symbols to fit the interpretation: S;(x,y) iff
x = succ/(y), with the formula:

min(succi(x)), max(succi(x)),
® = JRVx /\ v t{ '

Sotey) o x=3)A N (Sixy) o Si1(xsucc;))

O<i<t

in which the sole equality has the form x = y. Hence, substituing S ;(x, ) for each subformula x = succ(y) of
@, we ensure that all equalities in @ have the form x = y for some x,y € x. At this step, one can replace the
binary symbols S'1,...,S ¢ by d-ary relation symbols, as in the proof of Fact 7.1(b), without introducing new
equalities. The same process can be carry on to simplify min- and max-atoms. Finally, Equation (20) can be
more precisely formulated:

On coordinate structures of dimension k < d, any formula @ € ESO(\/d ,arity d) can be writ-
ten:

B min(x), max(x),x =y, 21
o=3Rvx/\\/ i{ 05(x), R(x,), R(x?) }

where se X, ReR, x,yex, 1€ I(k,d),a € S(d)and i€ {l,...,d}.

(Notice that despite the appearances, terms involving the function symbol succ have not vanished: they are
hidden in the notation R(x?).)

It remains to prove that we can get rid of the atomic formulas R(x,), where a # id. This part is rather
technical, so we provide some preliminary explanations before stating the logical framework which allows
the normalization. In order to get rid of each literal of the form R(x,), we will divide the set R C [n]¢ in d!
relations R, C [n]%, each corresponding to a given permutation @ of {1,...,d}.

Definition 7.4. For R C [n]¢ and for each @ € S(d), we define a d-ary relation R, on [n] by:
Ry ={xe€lid] s.t. R(x,-1)}.

Alternatively, R, can be defined by: Ry = {X, : X € RN [al}). (Refer to Definition 6.3(v) for the meaning of
notations [a] and [id)].)

Thus, Definition 7.4 associates with each R C [n]¢ a family (Ry)ees(q) of relations, each of which is
entirely contained in the set [id]. This family is intended to represent R through its d! fragments according
to the partition [n]? = Ueesw@la]. Namely, each R, encodes the fragment RN [@] over [id].
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Actually, | yes(a)[a] is not really a partition, since the [a]’s can overlap. Hence, Definition 7.4 induces
some connexions between the relations R,: if some x is both in [«] and in [g], or equivalently, if X, = X3,
then x € RN [a] iff x € RN [B] and hence, by Definition 7.4: R,(X,) = Rg(xg). We will keep in mind :

Ya,B8 € S(d),Vx € (n: x, = Xg = Ry (X,) = Rp(Xp). 22)

The following lemma states that condition (22) ensures that the R,’s issue from a single relation R,
according to Definition 7.4. Besides, a new formulation of the condition is given in Item 3 of the lemma,
that will better fit our syntactical restrictions.

Lemma 7.5. Let (Ry)aes) be a family of d-ary relations on [n] such that R, C [id] for each a. The following
are equivalent:

1. 3R C [n]¢ such that for each a € S(d): Ry = {x € [id] s.t. R(x,-1)};
2. Ya,B€S), ¥x € (n]9: x, = Xg = Ro(Xo) = Rg(Xg) »
3. Ya e S(d), YT € T(d), Vx € [n]9: X = X; = Ry(X) = Ry (X).
(Remember that T (d) denotes the set of transpositions of {1,...,d} — see Definition 6.3(iii).)

Proor. 1= 2: See Equation (22).
2= 1: For (Ry)aes) fulfilling 2, consider the relation R C [n]¢ defined by:
R(x) iff R, (X, ) for some « such that X, T . (23)

This definition is well formed, since for any «,8 € S(d) and any x € [n]? such that both x,T and xgT hold, we
have x, = X and thus, by 2, Ry(X,) = Rg(xg). Now, let @ € S(d). For any x € [id] we have (x,-1),T (since
(x,-1)o = X) and hence, by (23), Ry(X) = Ry((X,-1)s) = R(X,-1). Besides, R,(x) = 0 for any x ¢ [id], since
R, C [id]. Thus R, is obtained from R as required in 1.

2=3: Leta € S(d), 7€ T (d) and x € [n]? such that x = x,. Set y=X,-1. Then, yo, =X =X; = (Yo)r = Yar-
Therefore we get by 2: Ry (Yo) = Rer(Yaor), and hence: R, (X) = Ry (X).

3=2: Leta,Be€S(d) and x € [n]? such that x, = xg. For y = x,, the equality X, = X3 can be written
Y = Yo-15- It means that the permutation o~ !B exchanges integers that index equal components of y. It is

easily seen that this property can be required for each transposition occuring in a decomposition of o~
on 7(d). That is, there exist some transpositions 71,...,7x € 7(d) such that ™ !f=7;...7; and y = Yo =
Yoo =+ = ¥r,..7,- Then, applying 3 to these successive tuples, we get: Ro(Y) = Ror, (¥7,) = Roryr, Yry7,) =
= Ror)..7 (¥r,..7)- Hence R (y) = Rp(y,-15), that is Ry (Xe) = Rp(Xp), as required. |

Lemma 7.6. Let R and (Ry)qcS(q) be defined as in Definition 7.4. Let a,8 € S(d) and i € {1,...,d}. For any
X € [a]:

1. R(xg) = Rg-1,(Xq).

2. R(xD) is equivalent to:

(xi = Xay /\Rar_,;d((xoz)(d))) N \/ (xi = Xoyg F Xagyg /\Rm,-,k((xa)(k))),
i<k<d

where j=a~'(i). (Here, 1, denotes the transposition swapping u and v.)
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Proor. 1. Since x € [a], and hence Xx,, € [id], Definition 7.4 yields:
Ry 14(%0) = R((Xa)g-10)1) = R(Xa)g-15) = RXyq15) = R(xp).

2. From x® = (x1,...,succ(x;),..., xq) we get: (3("))0{ = (Xqy s+ -2 Xaj > SUCC(X), Xajyps---»Xay)» Where j =
a~1(). Since Xq, < -+ £ Xqu, the above tuple (x®), is almost increasingly ordered. More precisely, there
exists k € {1,...,d} such that:

Xay So0r S Xaj SX = Xajyy =00 = Xy S Xagyy 000 S Xaygs

where j =~ (i). Clearly, the largest such k is characterized by: (k = d) or (x; = Xay < Xa;,,)- Orequivalently,
by:

(-xi = 'xa’d) or (.X[ = .x(yk * xak+1)' (24)

If we denote by 7 the transposition over {1,...,d} which permutes ;j and k, the definition of k yields that
the tuple

(x(l))oﬂ'j'k = (xlll yeee axa/j_] 7, xa/_/+1 PR 9-xa/k_1 7’ xa/k+1 (A "xad)

is increasing. Hence, R(x) = RQTj,k((x(i))ﬂ’Tj,k)‘ Besides, since x,, = x;, the tuple (X(i))d‘f/',k above can also be
written: '

(x(l))on'j,k = (xafl PR axa/j,l ’»xa/jH PR 7~x(1/k_| ”xak+1 2t ’xad)‘

That is: (x("))mj’k = (x)®. Therefore: R(x®) = Rarjy ((x)®). We can finally state: there exists a sole
ke {i,...,d} defined by (24), and for this k we have: R(x?) = ijvk((xa)(k)). Reminding that j = a~1(i), the
conclusion immediatly proceeds. O

Proposition 7.7. Ford > 1, ESO(Vd ,arity d) C ESO(Vd ,arity d, half-sorted ) on coordinate structures of di-
mension d — 1.

Proor.  To simplify, assume we want to translate in ESO(Vd,arity d,half-sorted ) some ESO(Vd,arity d)-
formula of the very simple shape: ® = ARVxp(X,R), where R is a (single) d-ary relation symbol, x is a
d-tuple of first-order variables, and ¢ is a quantifier-free formula. Since the sets [a], @ € S(d), cover the
domain [n], we obtain an equivalent rewriting of ® with the following artificial relativization:

® = JRVx A (xela]l = ).
aeS(d)

Furthermore, all R-atoms of ¢ can be assumed of the form R(x,) or R(x), thanks to Fact 7.3. To get
rid of the literals R(x,), we substitute to R a tuple of relations (R,).es(q) that encode R on the sets [a]. We
proved in Lemma 7.5 that this substitution is legal as soon as R, C [id] and R, (x) = Ry (x) for all @ € S(d),
7€ 7 (d) and every X € [n]? such that x; = x. Then, Lemma 7.6 gives the translation of R-atomic formulas
into formulas expressed in term of the R,’s. All in all, we get the equivalence of the initial formula @ to the
following:

Vx /\ (Ry(X) — x € [id])A

aeS(d)
AR )aes@) X /\ /\ (Xr =X = (Ro(X) © Ror(X))A 25)
¢ aeS(d)TeT (d)
vx A\ (x€ ] = galx (Ry)yesi)
aeS(d)
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where each ¢, is obtained from ¢ by the substitutions:

o R(Xg) > Ry-14(xa)

(xi = Xy /\Raraq(i)’d((xa)(d))) 4

\/ (Xi = Xoy # Xagyy /\R‘”n-l(i),k ((xa)(k)))
i<k<d

° R(x(i)) >

The first two conjuncts of (25) ensure that the family (Ry)qes(4) €ncodes a relation R (see Lemma 7.5); the
third interprets assertions of the form R(xg) and R(x) according to the modalities described in Lemma 7.6.
Because of permutability of the conjunction and the universal quantifier, this third conjunct can be rewritten:

/\ VX : X € [a] = @a(X, (Ry)yes(@) 20
a@€S(d)

For a fixed conjunct in (26), i.e. for a fixed «, all atomic subformulas of ¢, built on the R,’s have the
form R, (Xy) or R ((x,)®) for some y € S(d) and some i € {1,...,d}. Hence, the substitution of variables x/x,
allows to write such a conjunct as: ¥x : x € [id] — @, where @, = ¢,(X/X,) only involves (R,)-subformulas
of the form R,(x) or R,,(x(k)) for some y € S(d) and k € {1,...,d}. Finally, the initial formula ® is proved
equivalent to the following formula ¥, whose all R-atoms agrees with the sorted property (Condition (30) of
Definition 6.2):

Vx A (Ry(x) > x € [id]) A

aeS(d)
Y= EI(R(Z)(IES(d) VXQE/S\(d)Teé\(d) (XT =X — (Ry(x) & RQT(X))) A @7
vx \ (xelid] - Golx. Ry yes@)
aeS(d)

The proof is not yet completed: one could refer to Definition 6.4 (3) to verify that neither the relation =
nor the relation < can be involved in an ESO(Vd, arity d, half-sorted )-formula. However, these two predicates
still appear in formula (27) (the inequalities are hidden in the expression “x € [id]” that abbreviates the
formula x; < --- < xy), and it remains to get rid of them. To this end, we introduce two new binary relation
symbols E and P. that will be forced to coincide with = and < by use of inductive constraints written with
the successor function. But the assignment of maintaining the sorted property precludes us from writing
formulas that we would be naturally minded to invoke when formalizing these constraints. For instance,
the formulas E(x;,x;) and E(x;,xp) <> E(succ(xy),succ(xy) contain non sorted atoms and hence don’t fit
our syntactical restrictions. Therefore, we introduce two additionnal binary relation symbols, S and P-,
intended to simulate, respectively, the successor function and the strict linear order opposite to <. It appears
that we can stipulate the interpretations of £ and § by a simultaneous inductive scheme expressed in sorted
fashion thanks to the formula below:

min(x;) — (min(xz) < E(x1,x2)) A
min(xz) — (min(x;) & E(x1,x2)) A
—max(xy) = (E(x1,x2) & S(x1,succ(x2)) A
S (x1,x2) & E(succ(xy),x2)

O1(E,S) =Vx1,x
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In a similar way, P and P- are compelled to fit their intended meaning via the following formula, in
which we assume the interpretation of E has been previously fixed (by @y):

(E(x1,x2)V P<(x1,x2)) — (=max(xz) — P<(x1,succ(x2))) A

_ (E(x1,x2)V P>(x1,x2)) — (—max(xy) = Ps(succ(xy),x2)) A

O2E. Pe, P>) = Y1, 02 P.(x1,x2) — (2Ps(x1,x) A-E(x1,X2)) A
P.(x1,x) — —E(x1,x2)

Clearly, the formula ¥ displayed in (27) can be rewritten in 3E,S, P, P : ¥ AO; ABy, where ¥ is
obtained from ¥ by the substitutions:

Xi = Xj v E(x;,xj), Xi < Xjw P<(x,~,xj) and Xj < Xjw P>()C1,Xj)

for any i < j. The resulting formula respects the sorting property. At last, notice that one can subtitute
d-ary relation symbols for E, S, P. and P~ without spoiling the sorted property, as we did it in the proof of
Fact 7.1(b). O

All in all, the results obtained in Section 7 can be recapitulated as follows:

On (d - 1)-coordinate pictures, each ESO(V4, arity d)-formula can be written under the form:
® = IRVx A \/ +{ min(x), max(x), Qs(x), R(x), Rx?) |. (28)
Here, R is d-ary and belongs to R, s € ¥ and Q; has arity d—1, xex, 1€ I(d—1,d), i € [d].

8. Sorting input relations

We now embark on the last step of our “localization” of ESO(var d)-formulas. Thanks to the results
proved so far, it suffices to prove the inclusion, to be stated in Proposition 8.6: on coordinate structures of
dimension d — 1,

ESO(Y?, arity d, half-sorted ) C ESO(V?, arity d, sorted ).

With definitions 6.4 and 6.2 in mind, our purpose can be very simply defined: given a formula ® of
the form described in Equation (28), we want to replace by a sorted atom each atom of the form Q(x,),
where Q € (Qy)ses and ¢t € 7(d —1,d), ¢ # id. In the vein of Section 7, we aim at defining a tuple of relations
(Q)er(d-1,4)» in such a way that Q,(x) = Q(x,) for each x. Clearly, such relations will allow to write ® under
the desired form, by substituing each subformula Q(x,) with Q,(x). Of course, the definition of the Q,’s
must be logically formulated in our syntactical restrictions, that is, without involving any x, such that & # id.
Furthermore, the way we carried out this strategy in Section 7 is no more avalaible. Indeed, there we sorted
atoms R(x,) build on some existentially quantified d-ary relations R by suppressing R in favour of some new
existentially quantified relations R,, @ € S(d). (See proof of Proposition 7.7.) Of course, we can’t operate
like this with the relation Q, which is part of the input.

To give a hint of the method used in the present section, let’s start with an example.
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8.1. An easy case

Consider the case where d = 2. We deal with two first-order variables x and y and we only accept atoms
of the form Q(x), R(x,y), R(succ(x),y) and R(x,succ(y)) for any input unary relation Q and any guessed
binary relation R. How can we tackle occurences of some atom Q(y) in the formula ? A natural idea is to
define a new binary relation Q, in such a way that Q»(x,y) = Q(y) holds for any x,y. (We denote it O, to
refer both to Q and to the projection of (x,y) on its second component.) Hence, we set:

Q2 ={(x.y): O}

Thus, any atom Q(y) could be replaced by the sorted atom Q> (x,y). But the logical definition of O, with
our syntactical constraints compels to introduce an additional binary relation 7 that will be used as a buffer
to transport the information Q(y) into the expression Q»(x,y). Informally, we can set

T ={(x,y): Q(x+y)}.

Clearly, T is inductively defined from Q by the assertions 7(x,0) = Q(x) and T(x+ 1,y) = T(x,y + 1).
Besides, O, is defined from T by 0»(0,y) = T'(0,y) and Q»(x,y) = Q2(x+ 1,y). All these assertions can be
rephrazed in our logical framework, with the following formulas:

vy min(y) — T(xy) & 0(x) A .
Y (=max(x) A -max(y)) — T(succ(x),y) & T(x,succ(y)) |’

Vi { min(x) = (Q2(x,y) & T(x,y)) A }
7 Q2(x,y) & Qx(succ(x),y) '

It just remains to insert this defining formulas in the initial formula ® to be normalized, and to replace
each occurrence of Q(y) by O»(x,y). Of course, such a construction has to be carried on for each input unary
relation Q.

8.2. General case: the sliding puzzle

When the dimension d exceeds 2, the construction is more intricate. For a given input relation Q, there
are now numerous sources of corruption of the sorted property. For instance, if d = 4 then Q has arity 3
and we may enconter many kinds of non sorted Q-atoms in the formula to be normalized: Q(x2,x3,x1),
0O(x1,x4,%2), Q(x2,x3,x4), etc. Dealing with these different atoms necessitate to introduce two new series of
predicates, (Qq)aes@) and (Tq)aes), Whose definitions are interconnected. In particular, the definition of
the T,,’s must be done step-by-step, according to an inductive process by which a new relation T is built
from a yet-defined relation 7, where @ and g differ by exactly one transposition (i.e., 8 = at for some
7 € 7(d)). The key point of the proof will be to organize a traversal of the set of permutations which allows
this recursive procedure of definition. In particular, it will be necessary that two consecutive transpositions
labeling this traversal share a common position — that is, they should be written (ij) and (jk) for some
i, J,k € [d] —, in the same way a move from one position to another in a sliding puzzle always involves the
place left vacant by the previous move.

Given i, j € {1,...,d} and a € S(d), we denote by (ij) the transposition that exchanges i and j,4 and by
a(ij) the composition of @ and (i ). It is well-known that each permutation @ can be written as a product of
transpositions,

a=uv)mav2)...(upvp). (29)

4rather than 7; j» as in the previous section.
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Besides, for any transposition (#v) and any r not in {u,v}, it holds (uv) = (ru)(uv)(vr). This yields two
consequences of interest for the decomposition (29):

e First, we can assume that u; = d (or equivalently, v; = d), since if d ¢ {u;,v}, then we can write
a = (dup)(uv)(vid)(uav2) ... (upvp).

e Moreover, (29) can be further refined, by demanding that v; = u;;; for each i. For if some sequence
(ab)(cd) with b ¢ {c,d} occurs in (29), it can be replaced by (ab)(bc)(cd)(db), and a left-to-right itera-
tion of such rewritings along the factorization yields the desired property.

Finally, does mean suppressing useless sequences as (ab)(ba), each a € S(d) can be written
a = (duy)(wiu)(uzu3) . . . (Ug—2ug—1)(Ug—1 ), (30)

where for each i, the terms u;, u;+1 and u;4o are pairwise distinct elements of {1,...,d}. We call alternated
Sactorization of @ such a decomposition.

A permutation « admits several alternated factorizations, and we want to single out one of them for each
a, in order to allow an inductive reasoning built on this particular decomposition. There is no canonical
way to perform this task. In the following lemma, we roughly describe one arbitrary choice. It refers to the
Cayley graph G, of the symmetric group S(d) with respect to the set of generators 7 (d). Recall that G, is
the graph of domain S(d) whose edges are all pairs of permutations (a, a(ij)), fori # jin {1,...,d}.

Lemma 8.1. There exists an oriented tree T4 covering Gq that is rooted at id and such that each T 4-path
starting at id, say ida ...ap, corresponds to an alternated factorization of a.

Proor.  Trees 7, for d > 2 are defined inductively. For d = 2, there is a unique such tree: (12) — (21) =
(12)(21). So, assume we are given 741 and carry on the construction of 7 as follows:

(a) First, view each permutation @ = @ ...a4-1 € S(d — 1) as a permutation of {2,...,d} by renaming «; as
a;+ 1. Thatis, replace @ = @ ...a@4-1 by a* = (a1 + 1)...(@g-1 + 1).

(b) Then, replace each such a* by 8=3...64 € S(d) defined by: B; =1 and B; = [@"];—; = @;—1 + 1 for
i > 1. Thus, 74— now covers the set of permutations 8 € S(d) that fulfill [8]; = 1.

(c) For each node S thus obtained, create a new node labelled by the composition of 8 with the transposition
(1d) — that is by the permutation S(1d) — and create an edge 8 — B(1d).

(d) Finally, link each such node B(1d) to d —2 new nodes B(1d)(di), fori=2,...,d—1.

In Fig 2, we display the steps of the construction of 74 from 7. Letters (a), ..., (d) in the figure refer to the
above items. The correction of the method on this example is clear. We leave it to the reader to verify that it
generalises to any d. O

This lemma allows us to choose, for each @ € S(d), one specified alternated factorization of a: it is
the decomposition (di;)(i1iz)... (ix-1ix) corresponding to the unique path from id to @ in 7;. We denote by
id.diy.iji. ... .ix-1 i this particular factorization. And when this path until @ can be continued in 74 to some
permutation a(irix+1), we denote by a.ixir+1 this last permutation. For instance, in the example displayed in
Fig 2, we can write 2143 = 4123.13 and 3124 = 4123.14 while 4321 = 4123(24) cannot be written 4123.24.
Notice furthermore that the integers i; and ix4; are ordered in the notation «.ixix+; (unlike in the notation
a(irig+1)): we place in first position the integer iy involved in the last transposition leading to « (with iy = d if
a =id). Allin all, the reader is invited to keep in mind the numerous presuppositions attached to the notation
a.uv: the statement 5 = a.uv means:
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12 — 21

(a) 23— 32

(b 123 —= 132

(© 321 123 132 312

@ 231 321 123 132 312 213

(@) 342 432 234 243 423 324

(b 1342 1432 1234 1243 1423 1324
1342 1432 1234 1243 1423 1324

© 9 ' i ' ! i
4312 4132 4231 213 4123 4321
1342 1432 @ 1243 1423 1324

@ 43¢12 41¢32 4231 4213 41¢23 4i21

N N N N NN

2314 3412 2134 3142 2431 3241 2413 3214 2143 3124 2341 3421

Figure 2: Construction of 74 from 775. The result is an oriented tree rooted at id, spanning S(4), whose all pathes from id
are alternated.

o f=auv);
e (a,f)isanedge of T4 ;

e cither @ =id and u = d, or a = y.tu for some y € S(d) and some ¢ # u in {1,...,d}.

Let us now come to a straightforward remark connecting d-tuples to alternated factorizations. First,
remember that for x = (x1,...,x4), i €{1,...,d} and @, € S(d),

e we denoted by [x]; the ith component of X ;
e we defined x,, as the d-tuple (xq,...,Xa,) ;
e we noticed that (Xq)g = Xp.
(See Definition 6.3.)
Fact 8.2. Foranyx € [n]?, @ € S(d), and i,je{1,...,d):
(@) Xa.ij = Xa)ij)-
) [Xa.ijlj = [X]a-

Proor. (a) From a.ij = a(ij) and X.p = (Xo)g (see Definition 6.3(iv)). (b) By induction on a: if @ =id, then
necessarily i = d and [xiq.4;]; = [X]q clearly holds. Otherwise, [X,.ij]; = [(Xo)ijl; = [Xa]i = [X]4, by induction
hypothesis. O
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Given a d-tuple x = (x1,...,xy4) of first-order variables, we denote by x~ the (d — 1)-tuple obtained from
x by erasing its last component. That is,

(X15eees Xg=1,%2)" 1= (X1,..., Xg-1).

In particular, for @ € S(d), we denote by x;, the (d—1)-tuple (xq,,...,Xq, ;). Each (d—1)-tuple build upon the
d variables x1,..., x4 can clearly be written x;, for some @ € S(d). Therefore, the occurence of a non-sorted
atom in ® has the form Q(x;) for some Q € (Q;)sex and some @ € S(d), and the purpose of this section
amounts to rewrite each such occurence Q(x;) as Q’(x) for some well chosen relation Q’.

Definition 8.3. Given a (d —1)-ary relation Q and two family of d-ary relations, (Ty)aes) and (Qo)aes(d)
we say that (T, Qa)aes@) 1S a d-simulation of Q if the following axioms hold, for any a € S(d) and any
i, j <d such that a.ij is defined, and for any d-tuple X of variables:

(A1) Tig(x) = Q(x7) if [x]a = 0.

(A2) Toij(x) = Tqij(Xij)

(A3) To(x) =Tq.ij(x) if [x]; = 0.

(A1) Qig(x) = O(x7).

(As) Qa.ij(X) = Ta.ij(x) if [x]; = 0.
(Ag) Qq.ij(X) doesn’t depend on [X];.

Lemma 8.4. Let (Ty,Qq)aes@) be a d-simulation of some (d — 1)-ary predicate Q. For any X € [n1¢ and
@ €S5(d): Qa(Xe) = O(X7).

Proor. Let us first prove that for any x € [2]? and @ € S(d):
[x]s = 0= To(xe) = QX7). (31
We proceed by induction on @. If @ =id, (31) follows from (A;). Given a non-identique permutation
a.ij, we have:
Toij(Xeij)) = Taij((Xe)ij) by Fact 8.2-(a).
= T4ij(Xa) by (A2).
But [X,]; = [(Xe)ij]j = [Xe.ij]; and hence, by Fact 8.2-(b): [x]; = [x]g = 0. Therefore we can resume the
above sequence of equalities with:
Teij(Xeij) = Ta(Xe) by (A3) since [X,]; = 0.
= Q(x7) by induction hypothesis.

This completes the proof of (31)

Let us now prove the equality Q,(x,) = O(x7). If @ = id, the result comes from (A4). For a non-identique
permutation a.ij, we have to prove Qg ;j(Xe.;j) = Q(x™) for any tuple x € [n]%. First notice that we can restrict
without loss of generality to the case where [x]; = 0. Indeed, we can otherwise consider the tuple y obtained
from x by setting [x]; to 0. (That is, y only differs from x by its dm component, which is null.) Clearly,
y~ =x". Besides, the jth component of X ;; is [X]y, from Fact 8.2-(b). Similarly, the j’h component of yg ;;
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is [yls. Hence, the tuples X, ;; and y,.;; coincide on each component of rank distinct from j. Therefore
Qw.ij(Xa.ij) = Qa.ij(¥a.ij) by (As) and we get: Qq.ij(Xq.ij) = OX7) iff Qu.ij(Ya.ij) = Q(y™). Thus, we can
assume [x]y = 0. It follows [X,.;;]; = [x]4 = 0, by Fact 8.2-(b), and hence:

Qwij(Xeij) = Taij(Xe.ij) by (As), since [Xq;5]; = 0.
= Q) by (31),since [x]; =0.

The proof is complete. o
Lemma 8.5. Let Q be a (d— 1)-ary relation and (T)oeS(a) (Qa)aes) be two tuple of d-ary relations satis-
fying, for each d-tuple x = (x1,...,xq):

(F1) min(xg) = (Tig(x) & O(x7)).

(F) (ﬁmax(xi) A —max(xj)) — (Ta.ij(x(")) © Ta,,-j(x(j))).

(F3) min(x;) = (Ta(X) © To4j(X).

(F4) Qia(x) & O(x7).

(Fs) min(x}) = (Qaij®) & Toij(x)).

(F&) Quij(X) & Quij(x).

Then (To,Qo)aesw) is a d-simulation of Q. Furthermore, each Q admits such a d-simulation fulfilling
(F1)...(Fe)

Proor. Clearly, the formula (F;) is a mere transcription of the axiom (A;) for each i # 2. We have to prove
that (F») implies (A;). Formula (F») yields that 7 ;;(x) has the same value on tuples of the form

Xx=(Wx+cVv,y—c,w),

for any ¢ < min{n — 1 — x,y}, where x +c (resp. y—c) is the component of rank i (resp. j) of x. (That is:
ue[n]"!, ve[n)7"! and w € [n]97/.) In other words, the value of T ;;(x) depends on [x]; + [x]; rather than
on the precise values of these two components. As a consequence, for any u € [n]'~!, v € [n)/7~, w e [n]97/
and any x,y € [n]:

T(Y‘ij(u7 X, V¥, )’9 W) = Ta.ij(U,y, v, X, W)
This is Axiom (A;).

It remains to prove that such relations (T¢)qes@) and (Qq)ecs(a) exist for every Q. To see this, assume
we are given a (d — 1)-ary relation Q and define the Q,’s and the T, ’s as follows:

o 0u(x)=Q(x__) forany x € [n]?;
o Tig(x) = Qig(x) for any x € [n] ;
o Tyij(u,x,v,y,W) = Qu;j(u,x+y,v,0,w) for any x,y € [n],u € [(n)", ve[n)7" and w € [n]4.

We leave it to the reader to check that the sequence (T, Qo )aes(a) satisfies the formulas (Fp), ..., (Fe) (and
hence, is a d-simulation of Q). |
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Proposition 8.6. Forany d > 1, ESO(V,arity d, half-sorted ) C ESO(V, arity d, sorted ) on coordinate struc-
tures of dimension d — 1.

Theorem 5.1, Proposition 7.7 and Proposition 8.6 can now be collected in the following result:

Theorem 8.7. For any d > 1, ESO(vard) = ESO(Vd,arity d,sorted ) on coordinate structures of dimension
d-1.

All in all, our normalization process can be summarized as follows:

On (d — 1)-coordinate structures, each ESO(var d)-formula can be written under the form:

® = IRVx A v +{ min(x;), max(x), Q(x7), R(x), Rx?) |} 32)

Here, R (resp. Q) is a list of relation symbols of arity d (resp. d — 1), X = (x1,...,x4), i € [d],
0 €(Qy)sez, RER.

Remark 8.8. 1. The proof of Proposition 8.6 crucially involves the possibility to use one of the d di-
mensions that is left unoccupied by the (d — 1)-ary input relation symbols. This free dimension acts
as a buffer that enabled us to play the above mentioned sliding puzzle. Therefore, the result is a
fortiori valid when the input relations have arity less than d — 1. In other terms, the statement of
Proposition 8.6, and hence that of Theorem 8.7 , actually holds on coordinate structures of dimension
k<d.

2. Besides, one can assume that the successor function occuring in formulas displayed in (32) only
applies to arguments that are not maximal, or alternatively, that succ(n) = n, which means that the
interpretation of the successor function symbol is the noncyclic successor instead of the cyclic one.

9. Recapitulation of the results: power/limits of coordinate/pixel encodings

9.1. Characterization of NLIN,,

After all the previous normalizations of logics over the coordinate encoding of pictures, we are now in a
position to prove the expected characterization of NLIN,.

Theorem 9.1. For any d > 0 and any d-language L,
LeNLINY & coord?(L) € ESO(vard + 1).

This theorem will straightforwardly proceed from Proposition 4.10, Theorem 8.7, and from Proposi-
tion 9.2 below:

Proposition 9.2. For any d > 0 and any d-language L,
coord’(L) € ESO(vard + 1) = L e NLINY .

Proor. Let @ be the formula characterizing coord?(L). From Theorem 8.7 (see also Equation (32)), we can
assume that @ has the form:

_ min(x;), max(x;), min(¢), max(t),
o =3Rvxvr [\ \/ i{ 0(x), R(x,1), Rx®,1), R(x, succ(r)) }
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for i € [d], O € (Qs)sex and R € R. Moreover, according to Remark 8.8 we can assume without loss of
generality that the succ symbol is interpreted as the noncyclic successor function.

The key point is that sentence @ can be checked in O(n) steps (for an input picture of domain [n]%) by
a local and parallel nondeterministic process. More precisely, it is easy to construct a d-automaton which
uses the following informal but intuitive algorithm to check whether coord?(p) | ®@, for any input picture
p: [n]? - %:

Fort=1,2,...,n, sequentially,
Forallae[n]? in parallel,

e Guess (nondeterministically) the truth values of the atoms R(a,t);
o Check (deterministically) whether the values of the R(a,t)’s are compatible5

— with each other,
— with the values of the input atoms Q(a) and of the atoms min(a;) and max(a;),
— with the “previous” values of atoms R(a,t— 1) (provided t > 1);

o [fsome answer is “no” then Reject;

Accept.

The process is correct because at each moment the cellular automaton at cell a € [#]¢ has only to
consider the fixed number of information bits that the point a = (ai,...,a4) and its d neighbor points
a¥) = (ay,...,a;_1,succ(a;),ais1, ..., aq) hold. Each of the n iterations of the first loop (“For t = 1,2,...,n”) is
performed in constant time, hence the total time is O(n). m|

9.2. Why do we need two encodings of pictures ?

In Section 3, we have established natural characterizations of REC? for pixel encoding of pictures. The
corresponding statements (Theorem 3.6 and Corollary 3.16) can be summed up as follows: for any d > 0
and any d-language L,

LeRECY & pixel’(L) e ESO(Y!, arity 1)
& pixel’(L) € ESO(arity 1) (33)
& pixel’(L) € ESO(var 1).

Then, we have stated characterizations of NLINY, for coordinate encoding of pictures (Theorem 9.1 and
Theorem 8.7):

LeNLINY, & coord(L) € ESO(Y**!, arity d + 1,sorted )
& coord’(L) € ESO(Y4*! arity d + 1) (34)
& coord?(L) e ESO(vard + 1).

One could legitimately ask whether a same encoding of pictures would permit characterizations of both
REC? and NLINY,. We now answer this question in its two aspects.

5That means: verify that the constraints of y(a, ) and y(a,z— 1) (when ¢ > 1) are satisfied together.
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9.2.1. Pixel representation does not fit NLIN¢,
One can prove the following sequence of inclusions for pixel representation of d-picture languages with

d>1:
ESO(var 1) = REC? ¢ NLINY, ¢ NTIMEY, (n?) C ESO(var2),

ca =

where NTIMEfa(nd) denotes the class of d-picture languages recognized by nondeterministic d-dimensional
cellular automata in time O(n4). Let us justify the (strict) inclusions that have not been proved beforehand
in this paper.
e The strict inclusion NLIN?, € NTIMEY, (n¢) is a particular case of the nondeterministic time hierarchy
theorem [5, 65] adapted to nondeterministic d-dimensional cellular automata, see [35] that has proved
it for d = 1: we are convinced it can be generalized to any d > 1.

e The implication L € NTIMEfa(nd) = pixel?(L) € ESO(var2) can be proved almost exactly as the
particular implication L € NLIN!, = pixel?(L) € ESO(var 2) among the recapitulated equivalences (34)
above for word languages (adapt the proof of Proposition 4.10): consider the fact that a d-picture of
side n contains n¢ pixels and use the implicit lexicographic successor function of the set of pixels
induced by the d successor functions, exactly as we did in Section 3.3.

Hence, the strict inclusions ESO(var 1) C NLIN?a € ESO(var 2) so established justify that no logic of the

form ESO(var k) — or, equivalently, ESO(V" ,arity k)) —, for any k, can characterize the class NLIN?a for pixel
representation.

9.2.2. Coordinate representation does not fit recognizable picture languages

One can easily translate the logical characterization of REC? in ESO(V!, arity 1) for the pixel represen-
tation, into a characterization in ESO(Vd ,arity d, sorted ) for the coordinate representation. This is due to the
following fact:

Fact 9.3. pixel’(L) € ESO(Y!,arity 1) & coord?(L) € ESO(V¥,arity d, sorted ).

Proor.  To justify this equivalence, let us define a notion of sorted ESO(Y!, arity 1)-formula, even if it is
much less relevant that the corresponding definition for d > 2: An ESO(Y!,arity 1)-formula ® belongs to
ESO(V!, arity 1,sorted ) if it can be written ® = AUV x ¢, where ¢ is a quantifier free formula of the form:

p= /\ \/i{ Q(x), U(x), U(succi(x)), min;(x), max;(x) } e

Here, U is a list of unary relation symbols, U € U, Q belongs to the sequence (Q;)ex of input unary relations,
x is the unique first-order variable and i € [d].

Because of the proximity of pixel encoding and coordinate encoding of a d-picture p : [n]? — Z, it is
easy to associate with each ® = AUV x of the form displayed in (35), an ESO(V, arity d, sorted )-formula ¥
on coordinate signature, in such a way that pixel?(p) E ® & coord’(p) = V. It suffices to set ¥ = ARYxy(X)
where:

e R is a list of d-ary relation symbols (Ry)yey, one-one associated with the unary relation variables
UeU;

e (x) uses the list of d first-order variables x = (x,...,x4) and is obtained from ¢(x) by the substitu-
tions:
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- Q(x) » Q(x), for Q € (Qy)sex;
— U(x) » Ry(x) and U(succ;(x)) ~ Ry(xY) for U € U and i € [d];

— min;(x) ~» min(x;) and max;(x) ~» max(x;) for i € [d].

This definition clearly gives rise to a formula ¥ that belongs to ESO(¥¢, arity d, sorted ). Furthermore, it im-
mediatly yields the expected equivalence pixel!(p) £ ® & coordd(p) E ¥ for each d-picture p on X. To con-
clude the proof, it remains to verify that each ESO(V! ,arity 1)-formula can be written in ESO(V! ,arity 1,sorted ),
on pixel structures. We leave it to the reader. O

Mixing Fact 9.3 with the first equivalence in (33), we immediatly get:
Fact 9.4. L€ REC? & coord’(L) € ESO(Y, arity d, sorted ).

But requiring the sentence to be sorted seems rather artificial. In the characterization of NLIN,, (Theo-
rem 9.1), we admitted this constraint as a necessary step of the proof, but it was crucial, in our point of view,
that Theorem 8.7 provides us with a mean to circumvent it. What about the present case ? Can the sorted
constraint be dropped in Fact 9.4 ? The forthcoming Proposition 9.7 will show that it cannot. In order to
prove it, we first state a simple lemma about the so-called Mirror? language.

Definition 9.5. For d > 2, we denote by Mirror? the set of pictures p : [n]? — X that fulfill p(a) = p(age)) for
allae [n]’.

(Remember that (12) is the transposition that swaps 1 an 2. Therefore, a1 is the tuple a in which the two
first components have been interchanged — see Definition 6.3(iv). E.g., (5,3,4,6)12) = (3,5,4,6).)

Lemma 9.6. For each d > 2, coord’(Mirror?) belongs to ESO(var d). However, Mirror” ¢ RECY.

Proor. Clearly, the set of structures coord?(Mirror?) is defined by the following first-order sentence with d
variables, hence it is in ESO(var d):

Vx A (Qs(x) & Q4(X(12))).

sEX

The statement “Mirror? ¢ REC?” can be proved by a reasoning very similar to that of Theorem 2.6 in
Giammarresi et al. [23]. For sake of completeness, and because we will prove another adaptation of that
result in Lemma 10.5, we now recall and adapt the proof explicitly. It essentially amounts to a counting
argument. Let us sketch it:

Assume that the language Mirror? is recognizable. Hence, it is the projection of a local language and
can be written Mirror? = n(Loc) = {n(p) : p € Loc}, for some local language Loc = L(Ay,...,Ay) over an
alphabet I', and some surjection 7 : I' — X (see Definition 3.4). To get a contradiction, the trick is to mix two
distinct pictures p and ¢ of Mirror? into another picture [p/g] whose “top part”, i.e. the half-picture over
the diagonal, is the top part of p, and whose “down part” (half-picture under the diagonal) is the down part
of g. By definition, [p/q] does not belong to Mirror. However, a locality and counting argument yields
that it should belong to this language, a contradiction. In order to detail this argument, we introduce some
preliminary notations.

Given n,d > 0, we define the three following subsets of [n]?:

L. top([n}) = {a € [n]" : [a]; < [al2);
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2. down([n]?) ={ae[n]?: [a]; > [a]L};
3. diag([n]?) = {a e [n]¢ : [a]; = [a], or [a]; = [a], + 1}.

Thus, top([n]d) contains the cells over the diagonal, down([n]d), the cells strictly under the diagonal, and
diag([n]?), the cells lying on the first or the second diagonal.

4. For a picture p : [n]? — X, we denote diag(p) the restriction of p to diag([n]?).
5. For a picture language L, we set diag(L) = {diag(p) : p € L}.

6. Given two d-pictures p,q : [n]¢ — X, we denote by [p/q] the picture defined as follows: [p/g] has
prototype [n]¢ - X and for all a € [n]?,

p(a)if [a]; <[a]y;
q(a) otherwise.

[p/ql(a) = {

In other words, [p/q] is the picture that coincides with p on its top part and with g on its down part.

7. Given a d-language L we denote L, = {p € L : dom(p) = [n]?}.

Let’s now come back to the Mirror language. We have assumed that Mirror? is the projection of a local
language over I': Mirror = n(Loc) with Loc = L(Ay,...,Ag). It immediately yields: Mirrorjf =n(Loc,). It

is easily seen that IMirrOI‘,f [ >|2 IC”d for some constant ¢ (take ¢ = 1/2 for instance). Beside, |diag(Loc,)| <

|l"|2’l{17l since for each n, Idiag([n]d)| =241 As|Z |C”d > |I“|2”{717l for sufficiently large n, we have for some
n: IMirrorffI > |diag(Loc,)]|.

By the pigeonhole principle, this last inequality guarantees the existence of two pictures n(p),n(q) €

Mirror,dl = n(Loc,) (i.e. p,q € Loc), such that:

@) n(p) # n(q);
(if) diag(p) = diag(q).

Items (7)) and (i) clearly force [n(p)/n(q)] ¢ Mirror?. In the same time, we deduce from (i) that [p/q] is

tiled by (A1,...,Ay), as p and g are. This is because for every j € [d], any pair of j-adjacent points a,b € [1]¢:
e cither are both in top( [n]4), where [ p/q] coincides with p,
e or are both in down([n]¢), where [p/q] coincides with g,

e or are both in diag([n]d), where [p/q] coincides both with p and g.

In all cases, the pattern ([p/g](a),[p/ql(b)) is either (p(a), p(b)) or (g(a),q(b)), hence belonging to A;.
Consequently, [p/q] € L(A1,...,Az) = Loc and therefore, n([p/q]) € n(Loc). But clearly, n([p/q]) = [n(p)/
n(q)], and by definition, m(Loc) = Mirror?. Hence, [7(p)/n(q)] € Mirror?: a contradiction. |
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Proposition 9.7. For each integer d > 2 and for d-languages represented by their coordinate structures, the
following strict inclusions hold:

ESO(vard — 1) € REC? C ESO(vard).
That means the following implications hold,
coord?(L) e ESO(vard — 1) = L € REC? = coord?(L) € ESO(var d),
but neither of their converses does.

Proor.

1. coordd(L) € ESO(var(d—-1)) > L € RECY. This implication is a direct consequence of the equiv-
alence L € REC? & coord(L) € ESO(V, arity d, sorted ) stated in Fact 9.4 and of the following equali-
ties/inclusions, that hold on coordinate pictures of dimension d:

ESO(var (d — 1)) = ESO(Y4~! arity (d — 1)) € ESO(¥¢, arity d, sorted ).

The equality has been proved in Theorem 5.1 ; the inclusion can be proved exactly as the inclusion stated
in Proposition 8.6, that is: ESO(V?, arity d, half-sorted ) C ESO(V, arity d, sorted ).

Furthermore, the converse implication L € RECY = COOI‘dd(L) € ESO(var (d — 1)) does not hold. To see
this, consider the set L; of d-pictures p on X = {0, 1} whose pixels all contain symbol 1. Trivially, L; € RECY.
However,

coord?(L,) ¢ ESO(var (d — 1)).

Let us justify this last assertion. Intuitively, each sentence in ESO(var (d — 1)) = ESO(V41, arity (d—1))
can only express constraints about O(n?~") pixels. More precisely, for any sentence ¢ € ESO(V?~!, arity (d -
1)) over the d-coordinate X-signature, let the integer k be the maximal composition depth of the suc-
cessor function in ¢. Any atom of ¢ that involves an input relation symbol Qg,s € X, is of the form
Os(t1(xi)), ..., Ta(x;,)), for d terms Tj(xij), ij € [d-1]. By the pigeonhole principle, at least two of those
terms involve the same variable x;, i.e., there are two distinct indices 1 < j < j* < d, such that i j=1y. For
any d-picture p : [n]? > =, let Dy(n) denote the set of pixels a = (ai,...,aq) € [n]? for which there are two
coordinates aj,ay, 1 < j < j <d, at distance at most k: |a;—ay| < k. Of course, |Di(n)| = on®). It is
easy to convince oneself that the sentence ¢ cannot control any pixel of p outside the O(n?~!) pixels of
Dy (n). That means that if two pictures p, p’ : [n]¢ - X coincide on those pixels, i.e. if p(a) = p’(a) for every
a € Dy(n), then coordd(p) Fopo coordd(p’) E ¢. Clearly, such a sentence cannot define coord?(L;).

2. L e REC? = coord?(L) € ESO(vard). This implication is a weakening of the equivalence stated in
Fact 9.4. However, Lemma 9.6 implies that the converse implication is false. It completes the proof. O

For pictures languages of dimension d > 2 and coordinate encoding, the definability class ESO(¥, arity d),
although logically robust, does not coincide with some complexity class. However, the additional expres-
sivity power due to the ability to freely permute the coordinates (i.e. the arguments of relation symbols)
in a sentence of this logic intuitively corresponds to the ability to add in the neighborhood of any pixel
a=(a,...,ag) € [n]¢ all its permuted pixels a, = (dqo(1)s---,da(q)), for each permutation @ of [d]. This
remark will be made precise using the notion of folded picture.
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9.2.3. Folding: a means to force coordinate representation to fit recognizable picture languages
Definition 9.8. For any integer d > 1, recall that S(d) denote the set of permutations of [d]. Besides, given
an alphabet ¥ we write X4 for the set of functions of prototype S(d) — X, and we set Zgz 24 U{0}. Finally,

we call folding the mapping that maps any d-picture p : [n]¢ = X to its folded picture
PO [ 22
defined as follows: for all a € [n]%,
1. ifaisincreasing, then pfo’d(a) is the function of 4 that maps a on p(a,) (i.e. pfo’d(a)(a) = p(ay)),

2. otherwise, p™9(a) = 0.

(Remember that a is increasing, denoted by aT, ifa; < ap < --- < ay. See Definition 6.2 (2))

fold

Notice that p — p'°“ is a one-one mapping from the set of d-pictures on X to the set of d-pictures on 22

that fulfill condition 2: p™9(a) = 0 if not aT. All the information about p is contained in the part of p™9 that
consists of increasing pixels. For example, for d = 2, if a; < a, then the “folded point” pfo'd (ay,ap) contains
both p(ai,az) and p(az,a), and pf°'d(a2,a1) = 0. In other terms, all the information on p is gathered over
the diagonal a; = ay, i.e. on the pixels (aj,ay) of pf"'d such that a; < a».

Definition 9.9. For any d-language L on %, its folded language is the d-language on 22:

[9 = (0. ey

fold

We now establish a simple correspondence between the coordinate encodings of p'® and p.

Lemma 9.10. For any d-picture p on %, any increasing point a € dom(p), and every o € X,

coord(p"%) = (@) & coord"(p) - N\ Qo (@a)-

aeS(d)

Proor.  Definitions 9.8 and 9.9 yield the following equivalences: for any d-picture p on X, any increasing
point a € dom(p), and any o € Z,

coord’(p°% E 0s@) & p*@ = e /\ pa)@ = o).
@eS(d)

Beside, for each @ € S(d), p%(a)(@) = o(@) © p(a,) = o(a) & coord?(p) E Qu(w)(as). This leads to the
claimed equivalence. O

The following proposition states the precise relationships between the logic ESO(Y4, arity d) and the
recognizable d-languages.

Proposition 9.11. For any d > 1 and any d-language L, the following assertions are equivalent:
1. coord?(L) € ESO(Y4, arity d);
2. Ll e RECY.
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ProoF. H By Fact 9.4, one has to prove the implication
coord?(L) € ESO(Y¢, arity d) = coord?(L%) e ESO(¥, arity d, sorted ). (36)
The proof is similar to that of the statement of Proposition 7.7:
ESO(Vd ,arity d) C ESO(Vd, arity d, half-sorted ).

The two proofs involve the same tools and similar formulas. Therefore, we essentially justify here the
additional points. Let L be a d-language on £ whose set of coordinate structures coord?(L) is defined by
an ESO(Vd,arity d) sentence @, that is @ = JRVYx ¢(x), where R is a set of relation variables of arity d
and ¢(x) is a quantifier-free formula whose list of first-order variables is x = (xy,...,x;). The main idea
is the following. Instead of associating families of d! relation symbols (R,)qes) With the sole guessed
relation symbols R € R, we do the same for input relation symbols (also of arity d) Oy, s € X. Thus, denoting
Rel(p) = {R,(Qy)sesx), We associate with each (R, @) € Rel(¢) x S(d) a d-ary relation symbol R,%, according
to Definition 7.4. That is, we set:

R,={ae[n]’:aland a, €R). (37
Let’s denote by ¢ 'd(x) the conjunction of the following quantifier-free formulas:
® ¢o(x) == (xT) = Qo(X) ;

o=\ /\ R® —xD;
ReRel(¢) aeS(d)

co= N A/ G=x>R® o Rer(x);

ReRel(¢) aeS(d) 7T (d)

¢ 0 =x1> N\ | N\ Quuar®];

oexy aeS(d)

¢ 3= /\ (X1 Gl (Ry)yesa)-

aeS(d)

where @, is obtained from ¢ by substituting R-atoms, for R € Rel(¢), with some “sorted” Ry-atoms R, (X) or
Ry(x(j)), j €[d], see Lemma 7.6. Let us now define the ESO(Vd ,arity d, sorted )-sentence

O = ARy reRrel(p), aesia) VX ¢*U(X).
We claim that for every d-picture p on X, the following equivalence holds:
coord?(p) E ® & coord?(p™%)  @fld, (38)

In this purpose, let us comment upon the above conjuncts ¢y—¢3. Formulas ¢y—¢, correspond to those
displayed in Equation (25) of Proposition 7.7. Clearly, o and ¢; express that in the folded picture p©9, all
the informations are gathered in the “folded part” (the increasing pixels) while the other pixels contain 0.

SFor Qy, it is also denoted Os.a-
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Formula ¢, ensures that for each R € Rel(y), its associated relations R,’s agree on their common parts as
mentioned in Section 7. Moreover, ¢3 expresses that the relations Q., o € X, are what they should be for
the folded picture p™©9, as explained here below. By (37) applied to the relation Q -1(a) associated with
O (), We have:

o(a),a

Qa1 ={a€[n]?:al and a, € Qo())-

Hence, by Lemma 9.10,
Qa’(a),aﬁl ={ae [n]d :aT and a€ Q).

This corresponds to equivalence Qx(X) < (Aaes@) Co(a)o-1 (X) Of ¢3. Finally, Equivalence (38) is justified
similarly as one shows that ESO(V¢, arity d) = ESO(V, arity d, half-sorted ), in Proposition 7.7. In order to
prove the implication (36) and hence implication 1 = 2, it is sufficient to justify the following equivalence,
for every d-picture p’ on 22:

coord’(p) @ & Fp(p’ = p'’ and coord(p) F ).

In view of equivalence (38), there only remains to justify the following implication:

It is clear that the “subformula” VX : ¢o(X) A @1(X) A @a(X) A @3(x) of 9 implies that the underlying picture
is of the form p™d as required. This concludes the proof of implication 1 = 2. Let’s now prove the converse
one.

Assume that the folded language L of a d-language L on X is recognizable. By Fact 9.4 the
set of coordinate structures Coordd(Lfc"d) is defined in ESO(Vd,arity d), i.e., by a sentence ® of the form
@ = JRVx ¢(x), where R is a set of d-ary relation variables and ¢ is a quantifier-free formula with the
list of first-order variables x = (x,...,x4). The intuitive idea of the construction of the following sentence,
denoted ®U"d also in ESO(Vd,arity d), that defines the set of coordinate structures coordd(L), is to view
each picture p € L as the projection of a picture that is the superposition of p and of its folded picture p/©'°:

(Dunfold — H(QG')O—EZO EIRVX ‘punfold (X)
d

where

D= N\ (e o N Qow(*a))

unfold — A ey a@eS(d)
FETROTEON D5 QoA A\ ~0e).

oes,

In order to justify the correctness of sentence ®“"°!, that means, for each d-picture p on X,
p e L& coord?(p) U,

it is sufficient to prove the following equivalence:

coord?(p9) £ @ < coord?(p) E @Uld. (39)

The implication & of (39) is obvious since ¢ is a conjunct of ¢“"°'9, The converse implication = is a
straigtforward consequence of the definitions and, for conjunct 9.2.3, of Lemma 9.10. Proposition 9.11 is
proved. O
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10. Hierarchy results

We are now ready to prove some strict hierarchy results between the classes RECY, NLIN?, and our
logical classes.

For that purpose we will use the notion of "folded" language with Proposition ?? and the following
"symmetric" language as a counterexample.

Definition 10.1. Letr symy be the d-language on X = {0, 1} defined as follows: a d-picture p : (n]? - {0,1)
belongs to symy iff, for all a = (ay,...,aq) € [n]9, we have:

1. p(a) = p(ay), for all permutation a € S(d), where a, = (A1), - - -, Aa(d));

2. p(a) = pQagym)), for all i € [d], where agyy(;) denotes the tuple a whose ith component a; is replaced
by its "symmetric value" n+1—-a;’.

In other words, the values p(a) are defined up to all possible permutations of coordinates and up to all
possible symmetries a — agyn().

There is another equivalent definition of language sym, that uses an equivalence relation on pixels.

Definition 10.2. Letr ~, be the equivalence relation on [n14 defined as follows: for all a = (ay,...,aq) and
b=(b1,...,by) in[n]% a~, b holds iff there is some permutation @ € S(d) such that, for each i € [d], aq) = b;
or agiy =n+1-b;

Lemma 10.3. 1. A picture p: [n]¢ — {0,1} is in symy iff for all a,b € [n]?, a ~, b implies p(a) = p(b).

2. For each a € [n]?, there is exactly one d-tuple b = (by,...,bg) such thata ~,band 1 <b; <bp <--- <
ba < (n+1)/2. This tuple is called the representer of a in [ (n+1)/2]1%, denoted b = rep(a).

3. There is a bijective mapping p v~ p’ from the set of pictures p of symy and of domain [n) onto the set
of functions p’ : Rep,, — {0, 1} where Rep, ={b e [|(n+ 1)/2]1¢ : b1}. That is, p’ is the restriction of p
to the subdomain Rep,,.

. . . nd
4. The number of pictures of symy and of domain [n]? is at least 2", for some constant ¢ that depends
ond.

Proor.  Assertion 1 is a straightforward consequence of Definitions 10.1 and 10.2. Assertion 2 easily
follows from the following observation: for all integer u € [n], exactly one of the following conditions holds:

o l<u<m+1)/2;
o l<n+l-u<m+1)/2;

e u=m+1)/2=n+1-u.

7Obviously, because of item 1, item 2 is equivalent to the same assertion for only i = 1.
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Assertion 3 comes easily from 1 and 2. Ttem 3 implies 4 because |[Rep,| > cn?, for some constant ¢ that
. . d
depends on @® and hence the number of functions from Rep, to {0, 1} is at least 2¢*". O

The following lemma about the folded language (symy)™9 is easily deduced from Lemma 10.3 with the
definition of folding.

Lemma 10.4. 1. The mapping p v~ p’ that maps any picture p of (syMg)®? and of domain [n]? to its
restriction p’ to the subdomain Rep, ={a€[[(n+1)/2] 14 : aT) is one-one.

2. Also, the mapping p — p’’ that maps any picture p of (syMg)©? and of domain [n)? to its restriction
p"" to the subdomain T, = {a € [n]? : al and a ¢ Rep,} is one-one.

. . ; nd
3. The number of pictures of (syMg)®? and of domain [n]? is at least 2™, for some constant ¢ that
depends on d.

Proor. Item 1 comes from item 3 of Lemma 10.3. Item 2 is justified similarly: it is sufficient to note that
each point a € [n]9 has at least one equivalent element a ~, b in T),. (For d > 2, there are in fact at least two
such equivalent elements in 7,.) Item 3 is deduced from item 4 of Lemma 10.3. O

Lemma 10.5. For all d > 2, we have coord” (symg) ¢ ESO(V, arity d).

Proor. By Proposition 9.11, it is sufficient to prove L ¢ REC? for the folded language L = (symz)9. From
Lemma 10.3 for sym; and the definition of L = (SYMd)fO|d, one easily deduces that L is the d-language on 0
where X = {0, 1}, that is defined as follows: a d-picture p on 22 belongs to L iff the following two clauses
hold, for all a € [n]%:

1. if a7 then p(a) is a constant mapping® p(a) : S(d) — {0,1} such that p(a) = p(rep(a)), where rep(a)
is the representer of a in [|(n + 1)/2]14, i.e. the unique tuple b = (by,...,by) such that a ~, b and
1<b1<by <+ <bg<(n+1)/2;

2. otherwise, p(a) = 0.

For simplicity (abuse) of notation, in case af, i.e., when p(a) is a constant mapping, the constant value
p(a)(@) € {0, 1} for all @ € S(d) is also denoted by p(a). So, L will be regarded as a d-language on alphabet
> ={0, 1} (instead of alphabet Eg) defined by clauses 1 and 2 above. In other words, the expression “p(a) is a
constant mapping from S(d) to {0, 1}” is replaced in clause 1 by “p(a) € {0, 1}”’. We have to prove that L is not
recognizable. Our proof by contradiction is very similar to the proof of the same result for the d-language
Mirror? (see Lemma 9.6).

Assume that L is recognizable, that is, L is the projection of some local d-language L’ on I by some
function 7 : I’ — {0,1}. Let us introduce the following notation: for two pictures, py,ps : [n]? = T, let
Pmix = [p2/p1] denote the picture pmix : [n]¢ — T defined as follows: for all a € [n]¢,

1. "down" for aT: pmix(a) = pj(a)ifa€Rep,,ie.,aTandac[|(n+ 1D/2]14;
2. "top" for aT : pmix(a) = pa(a)ifae Ty, ie,al and a ¢ Rep,;

8For example, for d = 2, Rep,, is the set of ordered pairs of integers (a1,a) such that 1 <aj <ap < (n+1)/2 and its cardinality is at
least 1/2(n/2)* = 1/8n°.
9The fact that p(a) should be a constant function is a straightforward consequence of item 1 in the above Definition 10.1 of symy.
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3. Elsewhere: pmix(a) = 0 otherwise, i.e., if not aT.

For a positive integer n, let L, = {p € L : dom(p) = [n]?}. Notice that the number of pictures in L, is

nd . . .
greater than 2", for some constant ¢, by item 3 of Lemma 10.4. Let L;, be the set of pictures in L’ (on I')
whose projections by 7 are in L,. The restriction of a picture p’ : [n]? — I to the "border set"!®

B,=laec [n]d cal and (ag =|(n+1)/2]orag=1(n+1)/2]+ 1)}

is called the border stripe of p’. Let S, be the set of border stripes of pictures of L,,. Clearly, |B,| < 2n-1 and
then, |S,| < |l"|2”d_I . For n sufficiently large, we have et s |1"|2”d_1. Therefore, by the pigeonhole principle,
for n sufficiently large, there will be two different pictures p; and p, in L, whose corresponding pictures
p} and pj in L; such that p; = mo p| and p; = o p), have the same border stripe. By definition of a local
language, that implies that the mixed picture

Phix = [P3/P}]
also belongs to L), and therefore its projection
Pmix =70 pry = [wop/mopil=1[p2/pil

belongs to L,, i.e., isin L = (symg)©d as p1 an pp are. Now, notice that by clause 1 (resp. clause 2) of
the definition of the picture pmix = [p2/p1], the restriction of pmix to the subdomain Rep,, (resp. T},) is the
restriction of p; to Rep,, (resp. the restriction of p; to T,,). This implies pmix = p1 (resp. pmix = p2) because
this restriction is a one-one mapping as item 1 (resp. item 2) of Lemma 10.4 asserts. This is a contradiction
since pictures p; and p, are different each other. This proves L = (SYMd)fO'd ¢ REC? and hence Lemma 10.5.
O

We now have all the tools to prove the following strict hierarchy theorem.

Theorem 10.6. For each integer d > 2 and for d-languages represented by coordinate structures, the fol-
lowing (strict) inclusions hold:

REC? ¢ ESO(vard)

ESO(V, arity d)
N
ESO(V¥*!, arity d)
N
ESO(vard+1) = ESO(V¥*! arityd+1)

)
NLIN?,

Proor. Note that all the equalities and inclusions mentioned in the theorem either have been already proved
or are trivial. There remains to justify the strictness of two of these inclusions. Proposition 9.7 states that
the inclusion REC? ¢ ESO(var d) is strict. Also, the inclusion ESO(\/d,aIity d) ¢ ESO(Vd+1,aIity d) is strict
with the d-language symy as a counterexample: Lemma 10.5 states that coord” (symy) ¢ ESO (Y4, arity d), for
all d > 2; so, it only remains to prove COOFdd(SYMd) € ESO(V"Jrl ,arity d). First, one can easily check that the
first-order sentence Yx;Vx, : yo(x1,x2) Aq(x1,x2), where:

Yo=  {min(x))Vmax(x2))} — | Rgm(x1,x2) & (min(xy) vV max(xz))} and
Yr= {emax(e) A-max(x)} = {Rym(suce(x)), x2) & Rym(x1,suce(x2))},

10B, consists of two rows of pixels, the first one satisfying a; = [(n+ 1)/2] and a7 in Rep,, and the second one satisfying a; =
l(n+1)/2]+1 and aT in T),.
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defines the binary relation Ry, (x1,x2) to be x; +x = n+1 on any coordinate structure of domain [n]. Hence,
by Definition 10.1 and its footnote, one easily sees that the set of structures COOI‘dd(SYMd) is defined by the
following sentence ¢y, in ESO(V**!, arity d):

Yolxi,x2) A gi(xi,x2) A
HRsymva...de /\ (01(x) & 01(Xz)) A

aeS(d)

Rgym(x1,%0) = (Q1(X) & O01(X1-0)).
Here, as usual, X = (x1,...,X4), Xo = (Xa(1)>--->Xa(d))> and X| 0 is the d-tuple x where x; is replaced by xp.
This achieves the proof of Theorem 10.6. O

The above strict inclusion ESO(var d) € ESO(Y4*!, arity d) trivially yields the following result.

Corollary 10.7. For each integer d > 2 and for d-languages represented by coordinate structures, we have
the strict inclusion: ESO(var d) C ESO(arity d).

Remark 10.8. Corollary 10.7 surprisingly contrasts with the equality ESO(var 1) = ESO(arity 1) for d-
languages represented by pixels structures, see Theorem 3.6 and Corollary 3.16.

11. Conclusion: final remarks, additional results and open problems

11.1. Locality in logic

As recalled in the introduction of this paper there are several notions of locality in logic. The locality of
general first-order definability expressed by the normal form of Gaifman’s Theorem [19] is weaker than the
locality of first-order logic definability with only one variable (universally quantified) over picture languages
(with adjacency represented by successor functions), a notion that Borchert [2] has shown to be equivalent
to tilability. Note that this strong locality is obtained in accordance with the locality of the underlying grid
structure.

In this paper, we have used exclusively this stronger notion. We have established natural EMSO or ESO
characterizations of two nondeterministic classes of picture languages: recognizable picture languages and
linear time class of nondeterministic cellular automata.

Of course, those complexity/logical notions are nonlocal: concerning the most restrictive one, recog-
nizable picture properties, surprising, Reinhardt [56, 57] has proved that several global properties including
connectivity are recognizable and there are also NP-complete problems among recognizable ones.

However, the intuitive idea that both are classes of "projections” of local languages is made explicit by
their characterization by ESO logics with normal forms whose first-order part is local: that means with only
one first-order variable for pixel encoding, or — for coordinate encoding of d-pictures — with d + 1 "sorted"
first-order variables, one of which intuitively represents the time.

11.2. Extensions and limits of our results

It is interesting to notice that several of our results can be extended:

o QOur logical normalization
ESO(var k) = ESO (Y, arity k)

holds for sets of structures of any arity d provided they are equipped with a successor function (explic-
itly given or implicitly defined), in particular the sets coord?(L) or pixel(L), for a picture language L
of any dimension d.
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o Our main characterization result of d-picture languages with coordinate encoding
coord’(L) € ESO(vard + 1) & L e NLINY,

also holds (with the same proofs) for all dimensions k > d; that means, for any d-picture language L
and all k > d, the set of coordinate structures coord?(L) is definable in ESO(var k) iff L is recognized
in time O(n) by some nondeterministic cellular automaton of dimension k— 1, i.e. of set of cells [n]*"!.

e The previous result is essentially due to the normalization result ESO (¥, arity k) = ESO(V*, arity k, sorted )

that holds for all structures of arity d equipped with a successor function, provided k > d, and is false
for k < d, as we have shown for k = d.

11.3. Other related results of the literature

Borchert [2] has stated some results to be compared with our logical characterizations of recogniz-
able languages and of linear time bounded complexity classes of multidimensional cellular automata al-
though, paradoxically, his paper never mentions cellular automata. More precisely, Giammarresi [24] and/or
Borchert [2] have studied a class of word languages (resp. 2-picture languages called graph languages) that
Borchert has called COL? or d-dimensionally colorable language, for any fixed integer d > 1 (resp. COLZ,
for any fixed integer d > 2). Among other equivalent characterizations, [24] and/or [2] defined C oL? (resp.
C OLg) as the class of word (resp. 2-picture) languages L for which there exists a recognizable d-picture
language L’ such that L is the set of frontiers (resp. square frontiers) of the pictures of L’: a word w (resp.
2-picture f) is the frontier (resp. square frontier) of a d-picture p : [n]¢ — X if w is the word (resp. f is the
d-picture) written on the first "edge" (resp. first "face") of the d-dimensional colored "cube" p, that means
w=wiwy...w, with w; = p(i,1,...,1), foreachi <n (fis f : [n]* = X with fa,p=pajl,...,1), for all
(i, j € [n]%).

Indeed, from these definitions the following fact is easily deduced:

Fact 11.1. e COL! is the class of regular word languages and C OLé is the class of recognizable 2-

picture languages, respectively: COL' = REC' = REG and COLé =REC?.

e Forany d > 1 (resp. d>2), a word language (resp. 2-picture language) L belongs to COLY (resp.
C OLé ) iff there exists a nondeterministic (d — 1)-dimensional cellular automaton that recognizes L in
linear time.

Then Borchert [2] states logical characterizations (Lemma 5.2 and Corollary 9.2(d) in [2]) that can be
rephrased as follows:

1. On words, COL' = REC' = REG = ESO(V!, arity 1).

2. For d > 1, a word language belongs to COL, i.e. is recognized by some nondeterministic (d — 1)-
dimensional cellular automaton in linear time, iff it is definable in ESO(V?, arity d).

3. For d > 2, a 2-picture language belongs to COLZ, i.e. is recognized by some nondeterministic (d — 1)-

dimensional cellular automaton in linear time, iff it is definable in ESO(Vd,arity d) for coordinate
representation.

However, the sketchy proofs of results 2 and 3 given by [2] have some drawbacks. The implica-
tions “definability” — “complexity”, i.e. the inclusions ESO(V¥, arity d) € COL? for word languages, and
ESO(Y?, arity d) C COLé for 2-picture languages, are not correctly justified in [2]. As we have seen in
our proofs of Proposition 8.6, Theorem 8.7, and Proposition 9.2, one should beforehand normalize each
sentence by "sorting" its first-order variables.
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11.4. Some remarks about the dimensions of pictures

For sake of simplicity and uniformity, we have chosen in this paper to restrict the presentation of results
to "square" pictures, i.e. pictures of prototype p : [n]? — Z. This may appear as a too strong requirement. In
this section, we explain how our results about logical classes and their relationships with complexity classes
REC? and NLIN?a can be extended to the "most general" picture languages, i.e. to sets of d-pictures of
prototype p : [n1] X --- X [ng] — X. "Most general" means as much general as they make sense in the logical
or complexity theoretical framework involved.

11.4.1. RECY and logical characterizations in pixel encodings.

All our characterizations of REC? for pixel encodings (see Section 3) hold for pictures of general pro-
totype p : [n] X - X [ng] — Z, without any restriction, i.e. for all n; > 1, i € [d]. Moreover, our proofs also
hold without change, except, of course, the references to integer n which should be replaced by integer n;
according to the involved dimension i € [d].

11.4.2. NLINY and logical characterizations in coordinate encodings.

The definition of linear time complexity of d-automata is not clear for input pictures whose domain has
the general form [n1] X --- X [ng] without restriction. However, linear time, i.e. time O(n), makes sense when
the n; are of the same order ®(n), i.e. the pictures are "well-balanced". This justifies the following definition.

Definition 11.2. A d-picture language L is well-balanced if there is some constant positive integer ¢ such
that the domain [n1] X --- X [ng4] of each picture p € L fulfills the condition: for i € [d], n < cn;, where
n = max(ny,...,ng) is called the length of p;, we say that the picture p (resp. the picture language L) is
c-balanced.

It is straightforward to adapt our notion of linear time to well-balanced picture languages.

Definition 11.3. A c-balanced d-picture language L belongs to NLIN?a if there exist a d-automaton ‘A and
a linear function T (n) = cin+ cy such that L is the set of c-balanced d-pictures p accepted by A in time
T (n), where n is the length of p.

Remark 11.4. These notions are justified by the following points:

o The “perimeter” of a c-balanced d-picture p of length n is O(n) and its size (called area, or volume,
etc., according to its dimension d) is |p| = @(nd).

e So, linear time means time linear in the perimeter of the d-picture p or, equivalently, in |p|'/%.

We can easily extend all our results about square d-languages to well-balanced d-languages. In order to
reduce the well-balanced case to the "square” case we need some new definitions.

Definition 11.5. With each d-picture p of length n, one associates its squared d-picture, denoted by p~, of
domain [n¢ obtained by putting the new special symbol O in each additional cell. Formally,

-, . _ | pl@) ifaedom(p),
p(a)= { O otherwise.

With any d-picture language L one associates its squared d-picture language, L™ = {p~ : p e L}.

Remark 11.6. Let ¢ be a constant. If p is a c-balanced d-picture, then the size of its squared picture p~ is
Ip=I=0(pl)
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The following result is easy to prove.
Lemma 11.7. Let L be a well-balanced d-picture language. Then L € NLINY, & L= € NLINY .

Remark 11.8. Notice that the nontrivial (right-to-left) implication of the previous lemma means that the d-
automaton A that recognizes L~ in linear time can be simulated by some d-automaton A, that recognizes
L in the same time (up to a constant factor) but with less space: the computation area consists of the cells of
p instead of the cells of its squared version p=. This is possible with the following trick: the fact that the i
dimension n of p= is replaced by n; > n/c allows to "fold" the picture ¢ times along its i"dimension. All in
all, each cell of p simulates (at most) ¢? cells of p=. This is performed by taking for the set of states of A

d .
the set T where I is the set of states of A;.

Now, let us compare any well-balanced d-picture language L and its squared language L~ from a logical
point of view. The domain of the coordinate representation of a d-picture p : [n1] X --- X [ng4] is naturally [n]
where # is the length of p, i.e. n = max(ny,...,ny). So, we define the coordinate representation of p as

coord’(p) = coord?(p™).

So, as a trivial consequence, coord?(L) = coord?(L). This justifies that the results of Sections 4-10 also
hold in the extended case of well-balanced d-picture languages.

11.5. More hierarchies

It is also natural to address the question of the strictness or collapsing of the following "hierarchies"
about second-order logic (SO) over picture languages :

1. Is there a strict hierarchy of SO or MSO according to the second-order quantifier alternation?

2. Is there a strict hierarchy of the classes ESO(arity d) and ESO(VX, arity d) according to the number of
ESO relation symbols?

11.5.1. Question 1: Hierarchies for second-order quantifier alternation

It is well-known that the answer is negative for MSO on word languages and tree languages: on these
classes of languages, MSO = EMSO holds. That is, the hierarchy collapses at it first level: see e.g. Chapter
7 of Libkin’s book [45].

At the opposite, Matz, Schweikardt and Thomas [51, 60, 49, 48] have answered Question 1 positively
for MSO over 2-dimensional picture languages: the quantifier alternation is strict at each level for MSO
on 2-picture languages in pixel representation (and, as a consequence, is also strict over the class of finite
graphs).

Their proof is essentially based on the fact that, for any positive integer k, there is a function f; : N - N
(defined as a fixed height tower of exponentials) such that the set of rectangular grids of format n X fi.(n) (i.e,
of width n and length f;(n)) can be defined by some X; MSO sentence but cannot be defined by some X;_;
MSO sentence.

So, the hierarchy result essentially rests on the (more than exponential) imbalance between the two
dimensions of the rectangular grid.

In view of this result a natural question arises: Is the MSO-alternation hierarchy strict for square picture
languages (or equivalently, well-balanced picture languages)? The only thing we know is that the class
EMSO = REC is not closed under complement: notice non-Mirror € EMSO but we have proved Mirror? ¢
EMSO.
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11.5.2. Question 2: Hierarchies for number of second-order quantifiers

The answer is totally known and uniform for picture languages of any dimension. In all cases, the hierar-
chy collapses at its first level. More precisely, Thomas [70] has established that every EMSO sentence over
words is equivalent to a sentence whose monadic quantifier prefix consists of a single existential quantifier.
Matz [50] has proved the same result over 2-pictures in the pixel representation. (This strongly contrasts
with a result by Otto [53] who proves a strict hierarchy at each level for the number of monadic quantifiers
in EMSO over graphs.)

The proof of Matz can be extended (with the same arguments and slight adaptations) to any dimension d,
for both pixel and coordinate representations. In other words, in both representations, all the logical classes
— essentially ESO(arity @) and ESO(V*, arity d) — we have studied over picture languages of any dimension
are not modified by the requirement there should be only one ESO relation symbol.

11.6. Logical characterizations of complexity classes for linear time or time bounds defined up to a constant
factor

Notice that Theorem 9.1 that characterizes the linear time complexity class of nondeterministic cellular
automata is very similar to the following result about time complexity O(n?), for any d > 1, of nondetermin-
istic RAMs, by the present authors [28]:

NTIME;,m(n?) = ESOF(var d) = ESOF(V?, arity d).

The main difference is that this latter result involves the existential second-order logic with functions (ESOF)
instead of or in addition to relations and holds in all kinds of structures without restriction: pictures, struc-
tures of any arity and any type, etc. It is also interesting and maybe surprising to notice that, in those results,
the time degree d of a RAM computation plays the same role as the dimension d + 1 of the time-space
diagram of a linear time bounded computation for a d-dimensional cellular automaton.

Both results attest of the robustness of the time complexity classes NTIME, m(n%) and NLINga. They
stress the significance of the RAM’s as a sequential model, and of the cellular automata as a parallel model.

Also, note that such machine-independent characterizations of complexity classes for linear time or other
time bounds defined up to a constant factor are rather rare in the literature: as other examples in finite model
theory we only know the logical characterization of linear time of nondeterministic Turing machines by
Lautemann et al. [42] and the algebraic characterization of linear time of deterministic RAM’s by Grandjean
and Schwentick [30].

Acknowledgments

We warmly thank Gaétan Richard for a number of stimulating discussions and for having obtained in
collaboration with us several results of this paper, in particular Proposition 4.10 and Proposition 5.2. The first
author is grateful to Véronique Terrier for her suggestions, specially about the implicit links between cellular
automata and recognizable picture languages, and for the many references to the literature she gave us.
We also thank Oliver Matz for several interesting discussions and informations about recognizable picture
languages and Nicolas Bacquey for having pointed us a mistake in a previous proof of Proposition 4.10.

References

[1] R. Barbanchon and E. Grandjean. Local problems, planar local problems and linear time. In Julian C.
Bradfield, editor, CSL, volume 2471 of Lecture Notes in Computer Science, pages 397—411. Springer,
2002.

62



[2] Bernd Borchert. Formal language characterizations of P, NP, and PSPACE. J. of Automata, Languages
and Combinatorics, 13(3/4):161-183, 2008.

[3] E. Borger, E. Gridel, and Y. Gurevich. The Classical Decision Problem. Springer, 482 pages, Univer-
sitext, 2001.

[4] J. R. Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math.,
6:66-92, 1960.

[5] Stephen A. Cook. A hierarchy for nondeterministic time complexity. In Patrick C. Fischer, H. Paul
Zeiger, Jeffrey D. Ullman, and Arnold L. Rosenberg, editors, STOC, pages 187-192. ACM, 1972.

[6] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language theoretic
approach. Cambridge University Press, to appear in 2012.

[71 M. Delorme and J. Mazoyer, editors. Cellular automata: A parallel model. Springer, 373 pages,
Mathematics and Its Applications, 1998.

[8] A.Durand and E. Grandjean. First-order queries on structures of bounded degree are computable with
constant delay. ACM Trans. Comput. Log., 8(4), 2007.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[10] C.C. Elgot. Decision problem of finite automata design and related arithmetics. Trans. Amer. Math.
Society, 98:21-51, 1961.

[11] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp, editor,
Complexity of Computation, SIAM-AMS Proceedings, pages 4373, 1974.

[12] R. Fagin. Monadic generalized spectra. Zeitschrift fiir Mathematische Logik und Grundlagen der
Mathematik, 21:89-96, 1975.

[13] R. Fagin. A spectrum hierarchy. Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik,
21:123-134, 1975.

[14] R. Fagin. Finite-model theory—a personal perspective. Theoretical Computer Science, 116(1):3-31,
1993.

[15] R. Fagin. Comparing the power of monadic NP games. In D. Leivant, editor, Logic and Compu-
tational Complexity, Lecture Notes in Computer Science, Vol. 960, pages 414-425. Springer-Verlag,
Berlin/New York, 1995.

[16] R. Fagin, L. Stockmeyer, and M. Y. Vardi. On monadic np vs. monadic co-np. Information and
Computation, 120(1):78-92, July 1995.

[17] A. Ferreira and H. Reichel, editors. STACS 2001, 18th Annual Symposium on Theoretical Aspects of
Computer Science, Dresden, Germany, February 15-17, 2001, Proceedings, volume 2010 of Lecture
Notes in Computer Science. Springer, 2001.

[18] J. Flum, E. Gridel, and T. Wilke, editors. Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas], volume 2 of Texts in Logic and Games. Amsterdam University Press, 2008.

63



[19] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium ’81, pages 105—
135. North Holland, 1982.

[20] D. Giammarresi and A. Restivo. Recognizable picture languages. IJPRAI, 6(2&3):241-256, 1992.

[21] D. Giammarresi and A. Restivo. Two-dimensional finite state recognizability. Fundam. Inform.,
25(3):399-422, 1996.

[22] D. Giammarresi and A. Restivo. Two-dimensional languages, volume 3- Beyond words of Handbook
of Theoretical Computer Science, chapter 4, pages 215-267. Springer-Verlag New York, 1997.

[23] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over rectangular
pictures and recognizability by tiling systems. Information and Computation, 125(1):32 — 45, 1996.

[24] Dora Giammarresi. Computing languages by (bounded) local sets. In Zoltdn Esik and Zoltén Fiilop,
editors, Developments in Language Theory, volume 2710 of Lecture Notes in Computer Science, pages
304-315. Springer, 2003.

[25] E. Grédel. Capturing complexity classes by fragments of second order logic. Theoretical Computer
Science, 101:35-57, 1992. A preliminary version appeared in Proceedings of 6th IEEE Conference on
Structure in Complexity Theory, Chicago 1991, 341-352.

[26] E. Gridel, Ph. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and S.Weinstein.
Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. Springer, 2007.

[27] E. Grandjean. First-order spectra with one variable. Journal of Computer and System Sciences, 40:136—
153, 1990.

[28] E. Grandjean and F. Olive. Graph properties checkable in linear time in the number of vertices. Journal
of Computer and System Sciences, 68:546-597, 2004.

[29] E. Grandjean and F. Olive. Descriptive complexity of picture languages. In Proc. Annual Conference
of the EACSL (CSL’12), LNCS, 2012.

[30] E. Grandjean and T. Schwentick. Machine-independent characterizations and complete problems for
deterministic linear time. SIAM Journal on Computing, 32(1):196-230, 2002.

[31] M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM Trans. Comput.
Log., 1(1):112-130, 2000.

[32] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. Addison, L. Henkin, and
A. Tarski, editors, The Theory of Models, pages 132—145. North Holland, 1965.

[33] L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical characterizations over finite
models. J. Symb. Log., 64(4):1751-1773, 1999.

[34] N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.

[35] C.Iwamoto, H. Yoneda, K. Morita, and K. Imai. A time hierarchy theorem for nondeterministic cellular
automata. In Jin yi Cai, S. Barry Cooper, and Hong Zhu, editors, TAMC, volume 4484 of Lecture Notes
in Computer Science, pages 511-520. Springer, 2007.

64



[36] A.S. Kahr, E.F. Moore, and H. Wang. Entscheidungsproblem reduced to the forall-exists-forall case.
Proc. Nat. Acad. Sci. U.S.A, vol.48:pp.365-377, 1962.

[37] J. Kari. Basic Concepts of Cellular Automata, pages 3—24. Volume 1 of Rozenberg et al. [58], 2012.

[38] M. Kutrib. Nondeterministic cellular automata and languages. Int. J. General Systems, 41(6):555-568,
2012.

[39] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Internal Report IT-94-
264, Laboratoire d’Informatique Fondamentale de Lille, Université de Lille, France, 1994.

[40] M. Latteux and D. Simplot. Context-sensitive string languages and recognizable picture languages.
Inf. Comput., 138(2):160-169, 1997.

[41] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Theor. Comput. Sci.,
178(1-2):275-283, 1997.

[42] C. Lautemann, N. Schweikardt, and T. Schwentick. A logical characterisation of linear time on non-
deterministic turing machines. In Proc. 14th Symposium on Theoritical Aspect of Computer Science
(STACS’99), pages 143—-152, 1999.

[43] L. Libkin. Logics with counting and local properties. ACM Trans. Comput. Log., 1(1):33-59, 2000.
[44] L. Libkin. Logics capturing local properties. ACM Trans. Comput. Log., 2(1):135-153, 2001.
[45] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[46] Steven Lindell. A normal form for first-order logic over doubly-linked data structures. Int. J. Found.
Comput. Sci., 19(1):205-217, 2008.

[47] K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns. Journal of Statisti-
cal Physics, 91(5-6):909-951, 1998.

[48] O.Matz and N. Schweikardt. Expressive power of monadic logics on words, trees, pictures, and graphs.
In Flum et al. [18], pages 531-552.

[49] O.Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation hierarchy over grids and
graphs. Inf. Comput., 179(2):356-383, 2002.

[50] Oliver Matz. One quantifier will do in existential monadic second-order logic over pictures. In MFCS,
pages 751-759, 1998.

[51] Oliver Matz and Wolfgang Thomas. The monadic quantifier alternation hierarchy over graphs is infi-
nite. In LICS, pages 236244, 1997.

[52] R. McNaughton and S. Papert. Counter-free automata. M.1.T. Press Cambridge, Mass., 1971.

[53] Martin Otto. A note on the number of monadic quantifiers in monadic Z} . Inf. Process. Lett., 53(6):337—
339, 1995.

[54] Y. Ozhigov. Computations on nondeterministic cellular automata. Inf. Comput., 148(2):181-201, 1999.

65



[55] Victor Poupet. Cellular automata: Real-time equivalence between one-dimensional neighborhoods. In
STACS, pages 133-144, 2005.

[56] K. Reinhardt. On some recognizable picture-languages. In MFCS, pages 760-770, 1998.

[57] K. Reinhardt. The #a = #b pictures are recognizable. In STACS, pages 527-538, 2001.

[58] G.Rozenberg, T. Bick, and J.N Kok, editors. Handbook of Natural Computing. Springer, 2012.
[59] A. Schonhage. Storage modification machines. SIAM J. Comput., 9(3):490-508, 1980.

[60] N. Schweikardt. The monadic quantifier alternation hierarchy over grids and pictures. In CSL, pages
441-460, 1997.

[61] T. Schwentick. On winning ehrenfeucht games and monadic np. Ann. Pure Appl. Logic, 79(1):61-92,
1996.

[62] T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with applications to games
and automata. In Michel Morvan, Christoph Meinel, and Daniel Krob, editors, STACS, volume 1373
of Lecture Notes in Computer Science, pages 444—454. Springer, 1998.

[63] Detlef Seese. Linear time computable problems and logical descriptions. Electr. Notes Theor. Comput.
Sci., 2:246-259, 1995.

[64] Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struc. in Computer
Science, 6:505-526, 1996.

[65] J.I. Seiferas, M.J. Fischer, and A.R. Meyer. Separating nondeterministic time complexity classes. J.
ACM, 25(1):146-167, 1978.

[66] R. Sommerhalder and S. C. van Westrhenen. Parallel language recognition in constant time by cellular
automata. Acta Inf., 19:397-407, 1983.

[67] V. Terrier. Language Recognition by Cellular Automata, pages 123—-158. Volume 1 of Rozenberg et al.
[58], 2012.

[68] J.W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a decision
problem of Second-Order logic. Mathematical Systems Theory, 2(1):57-81, March 1968.

[69] W. Thomas. On logics, tilings, and automata. In Javier Leach Albert, Burkhard Monien, and Mario
Rodriguez-Artalejo, editors, ICALP, volume 510 of Lecture Notes in Computer Science, pages 441—
454. Springer, 1991.

[70] Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25(3):360-376,
1982.

[71] B.A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J., 3:103—
131, 1962. English translation in: AMS Transl. 59 (1966) 23-55.

[72] P. van Emde Boas. Dominos are forever. Proc. Ist GTI Workshop, UGH, Paderborn, pages 75-95,
1982.

66



[73] P.van Emde Boas. The convenience of tilings. Complexity, Logic and Recursion Theory, Lecture Notes
in Pure and Applied Mathematics, 187:331-363, 1997.

[74] H. Wang. Dominoes and the aea case of the decision problem. In Proceedings of the Symposium on
the Mathematical Theory of Automata, April 1962, New York, Brooklyn: Polytechnic Press, pages pp.
23-55., 1963.

[75] H. Wang. Computation, Logic, Philosophy. A Collection of Essays. Beijing: Science Press. Dordrecht:
Kluwer Academic Publishers, 1990.

67



	Introduction: context and discussion
	Preliminaries
	Recognizable picture languages and their logical characterizations
	Linear time of cellular automata and its logical characterization
	A first normalization of ESO sentences with d variables on coordinate structures
	"Sorting" the logic: some motivations and a preliminary example
	Sorting guessed relations
	Sorting input relations
	Recapitulation of the results: power/limits of coordinate/pixel encodings
	Hierarchy results
	Conclusion: final remarks, additional results and open problems
	Bibliography

