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Spatiotemporal MRF Approah to Video Segmentation:Appliation to Motion Detetion and Lip Segmentation.F. Luthon, A. Caplier, M. Li�evinLaboratoire des Images et des SignauxInstitut National Polytehnique de GrenobleLIS, INPG, 46 avenue F�elix-Viallet38031 Grenoble Cedex, FraneTel: +33 (0)4 76 57 43 72 Fax: +33 (0)4 76 57 47 90Email: Frank.Luthon�inpg.frSignal Proessing, 76(1):61-80, July 1999AbstratIn this paper, a spatiotemporal strategy for image sequene analysis is proposed: a videosequene is proessed as a 3-D data bath instead of a series of 2-D images.Applying this approah to motion detetion, a 3-D Markovian model assoiated with a spa-tiotemporal relaxation is de�ned. Using a 3-D neighbourhood of pixels for modelling spatiotem-poral interations, robust results are obtained for deteting moving objets in noisy sequenes orin the ase of overlapping motion.In order to improve the performane to detet poorly-textured objets or very slow motion,the algorithm is integrated in a spatiotemporal multiresolution sheme. The data pyramid is builtby using 3-D low-pass �ltering and 3-D subsampling. Robust results for syntheti and real-worldoutdoor image sequenes are reported.This approah is also applied suessfully to speaker's lip segmentation in image sequenes, foraudiovisual teleommuniation.Key words: motion detetion, image sequenes, Markov Random Field (MRF), spatiotempo-ral approah, multiresolution, lip segmentation.R�esum�eCet artile pr�esente une approhe spatio-temporelle pour l'analyse de s�equenes d'images1 :une s�equene est trait�ee omme un ot de donn�ees �a trois dimensions au lieu d'une suessiond'images �a deux dimensions.L'utilisation de ette approhe pour la d�etetion de mouvement onduit �a la d�e�nition d'unmod�ele markovien 3-D assoi�e �a une relaxation spatio-temporelle. Grâe �a une mod�elisation �nedes interations spatio-temporelles entre les pixels d'un voisinage ubique, des r�esultats robustessont obtenus pour la d�etetion d'objets mobiles dans une s�ene tr�es bruit�ee et d'objets dont lemouvement s'e�etue ave reouvrement d'une image �a la suivante.Dans le but d'am�eliorer l'aptitude de l'algorithme �a d�eteter des objets tr�es peu textur�es etdes objets de mouvement tr�es lent, on d�e�nit un adre de multir�esolution spatio-temporelle. Lapyramide de donn�ees est onstruite par une suession de �ltrages et de sous-�ehantillonnagesappliqu�es dans haune des trois dimensions. L'int�erêt de la multir�esolution spatio-temporelle estmis en �evidene par divers r�esultats de d�etetion de mouvement sur des s�enes synth�etiques etr�eelles.Une autre appliation de ette approhe porte sur la segmentation des l�evres d'un louteur,dans un ontexte de t�el�eommuniations audio-visuelles.1A paper in Frenh is also available [5℄. 1



1 IntrodutionMotion detetion and region-based segmentation are important issues in image sequene analysis oroding, with appliations in video-surveillane and video-ommuniation.Although three dimensions (x; y; t) are required to desribe an image sequene, most of the meth-ods dealing with sequene analysis are time sequential (eah image is proessed in turn), and workon a pair of onseutive images. This might indue limitations e.g. for deteting subpixel motion2.A ommon way to integrate motion information over a larger temporal domain is to use reursivetemporal �ltering suh as Kalman �ltering.In this paper, another strategy is proposed. The point is to onsider a video sequene not as animage series, but as a 3-D data bath, taking into aount spatial and temporal dimensions within asingle proess. This approah is oherent with the fat that a moving objet overs a volume in the(x; y; t) spae.The sope of the paper is twofold: to give an insight into the pros and ons of the spatiotemporalapproah, together with fousing on pratial appliations. The performane of this approah is indeedillustrated with two appliations: robust motion detetion and lip segmentation in video sequenes.As for robust motion detetion, a 3-D non-separable Markov Random Field (MRF) based algo-rithm is de�ned. This method yields better results than the separable version of the same algorithmin the ase of noisy sequenes or overlapping motion3. The same observations (temporal variationsof the intensity funtion) as in the separable ase are retained, the enhaned performane of the3-D algorithm oming from the improvement of the MRF model whih is better at taking temporalonstraints into aount.To detet subpixel motion and uniform moving objets4, a larger spatiotemporal domain must betaken into aount. This is done by omputing observations on a spatiotemporal pyramid.In setion 2, a separable motion detetion algorithm is presented. The algorithm is inspired bythe work of Bouth�emy et al. [3℄. There are two major di�erenes between the algorithm desribed in[3℄ and the one presented here. The �rst di�erene is the way temporal information is dealt with. In[3℄, the proessing of eah image is done in two steps ("two-pass algorithm"). An initial detetion ofmoving areas at time t is derived when onsidering images I(t�1) and I(t). This detetion is updatedwhen onsidering images I(t) and I(t + 1). Two suessive label �elds are always simultaneouslyonsidered (optimization in two passes), and the deision about unovered areas is postponed to thenext proessing pass. In setion 2, we propose a "one-pass algorithm": a single label �eld (the urrentone) is optimized at eah time (and only one). It makes implementation easier, for an equivalentquality of results. This is made possible thanks to another way of doing initialisation: we use a oarseestimate of the future label �eld, instead of repeting the past as is done in [3℄. Unovered areas arehandled by giving more weight to the future than to the past (anisotropy in temporal interations).The seond di�erene onerns omputational omplexity: we use four model parameters (se-tion 2.4), instead of �ve in [3℄, sine the funtion expressing the link between observations and labelsis simpler in our ase. The deision about a temporal lique (past or future) requires only one on-ditional test to hoose among two on�gurations, while eight di�erent on�gurations are tested inBouth�emy's algorithm (Table 1 in [3℄). The number of 2-D �elds required for the relaxation is �vein our ase (Fig. 1-b), instead of six for Bouth�emy's algorithm (Fig. 2 in [3℄). Hene, the amount ofmemory required for data storage is minor in our ase. Therefore, the two-step algorithm proposedin [3℄ is less adequate for real-time implementation (i.e. proessing at video rate).Sine real-time proessing is of major onern for pratial video appliations, the paper ad-dresses on several oasions the issues of omputation ost and hardware implementation, either ongeneral purpose programmable devies (digital signal proessors (DSPs) or video proessors), parallelmahines (SIMD or MIMD) or dediated iruits (ASICs, VLSI ellular analog networks).2Subpixel motion means displaements of less than one pixel between two images (i.e. slow motion).3Overlapping motion means that the intersetion of the masks of a moving objet at times t� 1 and t is not empty.4Uniform moving objets means moving objets that are poorly-textured, i.e. have uniform intensity.2



The algorithm whih is presented in setion 2 is alled 3-D separable motion detetion algorithmin the sense that spae and time have distint roles in the proessing (hereafter, the algorithm isreferred to as the "separable algorithm").Its 3-D non separable ounterpart is desribed in setion 3. A omparison between the performaneof both algorithms is made. In setion 4, it is shown how the integration of the 3-D algorithmin a spatiotemporal multiresolution framework allows subpixel motion and poorly-textured movingobjets to be deteted. In setion 5, another appliation of this approah is presented, for speaker'slip segmentation in a ontext of audiovisual teleommuniation. A disussion in setion 6 onludesthe paper.2 Separable MRF ModelMRF modelling is widely used for motion analysis, either for detetion, estimation, or segmentation.For a state of the art about image motion analysis and an extensive bibliography, the reader mayrefer to [13℄.2.1 Observations and LabelsThe purpose of motion detetion is to loalize moving and stati areas in a dynami sene. It is abinary labelling problem that onsists in attributing to eah pixel or site s = (x; y) of image S attime t one of the two labels: ls = a if s belongs to a moving area, ls = b if s belongs to the statibakground.With the assumptions of quasi-onstant illumination (very small lighting variations between t� 1and t) and stati amera, motion information is losely related to temporal hanges of the intensityfuntion Is(t). Therefore, observations are given by:os = jIs(t)� Is(t� 1)j: (1)The following notation is used: l = fls; s 2 Sg and o = fos; s 2 Sg represent one partiularrealisation at time t of the label and observation �elds L and O, respetively5.Given a realisation o of �eld O, the aim is to �nd the most probable on�guration l of �eldL. This is done by using the Maximum A Posteriori riterion (MAP). From Bayes theorem andthe equivalene between MRF and Gibbs distribution, it is known that the maximisation of the aposteriori probability is equivalent to the minimisation of an energy funtion [9℄:maxl P (L = l jO = o) () minl U(l; o): (2)2.2 Energy FuntionsThe energy funtion is lassially the sum of two terms (orresponding to prior knowledge and data-link, respetively): U(l; o) = Um(l) + Ua(o; l): (3)The model energy Um(l) is a regularisation term. It puts a priori onstraints (spatiotemporal homo-geneity) on the masks of moving objets, erasing isolated points due to noise. Its expression is givenby: Um(l) =X2C V(ls; ln) (4)where  denotes any of the binary liques de�ned in the neighbourhood of Fig. 1-a. A binary lique5Every time the instant onsidered is di�erent from the urrent time t, a temporal index will be added in the notation.3
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,,,Figure 1: a) Neighbourhood and binary liques. b) Separable algorithm blok diagram (l0 denotes aoarse estimate or initialisation of label �eld L). = (s; n) is any pair of distint sites in the neighbourhood, inluding the urrent pixel s and any ofthe neighbours n. C is the set of all liques. V(ls; ln) is an elementary potential funtion assoiatedwith eah lique  = (s; n). In order to put homogeneity onstraints into the model, it is de�ned as:V(ls; ln) = ( �� if ls = ln+� if ls 6= ln (5)where the positive parameter � depends on the nature of the lique: a parameter �s is de�ned forspatial liques, a parameter �p for past temporal lique and a parameter �f for future temporal lique.The link between labels and observations is expressed by the relationship: os = 	(ls) + gs whereg is a Gaussian unorrelated entered noise with variane �2 and:	(ls) = ( 0 if ls = b� > 0 otherwise. (6)	 models the observations: if a pixel is stati, no temporal hange ours in the intensity funtion andthe observation should be zero; if a pixel is mobile, a hange ours and the observation is supposedto take a positive value lose to �, whih represents the average value of non-zero observations.The link-to-data energy Ua(o; l) (attahment energy) is derived from the above funtion:Ua(o; l) = 12�2Xs2S[os �	(ls)℄2 (7)where the observation variane �2 is evaluated on-line for eah image.2.3 Spatial Deterministi RelaxationFig. 1-b shows the blok diagram of the separable algorithm. The algorithm works on three on-seutive frames. Suppose the past label �eld lt�1 has been determined as the result of the previousoptimization. The urrent label �eld is initialised with a binary map l0t derived from observation�eld ot, and a oarse estimate l0t+1 of the future label �eld is also derived from binarisation of �eldot+1. The binary maps are obtained with the likelihood method proposed in [10℄, but ould also beomputed with a simple thresholding method, for omputation savings purpose.To �nd the minimum of the energy funtion, the deterministi relaxation algorithm ICM (IteratedConditional Modes) is used [2℄. For eah pixel s of the urrent image, the two labels a and b aretested and the label whih indues the minimum loal energy in the neighbourhood is kept. Theproess iterates over the image until onvergene, one iteration orresponding to the sanning in xand y dimensions of the image at time t. The stopping riterion for onvergene of the relaxation is4



based on the relative derease of the global energy funtion: �U(l; o) = U(l; o) = 0:01%. Then, thenext image of the sequene is proessed.Note that, sine the algorithm works with three frames, label �elds are obtained with a delay ofone frame.2.4 Parameter SettingThe separable algorithm depends on �ve parameters: four parameters for MRF modelling (�s; �f ; �p; �),plus one threshold parameter � for binarisation of observations. From various experiments both onreal-world and syntheti image sequenes, the model parameters are �xed to the following values:�s = 20, �p = 10, �f = 30, � = 10. This manual learning phase for parameter tuning was based onempirial observations: ontextual homogeneity of deteted masks, good agreement between ontoursof masks and atual moving objets, and insensitivity to aquisition noise. Unsupervised estima-tion methods, like Expetation-Maximisation [7℄, ould also be used to estimate model parameters�s; �f ; �p. But they are prohibitive in terms of omputation ost. Morevover high preision in thedetermination of these values is not required (robustness of MRF method insensitive to a slight hangeof these values). Parameter �s ontrols spatial homogeneity and may be dereased in ase of verynoisy sequenes. Parameters �f and �p ontrol temporal homogeneity. More weight is given to thefuture by taking �f > �p, so that the bakground area whih has been unovered during motion isfaster eliminated. Indeed, in suh a region, the past temporal neighbour is a-labelled while the futureone is b-labelled. But the good label is the stati one (ls = b), given by the future information. Notethat temporal homogeneity onstraint an be relaxed in ase of fast motion.Parameter � stands for some kind of average value of non-zero observations. This parameter mayeither be omputed on-line for eah image as explained in [3℄, or �xed to an arbitrary value beforeproessing. From experimental tests, on-line omputation of � for eah image does not signi�antlyimprove motion detetion results.The threshold � required for binarisation (omputation of initial binary maps with a methodderived from [10℄) is the only parameter whih must be adjusted for eah sequene. Here, it isdetermined manually (o�-line learning phase at the beginning of video aquisition or before runningthe automati proessing). One ould use likelihood tests suh as desribed in [10, 1℄ to determinethis deision threshold automatially, but at the expense of omputation ost. A too low value of� indues many false detetions. A too high value of � erases moving pixels in overlapping motionareas. For all sequenes aquired with the same amera under the same lighting onditions, the samevalue of � may be kept (e.g. � = 32 for all street sequenes presented in this paper).2.5 Computational ComplexityThe proessing rate is evaluated in the ase of images of size 128 � 128. When implemented ona Spar-10 workstation with C programming, the proessing of an image takes about 1:8s of putime (� 0:4s per iteration). This orresponds roughly to N0 � Nx � Ny � Ni = 2:5 107 elementaryoperations. N0 = 400 is the number of elementary operations (additions, multipliations, onditionaltests) involved in the omputation of the loal energy assoiated with eah pixel (1 multipliation =10 additions). Nx = 128 and Ny = 128 represent the image dimensions and Ni = 4 is the averagenumber of iterations until onvergene.To ahieve real-time proessing, various hardware implementations (on parallel SIMD mahine,DSP board, or ellular VLSI analog network) have been either developped or simulated [6, 8℄. Aproessing rate of 12 to 25 frames per seond is then ahieved. Another implementation on a Pro-grammable Video Proessor (PVP) for teleommuniation appliations is now under study. The PVPis an intensive omputing unit with a parallel SIMD arhiteture (8 sub-proessors onneted to ashared memory of 16 Kbytes) and seven I/O ports for data ow irulation. It o�ers a high omputingpower (2 Gops) with a high I/O rate (4 Gbits/s). For images of size 256� 256 and a lok frequeny5



of 70 MHz, a proessing rate of 150 frames/s is obtained when implementing the algorithm on thePVP software simulator.2.6 Experimental ResultsThe separable algorithm was tested both on syntheti and real-world image sequenes. A typialexample for video-surveillane appliation (traÆ ontrol) is shown in Fig. 2. This street sequene,

Figure 2: Top) Street sequene with a moving pedestrian; Bottom) Masks of the moving body detetedafter relaxation (blak = moving label, white = stati label).aquired with a standard video amera, ontains a single pedestrian walking on the pavement. Theimage sequene is not very noisy and motion of the pedestrian is large enough between two images,allowing a good detetion. The mask of the moving body deteted in the image plane is given at fouronseutive instants.3 3-D Non Separable MRF Model3.1 Spatiotemporal RelaxationAlthough the separable algorithm integrates motion information from three onseutive frames, onlythe urrent frame is proessed at eah time (Fig. 1-b). The 3-D non separable model for motiondetetion is based on the intuitive idea that, by taking into aount more than three onseutiveframes of the sequene, the analysis of motion may be improved. Therefore, the video sequene is nolonger onsidered as an image series but as a 3-D data bath. L and O are now 3-D random �elds(or volumes).To �nd the minimum of the energy funtion, a spatiotemporal version of ICM is required. The keypoint is that, at eah iteration, the relaxation runs over temporal setions of length Nt (Fig. 3). Thesanning is done not only in spatial dimensions (x; y) at a given time t, but in the three dimensions(x; y; t) together. It is performed bak-and-forth spatially and temporally. One iteration orrespondsto the sanning of a whole temporal setion. All frames of the temporal setion are proessed together.After onvergene of ICM, labels of all pixels inluded in that setion are available.All along the paper, we refer to the 3-D non-separable motion detetion algorithm as "the 3-Dalgorithm".3.2 A Priori ModelThe mathematial framework of MRF modelling remains the same. The relationships of setion2 still hold, sine there is no restrition about the dimensions of �elds L and O. However, �eldsL and O are now supposed to be spatiotemporal 3-D random �elds, bringing about the followinghanges: in Eq. (7), S represents now a temporal setion of Nt images, instead of a single image.The neighbourhood struture assoiated with L is now a omplete spatiotemporal ube (Fig. 4), and6
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lique parameters (� in Eq. (5)) have to be rede�ned as funtions of sites: �(s; n). Moreover, a weightparameter � is added in the global energy funtion for balaning Um(l) and Ua(o; l) inuenes in thisextended neighbourhood: U(l; o) = Um(l) + � Ua(o; l): (8)We suppose that the proposed neighbourhood ontains all the dependenies of pixel s. This is thesimplest 3-D neighbourhood. One ould inrease in spae and time the size of the neighbourhood,but at the expense of omputation ost. In this spatiotemporal neighbourhood, three kinds of binaryliques are de�ned: spatial, temporal and spatiotemporal (Fig. 5). They di�er aording to their
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Figure 5: The three types of binary liques.spatial and temporal extent (along the x; y and t axis, respetively). Let Æx, Æy; Æt represent in the3-D spae (x; y; t) the oordinates of vetor ���!(s; n) orresponding to a lique with origin in the urrentpixel s (Æ 2 f�1; 0; 1g). Then we get: eight purely spatial liques (horizontal (Æx = �1, Æy = 0,Æt = 0), or vertial (Æx = 0, Æy = �1, Æt = 0), or diagonal (Æx = �1, Æy = �1, Æt = 0)); two purelytemporal liques (Æx = 0, Æy = 0, Æt = �1); sixteen spatiotemporal liques ((Æx = �1, Æy = 0, Æt = �1)or (Æx = 0, Æy = �1, Æt = �1) or (Æx = �1, Æy = �1, Æt = �1)).For the de�nition of lique potentials in Eq. (5), a spatial parameter �s is used to ontrol spatialhomogeneity (no distintion is made between x and y) and a temporal parameter �t for homogeneityin temporal dimension. This is a simple way to take into aount the non-homogeneity between spaeand time. Note that no more distintion is made between past and future, sine the 3-D algorithmwill propagate information forward and bakward in time and allow to hange a deision taken inthe past, espeially as regards unovered areas, thanks to the spatiotemporal nature of iterations (seeomments in setion 3.5).All lique potentials are de�ned with these two parameters, aording to the physial priniplethat interation with the urrent pixel gets weaker when the neighbour is far. Here, interation isassumed to be inversely proportional to the squared distane between sites in the ube. Thus, theatual potential �(s; n) assoiated with a lique  = (s; n) is de�ned by the following expression:�(s; n) = 1d2(s; n) h Æ2x(s;n)�s + Æ2y(s;n)�s + Æ2t (s;n)�t i (9)where d(s; n) = qÆ2x + Æ2y + Æ2t is the Eulidian distane between the urrent pixel s and the onsideredneighbour n. This relationship gives:� �(s; n) = �s for spatial horizontal or vertial liques (d(s; n) = 1);8



� �(s; n) = �s4 for spatial diagonal liques (d(s; n) = p2);� �(s; n) = �t for temporal liques (d(s; n) = 1);� �(s; n) = �s�t2(�s+�t) for spatiotemporal horizontal or vertial liques (d(s; n) = p2);� �(s; n) = �s�t3(�s+2�t) for spatiotemporal diagonal liques (d(s; n) = p3).3.3 Parameter SettingFour model parameters are required: �s = 20, �t = 5, � = 15 and � = 5. These values weredetermined experimentally (as in the separable model). We hoose in pratie �s > �t to give moreimportane to spatial homogeneity whih is supposed to be more reliable than temporal homogeneity(espeially true in the ase of non-deformable objets undergoing arbitrary motion).Parameter � ontrols the inuene of both terms of energy. If it is neessary to reinfore a priorionstraints (beause of bad observations for example), � should be dereased. If it is neessary toreinfore the link to data, � should be inreased.The spei�ation of neighbourhood and lique potentials entirely de�nes the MRF model, so thatatual values of Nt; Nx or Ny do not inuene the modelling. Di�erent values of Nt were tested. Thedefault value is Nt = 8. It may be dereased when spatiotemporal homogeneity onstraint is broken(fast motion) and it may be inreased for very noisy sequenes. Still, at least Nt = 5 images persetion are required beause of temporal boundary e�ets (�rst and last images of a setion are notproessed beause of the lak of past and future neighbours, respetively).3.4 Computational ComplexityAt �rst sight, the omputational omplexity of the 3-D algorithm may be a bottlenek. In pra-tie, handling a video sequene as a 3-D data bath does not drastially inrease the global om-putation time ompared to a serial proessing image per image. On a Spar-10 workstation withC-programming, 4s of pu-time per image of size 128 � 128 are neessary to detet motion. Theinrease of omputation ost omes primarily from the inreased number of iterations required untilonvergene (10 iterations on average instead of 4), the stopping riterion remaining the same as insetion 2.3. The neighbourhood extension (26 neighbours instead of 10) does not indue a majorextra omputing harge.On the other hand, the delay required before obtaining motion detetion results may be ruial.Sine the 3-D algorithm runs on temporal setions of length Nt, all motion masks of a setion areavailable at the same time, when the proessing of the whole setion is ompleted. In order to limitboth the delay and the required memory for software implementation, Nt should be small (anywaymuh lower than the atual length of any video sequene).Therefore, a long sequene should be proessed reursively, by utting it into smaller temporalsetions. Fig. 6 illustrates the reursive proess with Nt = 5. The 3-D algorithm runs in spae andtime on the �rst setion of �ve images: images t � 2, t � 1 and t are proessed together (setion 1);then it runs on the seond setion of �ve images: images t� 1, t and t+ 1 are proessed, with initiallabel �elds l0t�1, l0t given by results of setion 1, et...Every time, one new image is stored and only 5 suessive frames stay in memory. When imaget + 3 is aquired, the �nal result for image t may be omputed, orresponding to a delay of 120ms(3 � 40ms for sequenes aquired at 25 images per seond), whih might be aeptable in manyappliations (e.g. video-surveillane).The reursive proess does not inrease omputational omplexity. Of ourse, eah label �eldis estimated in three onseutive temporal setions. For example, lt is proessed when estimating(lt�2; lt�1; lt) (setion 1), (lt�1; lt; lt+1) (setion 2), and (lt; lt+1; lt+2) (setion 3). But as regards the9
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Figure 7: From top to bottom: 1) Syntheti sequene with impulse noise; 2) Initial binary maps(� = 20); 3) Masks deteted after spatial relaxation (separable algorithm); 4) Masks deteted afterspatiotemporal relaxation (3-D algorithm, Nt = 8).pixel/image) and a dark square whih translates leftward (1 pixel/image). Shown are the binary masksdeteted with the separable and the 3-D algorithms, respetively. One an see that spatiotemporalrelaxation is useful to eliminate bad detetion due to noise (isolated points).10



The 3-D algorithm is also more e�etive in ase of overlapping motion. Indeed, information ispropagated both in spae and time. The sequene of Fig. 8 ontains two moving areas: a groupof three pedestrians walking on the pavement and a biyle riding leftward on the road. With the

Figure 8: From top to bottom: 1) Street sequene; 2) Masks deteted with separable algorithm; 3)Masks deteted with 3-D algorithm; 4) Contours of masks obtained with the 3-D algorithm, super-imposed on the image sequene.separable algorithm, the pedestrians mask is only partially reovered beause of a lak of informationin the overlapping motion area. The separable algorithm implies ausal proessing and does not allowto bak-propagate spatiotemporal onstraints in time and to hange a deision taken in the past. The3-D algorithm, in ontrary, makes it possible to bak-propagate information in time and to fullyreover the pedestrians mask for eah image of the sequene. In the bottom of Fig. 8, the preisionof the masks in terms of ontours is shown: the upper mask orresponds to the group of pedestrians,while the lower mask orresponds to the biyle.4 Spatiotemporal Multiresolution FrameworkBoth versions of the algorithm (separable and 3-D) yield poor results in ase of uniform intensitymoving areas or subpixel motion. In suh ases, although objets are moving, temporal variations ofthe intensity funtion are almost zero (observations of poor quality). To solve this problem, the 3-Dalgorithm is run on a spatiotemporal pyramid of data with a oarse-to-�ne strategy. Spatial �lteringis a ommon way to deal with large uniform intensity moving areas. Temporal �ltering is e�etive inorder to deal with subpixel motion.Multiresolution may also improve the initialisation step for spatiotemporal relaxation. Indeed ithas been onjetured that multiresolution analysis smoothes the energy funtion [11℄, making it easierto �nd the global minimum. This may be ruial when a deterministi relaxation algorithm like ICMis used, sine it may get stuk in the �rst enountered loal minimum of the energy funtion in aseof bad initialisation.4.1 Spatiotemporal Low-Pass PyramidThe spatiotemporal struture of the 3-D MRF model suggests to build not only a spatial but aspatiotemporal pyramid. The basi onvolution kernel is the binomial low-pass �lter 14 [1 2 1℄ whih is11



applied in the three dimensions x; y and t. This gives the 3-D onvolution kernel of Fig. 9-a. Inspired
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Figure 10: Spatiotemporal pyramid: original sequene in top row, and the three spatiotemporal levelsbelow (k = 0; 1; 2).size of eah image by a fator of 4 and the length of the sequene by a fator of 2 at eah resolutionlevel.The 3-D algorithm is run at eah level of the spatiotemporal low-pass pyramid. The strategyis oarse-to-�ne: the algorithm starts at the lowest resolution level (kmax). After spatiotemporalinterpolation (Fig. 11), the result of relaxation at level k is used to initialise relaxation at level k� 1.Running the algorithm on this pyramid gives a multiresolution label �eld. At eah level, the label�eld is optimised aording to observations at the orresponding level in the spatiotemporal pyramid12
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Figure 13: From top to bottom: 1) Four onseutive images of Trevor Sequene; 2) Monoresolu-tion observations; 3) Multiresolution observations, 3 resolution levels (k = 0; 1; 2). All displays arenormalised in order to span over the full available dynami range [0; 255℄.
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parameter �, whih stands for the average value of non-zero observations, has to be redued in thesame proportion along the pyramid, i.e. �k = �0=3k. Sine observations derease by a fator of about3, the observation variane �2 dereases by a fator of about 9, so that the ratio in Eq. (7) remainsonstant.Seondly, sine spatial and temporal information are integrated in the same way along the pyramid,the parameter ratio �s=�t is kept onstant for all resolution levels.Thirdly, from a qualitative point of view, spatiotemporal interations should get weaker at lowresolution levels, sine two neighbouring pixels are atually far away in the full-resolution imagesequene. The evolution of potentials �(s; n) should be related to the physial distane betweenpixels in a square grid. This an also be stated from a quantitative point of view: at eah resolutionlevel, the physial distane d(s; n) between two pixels is atually doubled beause of subsampling.This leads to a derease of 4 for lique potentials �(s; n) in Eq. (9). For omputational simpliity,this evolution law is simply implemented by adapting the weight fator �k as follows: �k = 4k �0.The global energy is then: U(l; o) = Um(l) + �k Ua(o; l).Finally, parameter � does not need to be adapted along the pyramid, sine the binarisation methodderived from [10℄ (and hene parameter �) is only used for label initialisation at the lowest resolutionlevel kmax. At �ner resolution levels, initialisation is simply performed by interpolating the resultsof lower resolution levels, with no need of �. But ompared to the monoresolution sheme, � mustbe inreased when multiresolution is used (experimental observation). The theoretial explanation ofthe neessary inrease of � with multiresolution level is the inuene of data low-pass �ltering on themethod given in [10℄ for setting the threshold value.4.4 Computational ComplexityThe building of the pyramid is not omputationally expensive: sine the 3-D onvolution kernel ofFig. 9-a is separable, the implementation of the spatiotemporal �ltering is equivalent to the imple-mentation of three 1-D binomial �lters in x, y and t dimensions, respetively.The relaxation at low resolution levels is quik due to the smaller number of sites and thereforeMarkovian onstraints are propagated faster. Compared with the full-resolution level k = 0, the dataow to be proessed at level k = 1 is redued by a fator of 8 (Nx; Ny; Nt derease eah by a fatorof 2). Thus, one iteration at resolution level k is equivalent (in terms of omputation ost) to 1=23kiterations at the �nest resolution level (k = 0).Then, at higher (�ner) resolution levels, fewer iterations are needed ompared to a monoresolutionsheme, beause of a better initialisation propagated from lower resolution levels. So, multiresolutionusually redues the overall number of iterations.The omputation time has been reorded experimentally for many sequenes. The same stoppingriterion as in setion 2.3 was used. In fat, the multiresolution spatiotemporal algorithm does notdrastially speed up the proessing rate. So the main interest of the multiresolution framework here isthe improved performane for deteting subpixel motion and poorly-textured moving areas as shownin next setion, but not omputation savings.4.5 Experimental ResultsFig. 15 presents the masks deteted in a ase of subpixel motion with both versions (mono- andmultiresolution) of the 3-D algorithm. The syntheti sene ontains three mobile objets: a learretangle moving rightward (1 pixel/frame), a dark square moving leftward (1 pixel/frame) and an-other square on the left moving slowly upwards (0.35 pixel/frame). With the 3-D monoresolutionalgorithm, the slowest square is badly deteted. With the multiresolution version of the algorithm,this square is well deteted, starting from the seond resolution level.Fig. 16 presents the masks deteted for the Trevor sequene with both versions (mono- andmultiresolution) of the 3-D algorithm. Monoresolution masks are very fragmented, sine speaker's15



Figure 15: From top to bottom: 1) Syntheti sequene with the lower-left dark square undergoingsubpixel motion; 2) Monoresolution masks; 3) Multiresolution masks (2 levels : k = 0; 1).motion is very slow and the sene ontains many poorly-textured areas (hands, shirt, head). On theontrary, multiresolution masks are spatially and temporally homogeneous. The whole body is fullydeteted, starting from the third resolution level (k = 2).5 Lip SegmentationThe proposed approah was also applied to lip segmentation in olor image sequenes, for audiovisualommuniation between two speakers. Fig. 17 shows the ontext of appliation for a high qualityand low bit rate videophone. It an also be used for man-mahine ommuniation (automati speehreognition) or videoonferening.The speaker wears a light helmet equipped with a miro-amera and a mirophone, so that theamera is �xed with respet to the head. The segmentation is based on the assumption that lips areareas in the fae were red hue and motion predominate.The main steps of the proessing are as follows (details may be found in [12℄). First, a olor videosequene of speaker's fae is aquired under natural lighting onditions and without any partiularmake-up. A logarithmi olor transform is performed from RGB (red, green, blue) to HIS (hue,intensity, saturation) olor spae, in order to gain independene from illumination brightness andnoise.Then, two observations are derived. The �rst observation is omputed from the hue value at eahpixel: it gives information about areas where red hue is most prominent. The seond observation isthe same as in Eq. (1): frame di�erenes between two onseutive images. It gives information aboutmotion areas.From these two thresholded observations, four initial labels (a0, a1, b0, b1) are derived, for odingfour pixel lasses: pixels with (1), respetively without (0) motion, belonging (a), respetively notbelonging (b), to red hue areas.The spatiotemporal MRF approah is then used for regularizing the solution. Some hanges wereintrodued in the model presented in setion 3.2, in order to take into aount better the a prioriknowledge available for this spei� appliation (lip shape and motion). Namely, the spatiotemporalpotential funtion �(s; n) is now inversely proportional to the Eulidian distane (and not the squared16



Figure 16: From top to bottom: 1) Four images of Trevor sequene; 2) Monoresolution masks; 3)Multiresolution masks (3 levels : k = 0; 1; 2).

Figure 17: Context of audiovisual ommuniation: from the image sequene of speaker's fae, geo-metrial features of lips are extrated and provide modelling parameters for talking fae synthesisand animation. 17



distane) between two neighbours. As in setion 3.2, the distane integrates two elementary potentials�s and �t as saling fators. But for this appliation, we fore some spatial anisotropy: �x = 2:�y = �sin order to put emphasize on horizontal on�gurations (geometrial onstraints on lip shape). Thisyields: �(s; n) = 1r� Æx�x�2 + � Æy�y�2 + � Æt�t�2 = �s�tr�2t �Æ2x + 4Æ2y�+ �2sÆ2t : (10)Moreover, in ontrary to setion 3.2, parameters �s and �t are not onstant, but depend on the labelstaken by sites s and n. They are de�ned to onstrain the model to, respetively, spatial homogeneityof labels, and temporal homogeneity of hue when no motion is deteted. For example, �s(ls; ln) isproportional to: jr(s)� r(n)j+ jm(s)�m(n)j, where r(s) and m(s) are binary digits (0 or 1) odingthe presene at pixel s of red hue and motion, respetively. For the de�nition of �t(ls; ln), see Table3 in [12℄.With this modelling, one obtains robust label �elds after relaxation, exhibiting areas in the faewhere red hue and motion are predominant (Fig. 18).

Figure 18: From top to bottom: 1) Sequene of luminane images: male fae without make-up; 2)Initial label �elds; 3) Final label �elds after relaxation: the four labels are shown in gray levels (fromwhite to blak: b1, a1, b0, a0); 4) Sequene of lip masks (ombination of a0 and a1).From the �nal label �eld, a region of interest is determined automatially (mouth bounding boxin Fig. 19). Measurements of geometrial features are performed on lip masks (height and width,
Figure 19: Top) Sequene of luminane images: female fae with soft red make-up; Bottom) Sequeneof lip masks with bounding box superimposed on the luminane.surfae), and used for fae synthesis at the reeiver's end.The proposed method for lip segmentation solves two ruial problems that usually arise in suha ontext: indeed, the proessing gains independene both from lighting onditions and make-up oflips. This is due both to the use of the logarithmi olor transform, and to the robust spatiotemporal18



MRF model whih is e�etive for deteting the elusive ontours of lips and reovering homogeneouslip areas.A parallel implementation of this algorithm on a Programmable Video Proessor is under study.The ahievable proessing rate is estimated to be 13 images/s for images of size 256 � 256.6 DisussionA spatiotemporal strategy for image sequene analysis was presented, and applied suessfully tomotion detetion and lip segmentation in a Markovian framework. It primarily onsists in proessinga video sequene as a 3-D data bath.With suh an approah, improved performane is reported for motion detetion in ase of noisysequenes and in ase of overlapping motion.A 3-D spatiotemporal multiresolution sheme oherent with the 3-D MRF is also proposed. Thismultiresolution approah is eÆient to handle two diÆult ases: subpixel motion and poorly-texturedmoving areas. But in ase of very fast motion, the multiresolution algorithm yields worse results thanthe monoresolution version. This is due to the fat that temporal �ltering indues an averaging ofmotion information over many images, so that it is no longer possible to preisely detet motionboundaries. As a result, motion masks are bigger than atual moving objets. Spatial multiresolutionwithout temporal multiresolution would be bene�ial in that ase, sine it allows to spatially linearizeintensity without temporal blurring. Mono- and multiresolution algorithms being omplementary,it would be interesting to develop a strategy for swithing automatially between both versions ofthe algorithm aording to the analysed sequene. Moreover, the multiresolution pyramid involves3-D low-pass �ltering. In order to limit the blurring e�et, the use of 3-D wavelets (3-D orthogonalhigh-pass and low-pass �lter banks) ould be onsidered.The seond appliation reported here onerns speaker's lip segmentation in a olor video sequene.The interest of the spatiotemporal method, together with a logarithmi olor transform, is supportedby the good quality of results obtained in this hallenging situation (natural images of speaker's faewithout any partiular make-up or lighting).The spatiotemporal approah has also been used to ompute spatiotemporal gradients with splinefuntions (results not reported here). The implementation involves 3-D reursive �lterings. Thus, wedo believe it ould also be applied with suess to optial ow estimation.Referenes[1℄ T. Aah, A. Kaup, R. Mester, "Statistial model-based hange detetion in moving video",Signal Proessing, Vol. 31, No. 2, Marh 1993, pp. 165-180.[2℄ J. Besag, "On the Statistial Analysis of Dirty Pitures", Journal of Royal Statistial Soiety,Vol. B-48, No. 3, 1986, pp. 259-302.[3℄ P. Bouth�emy, P. Lalande, "Reovery of moving objet masks in an image sequene using loalspatiotemporal ontextual information", Optial Engineering, Vol. 32, No. 6, June 1993, pp. 1205-1212.[4℄ P.J. Burt, E.H. Adelson, "The Laplaian Pyramid as Compat Image Code",IEEE Trans. on Communiations, Vol. 31, No. 4, 1984, pp. 532-540.[5℄ A. Caplier, F. Luthon, "Approhe spatio-temporelle pour l'analyse de s�equenes d'images. Appli-ation en d�etetion de mouvement", Traitement du Signal, Vol. 14, No. 2, 1997, pp. 195-208.[6℄ A. Caplier, F. Luthon, C. Dumontier, "Real-Time Implementations of an MRF-based MotionDetetion Algorithm", Real-Time Imaging, Vol. 4, No. 1, February 1998, pp. 41-54.19
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