
HAL Id: hal-00785969
https://hal.science/hal-00785969

Submitted on 7 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kleene Algebra with Tests and Coq Tools for While
Programs
Damien Pous

To cite this version:
Damien Pous. Kleene Algebra with Tests and Coq Tools for While Programs. Interactive Theorem
Proving 2013, Jul 2013, Rennes, France. pp.180-196, �10.1007/978-3-642-39634-2_15�. �hal-00785969�

https://hal.science/hal-00785969
https://hal.archives-ouvertes.fr

Kleene Algebra with Tests
and Coq Tools for While Programs

Damien Pous

CNRS – LIP, ENS Lyon, UMR 5668

Abstract. We present a Coq library about Kleene algebra with tests,
including a proof of their completeness over the appropriate notion of
languages, a decision procedure for their equational theory, and tools for
exploiting hypotheses of a certain kind in such a theory.

Kleene algebra with tests make it possible to represent if-then-else state-
ments and while loops in most imperative programming languages. They
were actually introduced by Kozen as an alternative to propositional
Hoare logic.

We show how to exploit the corresponding Coq tools in the context of
program verification by proving equivalences of while programs, correct-
ness of some standard compiler optimisations, Hoare rules for partial cor-
rectness, and a particularly challenging equivalence of flowchart schemes.

Introduction

Kleene algebra with tests (KAT) have been introduced by Kozen [19], as an
equational system for program verification. A Kleene algebra with tests is a
Kleene algebra (KA) with an embedded Boolean algebra of tests. The Kleene
algebra component deals with the control-flow graph of the programs—sequential
composition, iteration, and branching—while the Boolean algebra component
deals with the conditions appearing in if-then-else statements, while loops, or
pre- and post-assertions.

This formalism is both concise and expressive, which allowed Kozen and oth-
ers to give detailed paper proofs about various problems in program verification
(see, e.g., [3, 19, 21, 23]). More importantly, the equational theory of KAT is de-
cidable and complete over relational models [24], and hypotheses of a certain
kind can moreover be eliminated [11,15]. This suggests that a proof using KAT
should not be done manually, but with the help of a computer. The goal of the
present work is to give this possibility, inside the Coq proof assistant.

The underlying decision procedure cannot be formulated, a priori, as a simple
rewriting system: it involves automata algorithms, it cannot be defined in Ltac,
at the meta-level, and it does not produce a certificate which could easily be
checked in Coq, a posteriori. This leaves us with only one possibility: defining a
reflexive tactic [1,8,14]. Doing so is quite challenging: we basically have to prove
completeness of KAT axioms w.r.t. the model of guarded string languages (the

natural generalisation of languages for KA, to KAT), and to provide a provably
correct algorithm for language equivalence of KAT expressions.

The completeness theorem is far from trivial; we actually have to formalise
a lot of preliminary material: finite sums, finite sets, unique decomposition of
Boolean expressions into sums of atoms, regular expression derivatives, expan-
sion theorem for regular expressions, matrices, automata. . . As a consequence,
we only give here a high-level overview of the involved mathematics, leaving
aside standard definitions, technical details, or secondary formalisation tricks.
The interested reader can consult the library, which is documented [30].

Outline. We first present KAT and its models (§1). We then sketch the complete-
ness proof (§2), the decision procedure (§3), and the method used to eliminate
hypotheses (§4). We finally illustrate the benefits of our tactics on several case-
studies (§5), before discussing related works (§6), and concluding (§7).

1 Kleene Algebra with Tests

A Kleene algebra with tests consists of:

– a Kleene algebra 〈X, ·,+, ·?, 1, 0〉 [18], i.e., an idempotent semiring with a
unary operation, called “Kleene star”, satisfying an axiom: 1 + x · x? ≤ x?

and two inference rules: y · x ≤ x entails y? · x ≤ x and the symmetric one.
(The preorder (≤) being defined by x ≤ y , x+ y = y.)

– a Boolean algebra 〈B,∧,∨,¬,>,⊥〉;
– a homomorphism from 〈B,∧,∨,>,⊥〉 to 〈X, ·,+, 1, 0〉, that is, a function

[·] : B → X such that [a∧ b] = [a] · [b], [a∨ b] = [a]+ [b], [>] = 1, and [⊥] = 0.

The elements of the set B are called “tests”; we denote them by a, b. The elements
of X, called “Kleene elements”, are denoted by x, y, z. We usually omit the
operator “·” from expressions, writing xy for x · y. The following (in)equations
illustrate the kind of laws that hold in all Kleene algebra with tests:

[a ∨ ¬a] = 1 [a ∧ (¬a ∨ b)] = [a][b] = [¬(¬a ∨ ¬b)]

x?x? = x? (x+ y)? = x?(yx?)? (x+ xxy)? ≤ (x+ xy)?

[a]([¬a]x)? = [a] [a]([a]x[¬a] + [¬a]y[a])?[a] ≤ (xy)?

The laws from the first line come from the Boolean algebra structure, while
the ones from the second line come from the Kleene algebra structure. The two
laws from the last line are more interesting: their proof must mix both Boolean
algebra and Kleene algebra reasoning. They are left to the reader as a non-trivial
exercice; the tools we present in this paper allow one to prove them automatically.

1.1 The model of binary relations

Binary relations form a Kleene algebra with tests; this is the main model we are
interested in, in practice. The Kleene elements are the binary relations over a

2

given set S, the tests are the predicates over this set, and the star of a relation
is its reflexive transitive closure:

X = P (S × S)

x · y = {(p, q) | ∃r, (p, r) ∈ x ∧ (r, q) ∈ y}
x+ y = x ∪ y
x? = {(p0, pn) | ∃p1 . . . pn−1,∀i < n, (pi, pi+1) ∈ x}
1 = {(p, p) | p ∈ S}
0 = ∅ [a] = {(p, p) | p ∈ a}

B = P (S)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = S \ a
> = S

⊥ = ∅

The laws of a Kleene algebra are easily proved for these operations; note however
that one needs either to restrict to decidable predicates (i.e., to take S → bool

or {p: S → Prop | forall p, S p ∨¬S p} for B), or to assume the law of excluded
middle: B must be a Boolean algebra, so that negation has to be an involution.
This choice for B is left to the user of the library.

This relational model is typically used to interpret imperative programs:
such programs are state transformers, i.e., binary relations between states, and
the conditions appearing in these programs are just predicates on states. These
conditions are usually decidable, so that the above constraint is actually natural.

The equational theory of Kleene algebra with tests is complete over the rela-
tional model [24]: any equation x = y that holds universally in this model can be
proved from the axioms of KAT. We do not need to formalise this theorem, but
it is quite informative in practice: by contrapositive, if an equation cannot be
proved from KAT, then it cannot be universally true on binary relations, meaning
that proving its validity for a particular instantiation of the variables necessarily
requires one to exploit additional properties of this particular instance.

1.2 Other models

We describe two other models in the sequel: the syntactic model (§1.3) and the
model of guarded string languages (§1.4); these models have to be formalised to
build the reflexive tactic we aim at.

There are other important models of KAT. First of all, any Kleene algebra
can be extended into a Kleene algebra with tests by embedding the two-element
Boolean lattice. We also have traces models (where one keeps track of the whole
execution traces of the programs rather than just their starting and ending
points), matrices over a Kleene algebra with tests, but also models inherited
from semirings like min-plus and max-plus algebra. The latter models have a de-
generate Kleene star operation; they become useful when one constructs matrices
over them, for instance to study shortest path algorithms.

Also note that like for Kleene algebra [9, 20, 29], KAT admits a natural
“typed” generalisation, allowing for instance to encompass heterogeneous bi-
nary relations and rectangular matrices. Our Coq library is actually based on
this generalisation, and this deeply impacts the whole infrastructure; we however
omit the corresponding details and technicalities here, for the sake of clarity.

3

1.3 KAT expressions

Let p, q range over a set Σ of letters (or actions), and let a1, . . . , an be the
elements of a finite set Θ of primitive tests. Boolean expressions and KAT ex-
pressions are defined by the following syntax:

a, b ::= ai ∈ Θ | a ∧ a | a ∨ a | ¬a | > | ⊥ (Boolean expressions)

x, y ::= p ∈ Σ | [a] | x · y | x+ y | x? | 1 | 0 . (KAT expressions)

Given a Kleene algebra with tests K = 〈X,B, [·]〉, any pair of maps θ : Θ →
B and σ : Σ → X gives rise to a KAT homomorphism allowing to interpret
expressions in K. Given two such expressions x and y, the equation x = y
is a KAT theorem, written KAT ` x = y, when the equation holds in any
Kleene algebra with tests, under any interpretation. One checks easily that KAT
expressions quotiented by the latter relation form a Kleene algebra with tests;
this is the free Kleene algebra with tests over Σ and Θ. (We actually use this
impredicative encoding of KAT derivability in the Coq library.)

1.4 Guarded strings languages

Guarded string languages are the natural generalisation of string languages for
Kleene algebra with tests. We briefly define them.

An atom is a function from elementary tests (Θ) to Booleans; it indicates
which of these tests are satisfied. We let α, β range over atoms, the set of which is
denoted by At. (Technically, we represent elementary tests as finite ordinals of a
given size n (Θ = ord n), and we encode atoms as ordinals (At = ord 2n). This
allows us to avoid functional extensionality problems.) We let u, v range over
guarded strings: alternating sequences of atoms and letters, which both start
and end with an atom:

α1, p1, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial operation: it
is defined only if the last atom of u is equal to the first atom of v; it consists in
concatenating the two sequences and removing the shared atom in the middle.

The Kleene algebra with tests of guarded string languages is obtained by
considering sets of guarded strings for X and sets of atoms for B:

X = P ((At×Σ)? ×At)
x · y = {u ∗ v | u ∈ x ∧ v ∈ y}
x+ y = x ∪ y
x? = {u1 ∗ · · · ∗ un | ∃u1 . . . un,∀i ≤ n, ui ∈ x}
1 = {α | α ∈ At}
0 = ∅ [a] = {α | α ∈ a}

B = P (At)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = At \ a
> = At

⊥ = ∅

Note that we slightly abuse notation by letting α denote either an atom, or a
guarded string reduced to an atom. Also note that the set B = P (At) has to be
represented by the Coq type At→ bool, to get a Boolean algebra on it.

4

2 Completeness

Let G be the unique homomorphism from KAT expressions to guarded string
languages such that

G(ai) = {α | α(ai) is true} G(p) = {αpβ | α, β ∈ At}

Completeness of KAT over guarded string languages can be stated as follows.

Theorem 1. For all KAT expressions x, y, G(x) = G(y) entails KAT ` x = y.

This theorem is central to our development: it allows us to prove (in)equations in
arbitrary models of KAT, by resorting to an algorithm deciding guarded string
language equivalence (to be described in §3).

We closely follow Kozen and Smith’ proof [24]. This proof relies on the com-
pleteness of Kleene algebra over languages, which we thus need to prove first.

2.1 Completeness of Kleene algebra axioms

Let R be the Kleene algebra homomorphism from regular expressions to (plain)
string languages mapping a letter p to the language consisting of the single-letter
word p. KA completeness over languages can be stated as follows [18]:

Theorem 2. For all regular expressions x, y, R(x) = R(y) entails KA ` x = y.

(Like for KAT, the judgement KA ` x = y means that x = y holds in any Kleene
algebra, under any interpretation.) We already presented a Coq formalisation of
this theorem [9], but our development was over-complicated. We re-proved it
from scratch here, following a simpler path which we now describe.

The main idea of Kozen’s proof consists in replaying automata algorithms
algebraically, using matrices to encode automata. The key insight that allowed
us to considerably simplify the corresponding formalisation is that the algorithm
used for this proof need not be the same as the one to be executed by the reflexive
tactic we eventually define. Indeed, we can take the simplest possible algorithm
to prove KA completeness, ignoring all complexity aspects, thus allowing us to
focus on conciseness and mathematical simplicity. In contrast, the algorithm to
be executed by the final reflexive tactic should be relatively efficient, but we do
not need to prove it complete, nor to replay its correctness algebraically: we only
need to prove its correctness w.r.t. languages, which is much easier.

A preliminary step for the proof consists in proving that matrices over a
Kleene algebra form a Kleene algebra. The Kleene star for matrices is non-trivial
to define and to prove correct, but this can be done with a reasonable amount of
efforts once appropriate lemmas and tools for block matrices have been set up.

A finite automaton can then be represented using three matrices (u,M, v)
over regular expressions, where u is a (1, n)-matrix, M is a (n, n)-matrix, and
v is a (n, 1)-matrix, n being the number of states of the automaton. Such a
“matricial automaton” can be evaluated into a regular expression by taking the

5

product u ·M? · v, which is a scalar. The various classes of automata can be
recovered by imposing conditions on the coefficients of the three matrices. For
instance, a non-deterministic finite automaton (NFA) is such that u and v are
01-vectors and the coefficients of M are sums of letters.

Given a regular expression x, we construct a deterministic finite automaton
(DFA) (u,M, v) such that KA ` x = uM?v, as follows.

1. First construct a NFA with epsilon transitions (u′′,M ′′, v′′), such that KA `
x = u′′M ′′?v′′. This is easily done by induction on x, using Thompson con-
struction [31] (which is compositional, unlike the construction we used in [9]).

2. Remove epsilon transitions to obtain a NFA (u′,M ′, v′) such that KA `
u′′M ′′?v′′ = u′M ′?v′. We do it purely algebraically, in one line. In particular
the transitive closure of epsilon transitions is computed using Kleene star on
matrices. (Unlike in [9] we do not need a dedicated algorithm for this.)

3. Use the powerset construction to convert this NFA into a DFA (u,M, v) such
that KA ` u′M ′?v′ = uM?v. Again, this is done algebraically, and we do
not need to perform the standard ‘accessible subsets’ optimisation.

We can prove that for any DFA (u,M, v), R(uM?v) is the language recognised
by the DFA. Therefore, to obtain Theorem 2, it suffices to prove that if two DFA
(u,M, v) and (s,N, t) recognise the same language, then KA ` uM?v = sN?t.
For this last step, it suffices to exhibit a Boolean matrix that relates exactly
those states of the two DFA that recognise the same language. We need for
that an algorithm to check language equivalence of DFA states; we reduce the
problem to DFA emptiness, and we perform a simple reachability analysis.

All in all, the KA completeness proof itself only requires us 124 lines of
specifications, and 119 lines of proofs (according to coqwc).

2.2 Completeness of KAT axioms

To obtain KAT completeness (Theorem 1), Kozen and Smith [24] define a func-
tion ·̂ on KAT expressions that expands the expressions in such a way that we
have KAT ` x = y iff KA ` x̂ = ŷ. While this function can be thought as
a reduction of KAT to KA, it cannot be used in practice: it produces expres-
sions that are almost systematically exponentially larger than the given ones.
It is however sufficient to establish completeness; as explained earlier, we defer
actual computations to a completely different algorithm (§3).

More precisely, the function ·̂ is defined in such a way that we have:

KAT ` x̂ = x (i)

G(x̂) = R(x̂) (ii)

6

We deduce KAT completeness as follows:

G(x) = G(y)

⇔ G(x̂) = G(ŷ) (G is a KAT morphism, and (i))

⇔ R(x̂) = R(ŷ) (by (ii))

⇒ KA ` x̂ = ŷ (KA completeness)

⇒ KAT ` x̂ = ŷ (any KAT is a KA)

⇔ KAT ` x = y (by (i))

(Note that the last equation entails the first one, so that all these statements
are in fact equivalent.)

The function ·̂ is defined recursively over KAT expressions, using an inter-
mediate datastructure: formal sums of externally guarded terms (i.e., either an
atom, or a product of the form αxβ). The case of a starred expression x? is
quite involved: x̂? is defined by an internal recursion on the length of the formal
sum corresponding to x̂. The proof of the first equation (i) is not too difficult to
formalise, using appropriate tools for finite sums (i.e., a simplified form of big
operators [7], which we actually use a lot in the whole development). The second
one (ii) is more cumbersome, notably because we must deal with the two implicit
coercions appearing in its statement: formally, it has to be stated as follows:

i(G(x̂)) = R(j(x̂)) ,

where i takes a guarded string language and returns a finite word language on
the alphabet Σ] Θ] Θ, and j takes a KAT expression and returns a regular
expression over this extended alphabet, by pushing all negations to the leaves.

Apart from the properties of these coercion functions, the proof of (ii) mainly
consists in rather technical arguments about regular and guarded string lan-
guages concatenation. All in all, once KA completeness has been proved, KAT
completeness requires us 278 lines of specifications, and 360 lines of proofs.

3 Decision procedure

To check whether two expressions denote the same language of guarded strings,
we use an algorithm based on a notion of partial derivatives for KAT expressions.
Derivatives were introduced by Brzozowski [10] for regular expressions; they
make it possible to define a deterministic automaton where the states of the
automaton are the regular expressions themselves.

Derivatives can be extended to KAT expressions in a very natural way [22]: we
first define a Boolean function εα, that indicates whether an expression accepts
the single atom α; this function is then used to define the derivation function
δα,p, that intuitively returns what remains of the given expression after reading
the atom α and the letter p. These two functions make it possible to give a

7

δ′α,p(x+ y) = δ′α,p(x) ∪ δ′α,p(y)

δ′α,p(xy) =

{
δ′α,p(x)y ∪ δ′α,p(y) if εα(x)

δ′α,p(x)y otherwise

δ′α,p(x
?) = δ′α,p(x)x?

δ′α,p(q) =

{
{1} if p = q

∅ otherwise

δ′α,p([a]) = ∅

Fig. 1. Partial derivatives for KAT expressions

coalgebraic characterisation of the function G, which underpins the correctness
of the algorithm we sketch below:

G(x)(α) = εα(x) G(x)(αpu) = G(δα,p(x))(u) .

Like with standard regular expressions, the set of derivatives of a given KAT
expression (i.e., the set of expressions that can be obtained by repeatedly deriv-
ing w.r.t. arbitrary atoms and letters) can be infinite. To recover finiteness, we
switch to partial derivatives [4]. Their generalisation to KAT should be folklore;
we define them in Fig. 1. We use the notation Xy to denote the set {xy | x ∈ X}
when X is a set of expressions and y is an expression. The partial derivation
function δ′α,p returns a (finite) set of expressions rather than a single one; this
corresponds to the fact that we build a non-deterministic automaton. Still abus-
ing notations, by letting a set of expressions denote the sum of its elements, we
prove that KAT ` δα,p(x) = δ′α,p(x).

Now call bisimulation any relation R between sets of expressions such that
whenever X R Y , we have

– ε(X) = ε(Y) and
– ∀α ∈ At, ∀p ∈ Σ, δ′α,p(X) R δ′α,p(Y).

We show that if there is a bisimulation R such that X R Y , then G(X) = G(Y)
(the converse also holds). This gives us an algorithm to decide language equiva-
lence of two KAT expressions x, y: it suffices to try to construct a bisimulation
that relates the singletons {x} and {y}. This algorithm terminates because the
set of partial derivatives reachable from a pair of expressions is finite (we do not
need to formalise this fact since we just need the correctness of this algorithm).

There is a lot of room for optimisation in our implementation—for instance,
we use unordered lists to represent binary relations. An important point in our
design is that such optimisations can be introduced and proved correct indepen-
dently from the completeness proof for KAT, which gives us much more flexibility
than in our previous work on Kleene algebra [9].

3.1 Building a reflexive tactic

Using standard methodology [1, 8, 14], we finally pack the previous ingredients
into a Coq reflexive tactic called kat, allowing us to close automatically any goal
which belongs to the equational theory of KAT.

8

The tactic works on any model of KAT: those already declared in the library
(relations, languages, matrices, traces), but also the ones declared by the user.
The reification code is written in OCaml; it is quite complicated for at least two
reasons: KAT is a two-sorted structure, and we actually deal with “typed” KAT,
as explained in §1.2, which requires us to work with a dependently typed syntax.

For the sake of simplicity, the Coq algorithm we implemented for KAT does
not produce a counter-example in case of failure. To be able to give such a
counter-example to the user, we actually run an OCaml copy of the algorithm
first (extracted from Coq, and modified by hand to produce counter-examples).
This has two advantages: the tactic is faster in case of failure, and the counter-
example—a guarded string—can be pretty-printed in a nicer way.

4 Eliminating hypotheses

The above kat tactic works for the equational theory of KAT, i.e., the (in)equations
that hold in any model of KAT, under any interpretation. In particular, this tac-
tic does not make use of any hypothesis which is specific to the model or to the
interpretation. Some hypotheses can however be exploited [11,15]: those having
one of the following shapes.

(i) x = 0;
(ii) [a]x = x[b], [a]x ≤ x[b], or x[b] ≤ [a]x;

(iii) x ≤ [a]x or x ≤ x[a]
(iv) a = b or a ≤ b;
(v) [a]p = [a] or p[a] = [a], for atomic p (p ∈ Σ);

Equations of the first kind (i) are called “Hoare” equations, for reasons to
become apparent in §5.2. They can be eliminated using the following implication:{

x+ uzu = y + uzu

z = 0
entails x = y . (†)

This implication is valid for any term u, and the method is complete [15] when
u is taken to be the universal KAT expression, Σ?. Intuitively, for this choice
of u, uzu recognizes all guarded strings that contain a guarded string of z as
a substring. Therefore, when checking that x + uzu = y + uzu are language
equivalent rather than x = y, we rule out all counter-examples to x = y that
contain a substring belonging to z: such counter-examples are irrelevant since z
is known to be empty.

Equations of the shape (iii) and (iv) are actually special cases of those of
the shape (ii), which are in turn equivalent to Hoare equations. For instance,
we have [a]x ≤ x[b] iff [a]x[¬b] = 0. Moreover, two hypotheses of shape (i) can
be merged into a single one using the fact that x = 0 ∧ y = 0 iff x + y = 0.
Therefore, we can aggregate all hypotheses of shape (i-iv) into a single one (of
shape (i)), and use the above technique just once.

9

Hypotheses of shape (v) are handled differently, using the following equivalence:

[a]p = [a] iff p = [¬a]p+ [a] , (‡)

This equivalence allows us to substitute [¬a]p+[a] for p in the considered goal—
whence the need for p to be atomic. Again, the method is complete [15], i.e.,

KAT ` ([a]p = [a]⇒ x = y) iff KAT ` xθ = yθ (θ = {p 7→ [¬a]p+ [a]})

4.1 Automating elimination of hypotheses in Coq

The previous techniques to eliminate some hypotheses in KAT can be easily
automated in Coq. We first prove once and for all the appropriate equivalences
and implications (the tactic kat is useful for that). We then define some tactics
in Ltac that collect hypotheses of shape (i-iv), put them into shape (i), and ag-
gregate them into a single one which is finally used to update the goal according
to (†). Separately, we define a tactic that rewrites in the goal using all hypothe-
ses of shape (v), through (‡). Finally, we obtain a tactic called hkat, that just
preprocesses the conclusion of the goal using all hypotheses of shape (i-v) and
then calls the kat tactic. Note that the completeness of this method [15] is a
meta-theorem; we do not need to formalise it.

5 Case studies

We now present some examples of Coq formalisations where one can take ad-
vantage of our library.

5.1 Bigstep semantics of ‘while’ programs

The bigstep semantics of ‘while’ programs is teached in almost any course on
semantics and programming languages. Such programs can be embedded into
KAT in a straightforward way [21], thus providing us with proper tools to reason
about them. Let us formalise such a language in Coq.

Assume a type state of states, a type loc of memory locations, and an update

function allowing to update the value of a memory location. Call arithmetic
expression any function from states to natural numbers, and Boolean expression
any function from states to Booleans (we use a partially shallow embedding).
The ‘while’ programming language is defined by the inductive type below:

Variable loc, state: Set.
Variable update: loc → nat → state → state.

Definition expr := state → nat.
Definition test := state → bool.

Inductive prog :=
| skp

| aff (l: loc) (e: expr)
| seq (p q: prog)
| ite (b: test) (p q: prog)
| whl (b: test) (p: prog).

The bigstep semantics of such programs is given as a “state transformer”, i.e.,
a binary relation between states. Following standard textbooks, one can define
this semantics in Coq using an inductive predicate:

10

Inductive bstep: prog → rel state state :=
| s_skp: ∀ s, bstep skp s s

| s_aff: ∀ l e s, bstep (aff l e) s (update l (e s) s)
| s_seq: ∀ p q s s’ s’’, bstep p s s’ → bstep q s’ s’’ → bstep (seq p q) s s’’
| s_ite_ff: ∀ b p q s s’, ¬ b s → bstep q s s’ → bstep (ite b p q) s s’
| s_ite_tt: ∀ b p q s s’, b s → bstep p s s’ → bstep (ite b p q) s s’
| s_whl_ff: ∀ b p s, ¬ b s → bstep (whl b p) s s

| s_whl_tt: ∀ b p s s’, b s → bstep (seq p (whl b p)) s s’ → bstep (whl b p) s s’.

Alternatively, one can define this semantic through the relational model of KAT,
by induction over the program structure:

Fixpoint bstep (p: prog): rel state state :=
match p with

| skp ⇒ 1
| seq p q ⇒ bstep p·bstep q

| aff l e ⇒ upd l e

| ite b p q ⇒ [b]·bstep p+ [¬b]·bstep q

| whl b p ⇒ ([b]·bstep p)?·[¬b]
end.

(Notations come for free since binary relations are already declared as a model of
KAT in our library.) The ‘skip’ instruction is interpreted as the identity relation;
sequential composition is interpreted by relational composition. Assignments are
interpreted using an auxiliary function, defined as follows:

Definition upd l e: rel state state := fun s s’ ⇒ s’ = update l (e s) s.

For the ‘if-then-else’ statement, the Boolean expression b is a predicate on states,
i.e., a test in our relational model of KAT; this test is used to guard both branches
of the possible execution paths. Accordingly for the ‘while’ loop, we iterate the
body of the loop guarded by the test, using Kleene star. We make sure one cannot
exit the loop before the condition gets false by post-guarding the iteration with
the negation of this test.

This alternative definition is easily proved equivalent to the previous one.
Its relative conciseness makes it easier to read; more importantly, this definition
allows us to exploit all theorems and tactics about KAT, for free. For instance,
suppose that one wants to prove some program equivalences. First define pro-
gram equivalence, through the bigstep semantics:

Notation "p ∼ q" := (bstep p == bstep q).

(The “==” symbol denotes equality in the considered KAT model; in this case,
relational equality.) The following lemmas about unfolding loops and dead code
elimination, can be proved automatically.

Lemma two_loops b p: whl b (whl b p) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(([b]·bstep p)?·[¬b]))?·[¬b] == ([b]·bstep p)?·[¬b] *)

Lemma fold_loop b p: whl b (p ; ite b p skp) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(bstep p·([b]·bstep p+ [¬b]·1)))?·[¬b] == ([b]·bstep p)?·[¬b] *)

11

Lemma dead_code a b p q r: whl (a∨ b) p ; ite b q r ∼ whl (a∨ b) p ; r.
Proof. simpl. kat. Qed.
(* ([a∨ b]·bstep p)?·[¬(a∨ b)]·([b]·bstep q+ [¬b]·bstep r)

== ([a∨ b]·bstep p)?·[¬(a∨ b)]·bstep r *)

(The semicolon in program expressions is a notation for sequential composition;
the comments below each proof show the intermediate goal where the bstep

fixpoint has been simplified, thus revealing the underlying KAT equality.)
Of course, the kat tactic cannot prove arbitrary program equivalences: the

theory of KAT only deals with the control-flow graph of the programs and with
the Boolean expressions, not with the concrete meaning of assignments or arith-
metic expressions. We can however mix automatic steps with manual ones. Con-
sider for instance the following example, where we prove that an assignment can
be delayed. Our tactics cannot solve it automatically since some reasoning about
assignments is required; however, by asserting manually a simple fact (in this
case, an equation of shape (ii)), the goal becomes provable by the hkat tactic.

Definition subst l e (b: test): test := fun s ⇒ b (update l (e s) s).
Lemma aff_ite l e b p q: (l←e; ite b p q) ∼ (ite (subst l e b) (l←e; p) (l←e; q)).
Proof.
simpl. (* upd l e·([b]·bstep p+ [¬b]·bstep q) ==

[subst l e b]·(upd l e·bstep p)·[¬subst l e b]·(upd l e·bstep q) *)

assert (upd l e·[b] == [subst l e b]·upd l e) by (cbv; firstorder; subst; eauto).
hkat.

Qed.

5.2 Hoare logic for partial correctness

Hoare logic for partial correctness [16] is subsumed by KAT [21]. The key in-
gredient in Hoare logic is the notion of a “Hoare triple” {A} p {B}, where p is
a program, and A,B are two formulas about the memory manipulated by the
program, respectively called pre- and post-conditions. A Hoare triple {A} p {B}
is valid if whenever the program p starts in some state s satisfying A and termi-
nates in a state s′, then s′ satisfies B. Such a statement can be translated into
KAT as a simple equation:

[A]p[¬B] = 0

Indeed, [A]p[¬B] = 0 precisely means that there is no execution path along
p that starts in A and ends in ¬B. Such equations are Hoare equations (they
have the shape (i) from §4), so that they can be eliminated automatically. As
a consequence, inference rules of Hoare logic can be proved automatically using
the hkat tactic. For instance, for the ‘while’ rule, we get the following script:

Lemma rule_whl A b p: {A∧ b} p {A} → {A} whl b p {A∧¬b}.
Proof. simpl. hkat. Qed.
(* [A∧ b]·bstep p·[¬A] == 0 → [A]·(([b]·bstep p)?·[¬b])·[¬(A∧¬b)] == 0 *)

12

5.3 Compiler optimisations

Kozen and Patron [23] use KAT to verify a rather large range of standard
compiler optimisations, by equational reasoning. Citing their abstract, they
cover “dead code elimination, common subexpression elimination, copy propaga-
tion, loop hoisting, induction variable elimination, instruction scheduling, alge-
braic simplification, loop unrolling, elimination of redundant instructions, array
bounds check elimination, and introduction of sentinels”. They cannot use au-
tomation, so that the size of their proofs ranges from a few lines to half a page
of KAT computations.

We formalised all those equational proofs using our library. Most of them
can actually be solved instantaneously, by a simple call to the hkat tactic. For
the few remaining ones, we gave three to four lines proofs, consisting of first
rewriting using hypotheses that cannot be eliminated, and then a call to hkat.

The reason why hkat performs so well is that most assumptions allowing to
optimise the code in these examples are of the shape (i-v). For instance, to state
that an instruction p has no effect when [a] is satisfied, we use an assumption
[a]p = [a]. Similarly, to state that the execution of a program x systematically
enforces [a], we use an assumption x = x[a]. The assumptions that cannot be
eliminated are typically those of the shape pq = qp: “the instructions p and q
commute”; such assumptions have to be used manually.

5.4 Flowchart schemes

The last example we discuss here is due to Paterson, it consists in proving the
equivalence of two flowchart schemes (i.e., goto programs—see Manna’s book [26]
for a complete description of this model). The two schemes are given in Ap-
pendix A; Manna proves their equivalence using several successive graph transor-
mations. His proof is really high-level and informal; it is one page long, plus three
additional pages to draw intermediate flowcharts schemes. Angus and Kozen [3]
give a rather detailed equational proof in KAT, which is about six pages long.
Using the hkat tactic together with some ad-hoc rewriting tools, we managed to
formalise Angus and Kozen’s proof in three rather sparse screens.

Like in Angus and Kozen’s proof, we progressively modify the KAT expres-
sion corresponding to the first schema, to make it evolve towards the expression
corresponding to the second schema. Our mechanised proof thus roughly con-
sists in a sequence of transitivity steps closed by hkat, allowing us to perform
some rewriting steps manually and to move to the next step. This is illustrated
schematically by the code presented in Fig. 2.

Most of our transitivity steps (the yi’s) already appear in Angus and Kozen’s
proof; we can actually skip a lot of their steps, thanks to hkat. Some of these
simplifications can be spectacular: for instance, they need one page to justify
the passage between their expressions (24) and (27), while a simple call to hkat

does the job; similarly for the page they need between their steps (38) and (43).

13

Lemma Paterson: x_1 == z.
Proof.
transitivity y_1. hkat. (* x_1 == y_1 *)

a few rewriting steps transforming y_1 into x_2.
transitivity y_2. hkat. (* x_2 == y_2 *)

a few rewriting steps transforming y_2 into x_3.
(* ... *)

transitivity y_19. hkat. (* x_19 == y_19 *)

a few rewriting steps transforming y_19 into x_20.
hkat. (* x_20 == z *)

Qed.

Fig. 2. Squeleton for the proof of equivalence of Paterson’s flowchart schems

6 Related works

Several formalisations of algorithms and results related to regular expressions
and languages have been proposed since we released our Coq reflexive decision
procedure for Kleene algebra [9]: partial derivatives for regular expressions [2],
regular expression equivalence [6, 12, 25, 27], regular expression matching [17].
None of these works contains a formalised proof of completeness for Kleene
algebra, so that they cannot be used to obtain a general tactic for KA (note
however that Krauss and Nipkow [25] obtain an Isabelle/HOL tactic for binary
relations using a nice trick to sidestep the completeness proof—but they cannot
deal with other models of KA).

On the more algebraic side, Struth et al. [5, 13] showed how to formalise
and use relation algebra and Kleene algebra in Isabelle/HOL; they exploit the
automation tools provided by this assistant, but they do not try to define decision
procedures specific to Kleene algebra, and they do not prove completeness.

To the best our knowledge, the only formalisation of KAT prior to the present
work is due to Pereira and Moreira [28], in Coq. They state all axioms of KAT,
derive some simple consequences of these axioms (e.g., Boolean disjunction dis-
tribute over conjunction, Kleene star is monotone), and use them to manually
prove the inference rules of Hoare logic, as we did automatically in §5.2. They
do not provide models, automation tools, or completeness proof.

7 Conclusion

We presented a rather exhaustive Coq formalisation of Kleene algebra with tests:
axiomatisation, models, completeness proof, decision procedure, elimination of
hypotheses. We then showed several use-cases for the corresponding library:
proofs about while programs and Hoare logic, certification of standard compiler
optimisations, and equivalence of flowchart schemes.

Most of the theoretical material is due to Kozen et al. [3, 15, 18–24], so that
our contribution mostly lies in the Coq mechanisation of these ideas. The com-
pleteness proof was particularly challenging to formalise, and lots of aspects of

14

this work could not be explained in this extended abstract: how to encode the
algebraic hierarchy, how to work efficiently with finite sets and finite sums, how
to exploit symmetry arguments, reflexive normalisation tactics, tactics about
lattices, finite ordinals and encodings of set-theoretic constructs in ordinals. . .

The Coq library is available online [30]; it is documented and axiom-free; its
overall structure is given in Appendix B. This library actually has a larger scope
than what we presented here: our long-term goal is to formalise and automate
other fragments of relation algebra (residuated structures, Kleene algebra with
converse, allegories. . .), so that the library is designed to allow for such exten-
sions. For instance normalisation tactics and an ad-hoc semi-decision procedures
are already defined for algebraic structures beyond Kleene algebra and KAT.

According to coqwc, the library consists of 4377 lines of specifications and
3020 lines of proofs, that distribute as follows. Overall, this is slightly less than
our previous library for KA [9] (5105+4315 lines), and we do much more: not
only we handle KAT, but we also lay the ground for the mechanisation of other
fragments of relation algebra, as explained above.

specifications proofs comments
ordinals, comparisons, finite sets. . . 674 323 225
algebraic hierarchy 490 374 216
models (languages, relations, expressions. . .) 1279 461 404
linear algebra, matrices 534 418 163
completeness, decisions procedure, tactics 1400 1444 740

The resulting theorems and tactics allowed us to shorten significantly a
number of paper proofs—those about Hoare logic, compiler optimisations, and
flowchart schemes. Getting a way to guarantee that such proofs are correct is
important: although mathematically simple, they tend to be hard to proofread
(we invite the skeptical reader to check Angus and Kozen’s paper proof of Pater-
son example [3]). Moreover, automation greatly helps when searching for such
proofs: being able to get either a proof or a counter-example for any proposed
equation is a big plus: it makes it much easier to progress in the overall proof.

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics of
reflected proof. In Proc. LICS, pages 95–105. IEEE Computer Society, 1990.

2. J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial derivative
automata formalized in Coq. In Proc. CIAA, volume 6482 of LNCS, pages 59–68.
Springer, 2010.

3. A. Angus and D. Kozen. Kleene algebra with tests and program schematology.
Technical Report TR2001-1844, CS Dpt, Cornell University, July 2001.

4. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. TCS, 155(2):291–319, 1996.

5. A. Armstrong and G. Struth. Automated reasoning in higher-order regular algebra.
In Proc. RAMiCS, volume 7560 of LNCS, pages 66–81. Springer, 2012.

15

6. A. Asperti. A compact proof of decidability for regular expression equivalence. In
Proc. ITP, volume 7406 of LNCS, pages 283–298. Springer, 2012.

7. Y. Bertot, G. Gonthier, S. O. Biha, and I. Pasca. Canonical big operators. In
TPHOLs, volume 5170 of LNCS, pages 86–101. Springer, 2008.

8. R. Boyer and J. Moore. Metafunctions: proving them correct and using them
efficiently as new proof procedures. In The Correctness Problem in Computer
Science. NY: Academic Press, 1981.

9. T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In
Proc. 1st ITP, volume 6172 of LNCS, pages 163–178. Springer, 2010.

10. J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
11. E. Cohen. Hypotheses in Kleene algebra. Technical report, Bellcore, Morristown,

N.J., 1994.
12. T. Coquand and V. Siles. A decision procedure for regular expression equivalence

in type theory. In Proc. CPP, volume 7086 of LNCS. Springer, 2011.
13. S. Foster and G. Struth. Automated analysis of regular algebra. In Proc. IJCAR,

volume 7364 of LNCS, pages 271–285. Springer, 2012.
14. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right

in Coq. In Proc. TPHOL, volume 3603 of LNCS, pages 98–113. Springer, 2005.
15. C. Hardin and D. Kozen. On the elimination of hypotheses in Kleene algebra with

tests. Technical Report TR2002-1879, CS Dpt, Cornell University, October 2002.
16. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.
17. V. Komendantsky. Reflexive toolbox for regular expression matching: verification

of functional programs in Coq+ssreflect. In Proc. PLPV, pages 61–70. ACM, 2012.
18. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. and Comp., 110(2):366–390, 1994.
19. D. Kozen. Kleene algebra with tests. Transactions on Programming Languages

and Systems, 19(3):427–443, May 1997.
20. D. Kozen. Typed Kleene algebra, 1998. TR98-1669, CS Dpt. Cornell University.
21. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.

Log., 1(1):60–76, 2000.
22. D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Technical Re-

port http://hdl.handle.net/1813/10173, CIS, Cornell University, March 2008.
23. D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene

algebra with tests. In Proc. CL2000, volume 1861 of LNAI, pages 568–582.
Springer, 2000.

24. D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability.
In Proc. CSL, volume 1258 of LNCS, pages 244–259. Springer, September 1996.

25. A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation
algebra. JAR, 49(1):95–106, 2012.

26. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.
27. N. Moreira, D. Pereira, and S. M. de Sousa. Deciding regular expressions

(in-)equivalence in Coq. In Proc. RAMiCS, volume 7560 of LNCS, pages 98–113.
Springer, 2012.

28. D. Pereira and N. Moreira. KAT and PHL in Coq. Comput. Sci. Inf. Syst.,
5(2):137–160, 2008.

29. D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic
linear logic. In Proc. CSL, volume 6247 of LNCS, pages 484–498. Springer, 2010.

30. D. Pous. RelationAlgebra: Coq library containing all material presented in this
paper. http://perso.ens-lyon.fr/damien.pous/ra, December 2012.

31. K. Thompson. Regular expression search algorithm. C. ACM, 11:419–422, 1968.

16

http://hdl.handle.net/1813/10173
http://perso.ens-lyon.fr/damien.pous/ra

A Paterson’s flowchart schemes

Here are the two flowchart schemes we proved equivalent (§5.4), they appear
in [26, pages 254 and 258].

Schema S6A Schema S6E

Following Angus and Kozen’s notations [3], these two schemes can be converted
into the following KAT expressions:

S6A = x1p41p11q214q311 ([¬a1]p11q214q311)
?

[a1]p13(
([¬a4] + [a4]([¬a2]p22)?[a2 ∧ ¬a3]p41p11) q214q311 ([¬a1]p11q214q311)

?
[a1]p13

)?
[a4] ([¬a2]p22)

?
[a2 ∧ a3]z2

S6E = s1[a1]q1 ([¬a1]r1[a1]q1)
?

[a1]z1 ,

where the tests and actions are interpreted as follows:

xi , yi ← x zi , z ← yi ai , P (yi)

pij , yi ← f(yj) qijk , yi ← g(yj , yk)

(Note that we actually renamed the local variable y from schema S6E into y1,
for the sake of uniformity.)

17

B Overall structure of the library

Here is a succinct description of each module from the library:

Utilities
common: basic tactics and definitions used throughout the library
comparisons: types with decidable equality and ternary comparison function
positives: simple facts about binary positive numbers
ordinal: finite ordinals, finite sets of finite ordinals
pair: encoding pairs of ordinals as ordinals
powerfix: simple pseudo-fixpoint iterator
lset: sup-semilattice of finite sets represented as lists

Algebraic hierarchy
level: bitmasks allowing us to refer to an arbitrary point in the hierarchy
lattice: “flat” structures, from preorders to Boolean lattices
monoid: typed structures, from po-monoids to residuated Kleene lattices
kat: Kleene algebra with tests
kleene: Basic facts about Kleene algebra
normalisation: normalisation and semi-decision tactics for relation algebra

Models
prop: distributive lattice of propositions
boolean: Boolean trivial lattice, extended to a monoid.
rel: heterogeneous binary relations
lang: word languages
traces: trace languages
atoms: atoms of the free Boolean lattice over a finite set
glang: guarded string languages
lsyntax: free lattice (Boolean expressions)
syntax: free relation algebra
regex: regular expressions
gregex: KAT expressions (typed—for KAT completeness)
ugregex: untyped KAT expressions (untyped—for KAT decision procedure)

Untyping theorems
untyping: untyping theorem for structures below KA with converse
kat_untyping: untyping theorem for guarded string languages

Linear algebra
sups: finite suprema/infima (a la bigop, from ssreflect)
sums: finite sums
matrix: matrices over all structures supporting this construction
matrix_ext: additional operations and properties about matrices
rmx: matrices of regular expressions
bmx: matrices of Booleans

Automata, completeness
dfa: deterministic finite state automata, decidability of language inclusion
nfa: matricial non-deterministic finite state automata
ugregex_dec: decision of language equivalence for KAT expressions
ka_completeness: (untyped) completeness of Kleene algebra
kat_completeness: (typed) completeness of Kleene algebra with tests
kat_reification: tools and definitions for KAT reification
kat_tac: decision tactics for KA and KAT, elimination of hypotheses

18

Here are the dependencies between these modules:

atoms

booleanlsyntax

monoid prop

sups

positives

bmx

matrix

normalisationsums

lattice

ordinal lset

common

comparisons

denum

dfa

pair

glang

kat

traces kleene

gregex

ka_completeness

nfa

rmx

kat_completeness

untyping

syntax

kat_reification

kat_tac

kat_untyping ugregex_dec

ugregex

powerfixlang

level

matrix_ext

regexrel

19

	Kleene Algebra with Tests and Coq Tools for While Programs

