Frequency-Dependent Peak-Over-Threshold algorithm for fault detection in the spectral domain

Aurélien Hazan 1 Kurosh Madani 1
1 SYNAPSE
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
Abstract : An original novelty detection algorithm in the Fourier domain, using extreme value theory (EVT) is considered in this article. Periodograms may be considered as frequency-dependent random vari- ables, and this can be taken into account when designing statistical tests. Frequency-Dependent Peak-Over-Threshold (FDPOT) puts special em- phasis on the frequency dependence of extreme value statistics, thanks to Vector Generalized Additive Models (VGAM) estimation. An application is discussed in the field of mechanical vibrations. It is first shown that performance increases compared to POT detection. Then FDPOT is compared to state-of-the-art algorithms such as KPCA.
Type de document :
Communication dans un congrès
Proc. Of the 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN2013, Apr 2013, Bruges, Belgium. i6doc.com, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00785382
Contributeur : Aurélien Hazan <>
Soumis le : lundi 29 avril 2013 - 10:24:12
Dernière modification le : mercredi 11 octobre 2017 - 11:55:30
Document(s) archivé(s) le : mardi 30 juillet 2013 - 04:30:08

Fichier

hazan-potd-13-V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00785382, version 2

Collections

Citation

Aurélien Hazan, Kurosh Madani. Frequency-Dependent Peak-Over-Threshold algorithm for fault detection in the spectral domain. Proc. Of the 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN2013, Apr 2013, Bruges, Belgium. i6doc.com, 2013. 〈hal-00785382v2〉

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

234