
HAL Id: hal-00785256
https://hal.archives-ouvertes.fr/hal-00785256

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deployment of software services in the power
distribution context

Philippe Lalanda, Antonin Chazalet, Vincent Lestideau

To cite this version:
Philippe Lalanda, Antonin Chazalet, Vincent Lestideau. Deployment of software services in the power
distribution context. 2006 IEEE International Conference on Industrial Informatics, Aug 2006, Singa-
pore, Singapore. IEEE Conference Publications, pp.599-604, 2006, <10.1109/INDIN.2006.275629>.
<hal-00785256>

https://hal.archives-ouvertes.fr/hal-00785256
https://hal.archives-ouvertes.fr

1-4244-9701-0/06/$20.00 ©2006 IEEE.

Deployment of software services in the power distribution context

Philippe Lalanda, Antonin Chazalet and Vincent Lestideau

Laboratoire LSR-IMAG, 220 rue de la Chimie

Domaine Universitaire, BP 53

F-38041 Grenoble, Cedex 9, France
{Philippe.Lalanda, Antonin Chazalet, Vincent Lestideau}@imag.fr

Abstract

Innovative machine-to-machine infrastructures have

been recently defined to integrate IT applications and

industrial applications. Many of them are based on Service-

Oriented architectures. In this paper, we focus on three-tier

architectures including OSGi gateways to connect field

devices and the Internet. We present a deployment manager

automating as much as possible the deployment operations.

Key words: Service-oriented architectures, service

deployment, OSGi gateways, power distribution.

1. Introduction

Manufacturing enterprises have to face demanding new

environments where market requirements are changing

frequently, new technologies have to be regularly integrated

and fast time-to-market has become a major business

requirement. As a consequence, a broad range of industries

— from manufacturing to utilities — must be able to

seamlessly integrate application software that supports
business services with control software implemented by

field devices on the plant floor. Such computing elements

have been separate until recently, primarily because of

technical issues, including incompatible programming

paradigms, network heterogeneity, differing time scales,

and the lack of appropriate integration tools. With the

Internet’s emergence and the proliferation of smart

communication devices, stronger coupling between

previously autonomous activities is now possible.

When we examine the resources that numerous
companies are investing in such technologies, we can see

that the stakes are substantial. Indeed, linking business and

operational processes will affect manufacturing enterprises

along several dimensions. First, it will dramatically speed

up decision-making by providing executives and/or decision

software with accurate, up-to-date and appropriately

formatted information, which is rarely the case today.

Second, it will allow faster response to changes. Flexibility

is today crucial in markets that are moving from mass

production to a more customized production and where

business decisions have to be implemented more rapidly

than ever. Third, it will give the opportunity to significantly
improve capital asset management and maintenance

optimization which represent today an heavy cost for most

companies. Finally, it paves the way for innovative e-

services based on data regularly collected on the plant floor.

However, it is also clear that this goal of seamless

integration is far from easy to achieve. It requires to build

Internet-scale distributed systems in complex,

heterogeneous environments characterized by stringent

requirements regarding security, scalability and flexibility.

In order to meet these requirements, innovative distributed
architectures have been proposed recently. These

architectures rely on the notion of service-oriented

components which are distributed on the business and

operational sites. This solution, adopted by major

manufacturers (Schneider Electric, Siemens and ABB for

instance), makes a better use of the available resources and

is able to evolve nicely. But it is also complex. In particular,

it introduces the need for remote deployment of software

components.

The purpose of this paper is to present a service-oriented

architecture and a deployment manager that has been
developed in the power distribution context within the

PISE1 project. The paper is organized as follows. The

coming section introduces a service-oriented architecture

for power distribution. Section 3 presents a deployment

manager automating the deployment activity. Section 4

presents an example. A conclusion summarizes this work

and presents coming actions.

1 PISE is supported by the French Ministry of Industry

under the RNRT program. It is conducted by Schneider

Electric in collaboration with France Telecom, Trialog,

Grenoble University and the INRIA.

1-4244-9701-0/06/$20.00 ©2006 IEEE.

2. Service Oriented Architectures

Innovative machine-to-machine infrastructures have

been recently defined to integrate distributed, heterogeneous

applications. They primarily target IT applications (for B2B

considerations for instance) but also IT and industrial

applications [1, 2]. In the latter case, architectures are

generally structured into three tiers (see Figure 1):

• The first tier corresponds to smart field devices that can

communicate through field buses.

• The second corresponds to gateways that connect the

devices to the Internet. Gateways perform local

computation and mediation operations [3].

• The third corresponds to applications that run on IT

servers.

Figure 1: Integration architecture.

We believe that Service-Oriented Computing (SOC) [4,

5] provides the level of flexibility and scalability that is

needed in these architectures. SOC is based on the concept

of service. A service can be defined as a particular resource

offered by a software system that is made available to third

parties. Services must declaratively define their capabilities

and requirements in an agreed (standard) machine-readable

format. Based on service specifications, automated service
discovery, selection and binding can then be performed at

run-time. The flexibility of the SOC approach essentially

comes from this runtime, dynamic binding.

The SOC approach has been indeed recently used in

architectures integrating IT and industrial applications.

Different solutions have been proposed:

• The UPnP technology (see www.upnp.org) has been

used to implement dynamic interactions between field
devices that can be seen as service providers and

requesters.

• The OSGi technology (see www.osgi.org) has been

used at the gateway level in order to run flexible,
dynamic applications.

• Web services (see www.W3C.org) has been used as the

interaction protocols between applications.

In this paper, we focus on OSGi gateways. These

gateways play a crucial role in the global architecture. They

run service-oriented applications connecting devices and IT

but also orchestrating the devices actions. Let us remind that

OSGi is an open service platform defining a minimal

component model, a small framework for administering

components and a set of standard services. Components are
packaged in bundles, which are the deployment units in the

OSGi model. The framework also defines mechanisms that

facilitate the dynamic installation, activation, deactivation,

update, and removal of bundles.

Using a service-oriented framework like OSGi allows

developpers to implement highly flexible applications

where devices and applications can change over time.

Unfortunately, it also brings a significant level of

complexity. In particular, the deployment process is

complex. It is, of course, necessary to regularly deploy new

bundles on the OSGi gateways for maintenance purposes or
to provide new services. This task rapidly becomes

fastidious and error-prone. Deployment is actually an

intellectually challenging task for several reasons. It has to

take into account the current states of the gateways to

deploy the best service implementations, to resolve the

contract and code dependencies of the implementations, to

share services if it makes sense, to stop services that are no

longer used, to generate the appropriate life-cycle events,

etc.

We argue that a deployment manager is needed in order
to automate as much as possible these operations. Such a

deployment manager has also to meet the following

requirements:

• Security. Deployment actions can only be done by

authorized persons. Downloaded files may be sensible

and must be protected.

• Reliability. Deployment is an important process that

must be done in a reliable and controlled fashion.

• Transparency. Although kept in the loop, the human

deployer must concentrate on added value tasks

regarding the deployment process. Technical details

(network, administrative data, etc.) must be hidden.

• Standardization. Techniques implemented by the

deployment manager must be based on standards.

1-4244-9701-0/06/$20.00 ©2006 IEEE.

3. Deployment manager

Schneider Electric has developed a distributed

infrastructure allowing the development of added-value

services using data generated by power distribution devices

installed in customers’ plants. The infrastructure

implements a three-tier architecture like the one previously

presented (see figure 1):

• the first tier corresponds to smart power devices,

• the second tier corresponds to smart OSGi gateways

connecting devices and the Internet,

• the third tiers corresponds to Internet application

servers implementing the business services.

The infrastructure integrates a large number of plants.

This represents many devices and gateways. In addition,

this number can change over time when new customers
arrive. In the coming sections, we present a deployment

manager that has been designed and tested in this context.

Specifically, the manager automates the deployment of

OSGi services on the smart gateways.

3.1 Overview

As illustrated on Figure 2, the deployment manager is

structured into three main components:

• A « Collector » gathers contextual information that is

kept at the gateways level. This includes information

about the gateways (capabilities, hosted services,

services status, etc.) and, possibly, about the

communication infrastructure. Captured data are stored

in a database.

• A « Planner » calculates deployment plans. Plan

calculation is centralized and total which means that

calculation is entirely made at the deployment manager

level. Plans are stored in an XML file.

• A « Plan Manager » is responsible for the correct

execution of the deployment plans.

The global behavior of the deployment manager is the

following. At any time, the system administrator can specify

a list of OSGi bundles to be deployed on a set of gateways.

The specification is done through an XML-based editor and

stored in a file called “Bundles.xml“ which is submitted to
the planner. Bundles are identified by their location (URL)

whereas gateways are determined by a unique key (IP

address).

The Planner also uses the « Repository.xml » file and the

« Gateways.db » database to compute a deployment plan.

The first file specifies the OSGi bundles which are available

for deployment. In the Schneider Electric case, these

bundles have been certified beforehand so that they can be

safely installed on the customers’ gateways. The description

of an OSGi bundle is essentially made through its manifest
which, in particular, provides information about its location

and its dependencies. As we will see later on, the treatment

of the bundles dependencies is one of the main tasks of the

planner. This « Repository.xml » file is currently produced

and updated by hand by the system administrator. On the

contrary, the « Gateways.db » database is automatically

filled by the Collector component. This database contains

information about the current status of the OSGi gateways

and maintains an history.

Figure 2. Architecture of the deployment manager

Given these inputs, the Planner calculates a deployment

plan specifying all the bundles to be deployed, their

destinations and a list of installation directives. At this step,
dependencies have been resolved and the bundles can be

activated after deployment. Then, the Plan Manager takes

care of the realisation of the plan. We will see that part of

the plan is executed at the gateway level for efficiency

purposes.

The « Configuration.xml » file plays an important role in

this architecture. It contains global parameters that are used

by the three components. In particular, it specifies the

localization of the « Repository.xml » file and

« Gateways.db » data base, the communication protocols
between the deployment manager and the gateways (RMI

and HTTP/SOAP are today available), the frequency of the

administration actions, etc.

3.2 Collector

The domains we are investigating are characterized by
heterogeneous and very dynamic environments. In

particular, the OSGi gateways differ from one customer to

the next in terms of hardware and installed software. It is

then of major importance for a deployment manager to

know the current gateways characteristics in order to make

the good deployment decisions. In the Schneider Electric

1-4244-9701-0/06/$20.00 ©2006 IEEE.

case, we have identified three types of information that

intervene in the deployment process:

• The « system context » contains information about the

operating system (OS) of the gateways. This includes

the OS name, its version, the Java Virtual Machine

(JVM) version, its computing state, etc.

• The « framework context » contains information about

the OSGi framework installed on the gateway. This

includes the framework identification (vendor, name),

its version, etc.

• The « bundle context » contains manifest-like

information on each installed or running bundle of the

gateway.

These types of information are regularly collected on the

gateways and used by the planner. The collection process

has been implemented in accordance with the JMX

standard. JMX is an extension of the JAVA language,

developed by Sun MicroSystems (see

http://java.sun.com/products/JavaManagement). It was
introduced to support the administration of different kinds

of resources. A resource may be an application, an object, a

service, a device, etc. The only required condition is that the

resources need to be modeled or instrumented, to match

with the pattern of a manageable JAVA object. JMX defines

a management architecture, an API for application

development and a set of administration services. The

architecture proposed by JMX is based on three levels:

• The first level defines how to model or instrument the

resources. The instrumentation is based on objects

called MBeans (Manageable Beans).

• The agent level specifies how to implement the agents,

which control the MBeans and give them out accessible

to administration’s applications.

• The adapter level provides needed mechanisms, so that

the distributed administration’s applications can

communicate with the agents.

Figure 3. OSGi Gateway

As illustrated by Figure 3, we have implemented this

three-level architecture in the OSGi context. We have

developed an HTTP/SOAP adaptor for the communication

with the deployment manager. This protocol was mandatory

to meet the security policies set by the customers. Indeed,

the industrial environments that we must take into account

use routing solutions with access lists and firewalls (this

means that, in our case, RMI-like protocols don’t work and
that only HTTP works). We have also developed a JMX

MBean called collector which purpose is to collect the three

types of information previously mentionned (system,

framework and bundle contexts). Through the Java

language and the OSGi framework, this MBean has access

to all the necessary information. It is directly invoked by the

deployment manager via an interface exposed by the JMX

agent manager (provided by Sun MicroSystems). These

different JMX elements are packaged as OSGi bundles so

that they can be updated easily, like any other component

run on the gateway.

3.3 Planner

Our planner is called GDF, for Generic Deployment

Framework. It has been developed in the Osmose European

project in order to automate the deployment of software

services (see http://www.itea-osmose.org).

Figure 4. GDF Planner

GDF builds on the notion of dependency in order to

express constraints on the services to be deployed. On that

point, it can be related to the OMG proposal on the

deployment and configuration of component-based

distributed applications [6, 7]. Dependencies can be
specified between services in order to express code

dependencies or between services and execution platforms

in order to express resources contraints (like the memory

needed for a service to be properly executed). Dependencies

resolution is platform independent and different algorithms

can be used according to the deployer policies.

In our context, GDF is applied to the deployment of

OSGi bundles. The challenge here is to allow the

administrator to simply specify the bundles he needs to

deploy without considering code dependencies and resource
constraints. It is up to the planner to select the right bundles

and to initiate administration actions on the gateways.

1-4244-9701-0/06/$20.00 ©2006 IEEE.

GDF works in two steps. First, it analyses the bundles

specified in the « Bundles.xml » file and carries out a
resolution of the import and export packages and import and

export services using the « Repository.xml » file. This first

step produces a temporary deployment plan comprising the

whole set of bundles to be deployed. A plan is basically

expressed in terms of instructions like install, start, update,

etc. Then, the second step uses information about the

gateways to optimize the temporary deployment plan.

Several strategies can be used here for optimization. For

instance, when bundles to be deployed are already running

on a gateway, we may or may not re-install them (to take

advantage of a newer version for example). Such strategies
are not explicit today: we are actually working on

innovative representation of such knowledge to better

manage the optimization strategies [8].

3.4 Plan manager

The execution of the deployment plan produced by the

planner is distributed in the sense that part of the plan is

executed on the gateways. The purpose of the Plan Manager
is to interpret the deployment plan and to send specific and

optimal plans to the gateways. The role of the gateways is

then to execute the OSGi instructions specified in the

received plan.

Here again, the deployment process has been

implemented in accordance with the JMX standard. More

precisely, a JMX MBean called deployor has been installed

on every OSGi gateway (see figure 3). It is invoked by the

Plan manager through an interface exposed by the JMX

agent manager. Then, it executes the plan, which is passed

as a parameter, using OSGi instructions. Once this
execution is made, the deployor MBean informs the Plan

Manager of the state of the deployment plan execution.

The deployment process is controlled by the deployment

manager: interfaces provided by the JMX agent manager

allow it to follow the evolution of the process. If something

goes wrong on a given gateway (uncompleted installation,

communication failure, etc.) several strategies have been

implemented regarding the whole deployment process. In

general, the failure of one gateway does not stop the global

deployment. Once again, strategies are not explicit today
and we are working on solutions to make them more

independent of the code.

Similarly to the collection process, the deployment

process is initiated by the gateways. To be in accordance

with most customers security policies, the gateways

periodically calls the deployment manager to start the

deployment process. The calling period is dynamic.

4. Example

As previously said, the deployment manager has been

tested in the power distribution field. Specifically, it has

been implemented on the top tier of the infrastructure with

the Eclipse environment.

Let us now see an example of deployment that has been

treated in the project. In this example, the administrator

needs to deploy an Alarm service which purpose is to use

data coming from two kinds of devices, namely

PowerMeters and CircuitMonitors (see www.schneider-

electric.com for specifications), in order to detect voltage

dips at the electrical supply source. To do so, the

administrator specifies in « Bundles.xml » the localization

of a bundle implementing the service (say http://user-

site/repository/voltage-dip-alarm.jar) and the IP address of

the targeted gateways (say 129.88.103.25).

An interesting feature is that the bundle implementing

the Alarm service needs two other services to run: the

PowerMeter service and the CircuitMonitor service. These

two services make use of a Modbus driver to collect data on

the actual devices and to format them in a high level

language. These dependencies are expressed in the manifest

of the bundle implementing the Alarm service in the import

service section (in this example, there is no import package

dependencies).

Upon receiving the « Bundles.xml » file, our deployment
planner identifies the dependencies and looks up for the

missing packages in the « Repository.xml » file. In our

example, they are stored in http://user-

site/repository/PowerMeter.jar and in http://user-

site/repository/CircuitMonitor.jar. Then, examining the

« Gateways.db » database, the planner learns that the

PowerMeter is already installed, but not started on the

targeted gateway. It then produces the following

deployment plan:

This plan is sent to the Mbean deployor of the targeted

gateway. Then, it is executed. Appropriate bundles are

sequentially installed and started. A status message is

finally sent to the deployment manager that displays the

result to the user.

5. Lessons learned and conclusion

1-4244-9701-0/06/$20.00 ©2006 IEEE.

The integration of IT and industrial applications is one of

the great challenges of today’s computing. It requires to
build Internet-scale, distributed architectures made of

interacting software components performing operations at

the most efficient places (near the sensors in some cases). It

also requires to meet stringent requirements regarding

complexity management, security and flexibility.

The SOC paradigm appears as a promising way to meet

these requirements. However, service-oriented computing is

today technology driven and thus very hard to master. Deep

technical knowledge is needed to design, implement, deploy

and maintain service-based applications. Our experience in
the PISE project is that most programmers do not take full

advantage of the service approaches capabilities.

Another learned lesson is that service oriented

architectures used to integrate IT and industrial applications

are just too complex to be manually managed. In order to

face the inherent complexity of such architectures, it is

necessary to bring tools to help administrators to manage

the applications life cycle from design to the maintenance

[9].

In this paper, we have presented a deployment manager
that automates the deployment of software components on

OSGi gateways. This solution goes much farther than the

usual script-based solutions that are generally encountered

in the service deployment domain [10]. This manager, based

on standard technologies, meets the requirements presented

in section 2:

• Transparency. The all purpose of our solution is to hide

low level technical aspects. In particular, the

administrator does not have to deal with code

dependencies and physical constraints which are

resolved by the planner.

• Use of standard. The deployment manager is entirely

based on open standards (JMX, HTTP, SOAP), which

is also the case for the global infrastructure (JAVA,

J2EE, OSGi).

• Security. A salient feature of our solution is the ability

to adapt itself to the customers requirements (use of

HTTP, gateways are the callers). We cannot however

say that our infrastructure is perfectly secure. A lot of

work is still needed. In particular, OSGi simply relies

on Java security and we have found several limitations

(use of call-back in the framework, interaction with
native code, resource management, etc.).

• Reliability. The deployment manager brings fault

tolerance capabilities for the deployment process. We

are studying today the used of message-oriented

middleware in order to improve the manager reliability

at the communication level.

This deployment manager is currently tested within the

PISE project on real settings: pilot sites distributed in
several countries are used to assess its features.

Extensions are also needed. In particular, we would like

to make service sharing possible at the gateway level. This

implies that the deployment manager has to consider

services running on a gateway and see if they can be shared

by new applications. This raises important issues regarding

service state management and, more generally, the

management of application life cycle.

6. References

1 F. Jammes and H. Smit, Service-oriented paradigms in

industrial automation, IEEE Transactions on Industrial
Informatics, vol. 1, no 1, February 2005.

2 P. Lalanda, E-Services Infrastructure in Power Distribution,
IEEE Internet Computing, May-June, 2005.

3 P. Lalanda, L. Bellissard and R. Balter, “ Asynchronous
Mediation for Integrating Business and operational Processes,”
IEEE Internet Computing, vol. 10, no. 1, 2006, pp. 56–64.

4 M. N. Huhns and M. P. Singh. Service-Oriented Computing:
Key Concepts and Principles. IEEE Internet Computing,vol.
9:pages 75–81, Jan./Feb. 2005.

5 SECSE team, Toward service-centric system engineering, Int.
Conf. on Service oriented computing, Trento, Italy, 2003.

6 V. Lestideau and D. Donsez, On-demand Service Installation
and Activation with OSGi, Fourth Annual ObjectWeb
Conference January, Lyon, France, 2005.

7 OMG RFP, Deployment and configuration of component-
based distributed applications, http://www.omg.org/cgi-
bin/doc?mars/2003-03-04, 2004.

8 P.Y. Cunin, V. Lestideau and N. Merle, ORYA: A strategy
oriented deployment framework, 3rd International Working
Conference on Component Deployment, November 2005,
Grenoble, France

9 C. Marin, P. Lalanda and D. Donsez, “A MDE approach for
power services development”, Int. Conf. on Service Oriented
Computing, Amsterdam, december 2005.

10 V. Talwar et al, Approaches for service deployment, IEEE
Internet Computing, March-April, 2005.

