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In competitive electricity markets with deep concerns for the efficiency level, demand response
programs gain considerable significance. As demand response levels have decreased after the intro-
duction of competition in the power industry, new approaches are required to take full advantage of
demand response opportunities.

This paper presents DemSi, a demand response simulator that allows studying demand response
actions and schemes in distribution networks. It undertakes the technical validation of the solution using
realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy
shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach
supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit,
determining the optimal solution for each envisaged load reduction. The solution determines the price
variations considering two different approaches, price variations determined for each individual
consumer or for each consumer type, allowing to prove that the approach used does not significantly
influence the retailer’s profit.

The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The
obtained results and conclusions show the adequacy of the used methodology and its importance for
supporting retailers’ decision making.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of Electricity Markets (EMs) appeared in the most
developed countries as a consequence of power system deregula-
tion and power sector restructuring [1]. Traditionally, the entities
involved in power systems have determined tasks and are remu-
nerated according to defined regulations. EMs involve a large
number of players that are expected to act in a competitive envi-
ronment, taking advantage of the adequate opportunities and
strategies to accomplish their individual goals. Moreover, thewhole
power system should be able to attain global requirements,
guaranteeing demand satisfactionwithin accepted reliability levels.

The implementation of EMs was expected to lead to relevant
advantages concerning the increase in power system efficiency and
price reduction due to the end of monopolies [1]. However, the
experience has proved that some problems can occur [2e4], due to
the very specific electrical energy characteristics which make some
rules and methods usually used in other commodities markets not
: þ351 22 8321159.
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useful in the EMs context. This is mainly due to the unique char-
acteristic of electrical energy that is a commodity, for which the
balance between supply and demand must be assured at all
moments. Moreover, electrical energy can only be stored in very
limited quantities, because of technical and economic reasons.

One of the areas expected to grow in the scope of EMs is the
Demand Response (DR), as it appears as a very promising oppor-
tunity for consumers and brings several advantages for the whole
system [5,6]. This is due to the fact that power systems’ infra-
structure is highly capital-intensive and DR is one of the cheaper
resources available to operate the system [7]. On the other hand, DR
programs can provide the system operator with a determined load
curtailment capacity which is highly valuable to deal with unex-
pected changes in both supply and demand levels.

The actual state of DR around theworld has been summarized in
[8]. Experiences of DR in the wholesale market are taking place in
the United States [9], Europe [10], China [11] and also in other
places around the world [2]. Some difficulties in the transition from
a traditionally regulated industry to a competitive environment can
be justified by the lack of retail demand response. However, it is
accepted that time-dependent pricing (e.g. RTP) can benefit the
sector’s operation and investment [8].
ctrical energy supply: An optimal real time pricing approach, Energy

mailto:zav@isep.ipp.pt
http://www.gecad.isep.ipp.pt/
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2011.06.049
http://dx.doi.org/10.1016/j.energy.2011.06.049
http://dx.doi.org/10.1016/j.energy.2011.06.049


P. Faria, Z. Vale / Energy xxx (2011) 1e112
DR is not being as successful as expected in the context of
competitive markets. In some cases, the EM implementation
caused a reduction in demand participation [7], [12e15]. In the
United States load management (LM) decreased 32% between 1996
and 2006 because of weak load management services offered by
utilities [12]. This can be explained by the 10% reduction of the
money spent in LM programs since 1990. Between 1996 and 2004,
32% of utilities stopped providing LM programs.

Demand Side (DS) has been unable to use all the business
opportunities in the scope of EMs in a satisfactory way. This
participation difficulty is verified for large DS players and also
obviously applies to small DS players. Aggregation is being more
and more used, therefore, the EM players can join their resources
and efforts to obtain competitive advantage [14] in EM. However
DR has very specific needs that even large aggregators face serious
difficulties in dealing with.

In response to this, grid operators and utilities are taking new
initiatives, recognizing the value of DR for grid reliability and for the
enhancement of organized spot markets’ efficiency [16]. However,
the current state of the art does not answer the pointed problems
and does not show any sign of finding the correct path so that the
required solutions are obtained in a short time period. As the efforts
that have been put in DR issues are very relevant, the poor results
evidence the need to use a different approach to address DR
issues [17].

This paper presents a work that contributes to such an approach
which is centered in DemSi, a DR simulator developed by the
authors. DemSi constitutes a platform to support decision making
concerning DR in the scope of distribution networks, including
technical validation of the solutions.

The paper also presents the use of DemSi by a retailer, to address
a situation of energy shortage due to an incident in the network.
Strategic load curtailment is obtained using real time pricing, fixing
the price variations for each consumer or consumer type so as to
maximize retailer’s profit.

After this introduction, Section 2 presents the most important
concepts related to demand response, shows the importance of
demand response in the context of electricity markets, and explains
the recent DR experiences. Section 3 describes the Demand
Response Simulator (DemSi), with special focus on practical
application in the presented case study. Section 4 presents a case
study concerning the procurement of a load reduction by the
retailer. Finally, Section 5 presents the most important conclusions
of the presented work.

2. Demand response concepts and programs

The management of consumers’ behavior or the actions that
result from this management are usually referred as demand
response, loadmanagement and Demand SideManagement (DSM).
Traditionally this is done in the context of utility load management
programs, during the periods of higher demand [18], essentially
with the objective of peak shaving.

DR includes all intentional electricity consumption pattern
modifications by end-use customers and the incentive payments
that are intended to change the timing, level of instantaneous
demand, or total electricity consumption [19]. These incentives are
mainly used at times of high wholesale market prices or when
system reliability is jeopardized [12].

Theway that electric energy is bought and sold is being changed
by newbusiness opportunities created by electricitymarkets. These
opportunities include consumer participation which can directly
influence market results [14,15,20] and can be defined over longer
or shorter periods either in the context of capacity markets or
directly through bilateral contracts.
Please cite this article in press as: Faria P, Vale Z, Demand response in ele
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2.1. Price elasticity

Price elasticity rate is a measure used in economics to evaluate
a good or service demand response to a change in its price, i.e.
percentage change in the demanded quantity on response to one
percent change in price [21]. The formula for the price elasticity of
demand is expressed in (1), where Quantity is the quantity of the
usage of the good or service and Price is the price of this good or
service [22].

3 ¼ DQuantity=Quantity
DPrice=Price

(1)

In the case of electricity consumption, this is a measure of the
intensity on how the usage of electricity changes when its price
changes by one percent.

There are two types of price elasticity of demand, namely own-
price elasticity and substitution elasticity. Own-price elasticity
measures how customers will change the consumption due to
changes in the electricity price, regardless to the period of variation.
This rate is expected to be negative since a price increase should
cause a reduction on load. Substitution elasticity is related to the
time shifting the electricity consumption of electricity within
a certain period (e.g. a day or a week).

A DR approach using the price elasticity has been presented in
[7]. This work uses an optimal power flow for economic dispatch
including load forecast. The market prices for each period of the
next day are calculated considering the price elasticity, and a new
load forecast is obtained. With the new load forecast, market prices
are updated to verify the positive influence of demand response in
market prices. The effectiveness of DR programs in case of system
contingency is demonstrated.

In [23], price elasticity has been used to fix the demand
participation in several DR programs. These programs are ordered
in function of the priority from the point of view of the ISO, utility,
customer, and regulator. Weights are associated to operation
criteria and adjusted for each type of player. It had been referred
that the presented algorithm can be used as a toolbox to overcome
market operation problems.

Generally, studies considering the concept of price elasticity of
demand combine market conditions and consumer’s flexibility to
analyze the benefits of DR whereas the present work uses price
elasticity to determine the market signals (energy price) which are
necessary for obtaining the desired response level of demand, for
example in case of a supply shortage.
2.2. Characteristics of DR programs

Demand response programs can be divided in two wide groups,
namely price-based demand response and incentive-based
demand response [12].

Price-based demand response is related to the changes in
energy consumption by customers in response to the variations in
their purchase prices. This group includes time-of-use (TOU), real
time pricing (RTP) and critical-peak pricing (CPP) rates. For
different hours or time periods, if the price varies significantly,
customers can respond to the price structure with changes in
energy use. Their energy bills can be reduced if they adjust the time
of the energy usage taking advantages of lower prices in some
periods and reducing consumption when prices are higher.
Currently, the response to price-based demand response programs
by adjusting the time of consumption is entirely voluntary.
However, some advantages of mandatory response can be found
(see Section 2.3).
ctrical energy supply: An optimal real time pricing approach, Energy
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TOU includes different prices for usage during different
periods, usually defined for periods of 24 h. This rate reflects the
average cost of generating and delivering power during those
periods.

For RTP the price of electricity is defined for shorter periods of
time, usually 1 h [24], reflecting the changes in the wholesale price
of electricity. Customers usually have the information about prices
on a day-ahead or hour-ahead basis.

CPP is a hybrid of the TOU and RTP programs and is harder to
implement. The base program is TOU and a much higher peak
pricing is used in specified conditions (e.g. when system reliability is
compromised or when supply costs are very high).

Incentive-based demand response includes programs that give
customers fixed or time varying incentives in addition to their
electricity rates. These can be established by utilities, load-serving
entities, or by a regional grid operator. Some of these programs
penalize customers that fail the contractual response when events
are declared. This group includes the 6 programs listed below
[25,26]:

� Direct Load Control (DLC) is a program that considers a remote
shut down or cycle of a customer’s electrical equipment by the
program operator. These programs are primarily offered to
residential or small commercial customers;

� Interruptible/Curtailable Service (ICS) is based on curtailment
options integrated into retail tariffs that provide a rate discount
or bill credit by agreeing to reduce load during system
contingencies and includes penalties for contractual response
failures. These programs are traditionally offered to larger
industrial customers;

� In Demand Bidding/Buyback (DBB) programs, customers offer
curtailment capacity bids and large customers are normally
preferred;

� Emergency Demand Response (EDR) can be seen as a mix of
DLC and ICS and is targeted for periods when reserve becomes
insufficient;

� In Capacity Market (CM) programs, customers offer load
curtailment as system capacity to replace conventional gener-
ation or delivery resources;

� Ancillary Services Market (ASM) programs are basically similar
to DBB programs, whereas in this case the offer is just made for
the ancillary services market. As in traditional ancillary
Fig. 1. Demand response in electric sys
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services, the remuneration can be paid for reserve and energy
provision of energy separately.

Fig. 1 [12] shows the integration of DR programs in the electric
system operation and planning, from a time horizon point of view,
in the context of electricity markets.

An important demand side resource that can be considered
independently, but not necessarily disconnected from the above
described DR programs is the energy efficiency. This has to be
considered in the long time system planning.

2.3. Real-time pricing (RTP)

In 2001 California’s electricity market exhibited very high prices
for electricity and threats of shortages. In [27], it is argued that the
problems that appeared in California and other markets are
intrinsic to the market design and DR is pointed as a promising
solution. A long-run study of RTP efficiency is conducted in [28]
being demonstrated that efficiency gains from RTP are significant
even where the elasticity of demand is very low. In addition, it is
demonstrated that the Time Of Use (TOU) tariff, that is, a simple
peak and off-peak pricing tariff, presents very small efficiency gains
when compared with RTP. The present paper is focused on real-
time pricing (RTP) applied to a set of customers, demonstrating
RTP gains from the point of view of retailers.

A frequently discussed topic about RTP is the mandatory or
voluntary implementation for a given class of customers. Usually
RTP is associated with large customers; therefore this program
should be mandatory for these customers. In practice, all the
programs in the U.S. are voluntary [29]. In this paper, RTP is
considered for all types of customers, from small commerce to large
industrial customers. It is important to clarify that mandatory RTP
does not mean necessarily that customers need to be exposed to
the full risk of the electricity market. Forward contracts are a good
opportunity to reduce this risk since it can reduce the volatility of
costs they pay, in comparison with those they would pay if they
purchased all the power at the spot price. In spite of this, many
market participants still argue that RTP should be voluntary. A
voluntary program can be attractive although it creates efficiency
difficulties that do not exist when RTP is mandatory. Thus, volun-
tary programs must be designed so that customer participation
does not work as a subsidy to non-participating customers.
tem planning and operations [12].

ctrical energy supply: An optimal real time pricing approach, Energy
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3. Demand response simulator

This section presents DemSi, a Demand Response simulator that
has been developed by the authors to simulate the use of diverse
DR programs.
3.1. DemSi in the scope of DR tools

The positive impact of DR on power systems and on the involved
players’ business may be enhanced by adequate tools which are
able to simulate DR programs and events, from the point of view of
the relevant players. Several tools have been developed to support
decision making and validation concerning demand response
programs. A list of some tools can be found in [30]. Generally, the
existing software aims to assess the cost savings opportunities
based on building and load characterization (HVAC, ventilation,
lighting, electronic, etc.). As an example, a simulator from the U.S.
Department Of Energy (DOE) with these characteristics has been
upgraded to a new version (DOE-2) and includes a link to MATLAB/
Simulink which integrates the control logic. These simulators
generally advise users about the best DR programs at each specific
context.

References [31] and [32] describe tools that deal with
commercial customers. [31] presents a tool which considers end-
use resources costs (primary energy, storage, control, monitoring
and measurement, and communication) to provide customers with
the ability of evaluating DR opportunities. [32] presents a method
to validate DR tools.

Recently advanced building control systems have been designed
to improve the control mechanism for energy efficiency. New
studies on how to use existing control systems in commercial
buildings to integrate energy efficiency and demand response are
reported in [33].

DemSi, the DR simulator presented in this paper, presents
several innovative features when compared with other existing
tools. One important point is that the other tools deal with specific
installations (e.g. commercial or residential buildings) whereas
DemSi is able to deal with the application of DR programs to a large
set of consumers. Moreover, it uses realistic models that allow to
simultaneously take into account detailed contractual constraints
and to undertake the technical validation from the point of view of
the electrical behavior of the power system.

DemSi considers the players involved in the DR actions and
results can be analyzed from the point of view of each specific
player. This includes three types of players: electricity consumers,
electricity retailers (suppliers) and Distribution Network Operators
(DNO). This paper considers the point of view of the retailer, but the
analysis can also be done from the point of view of the consumers
(both individually or in the scope of a load aggregator) or the DNO.

Another advantage of DemSi is that it includes a diversity of DR
programs. Although this paper focuses on the application of real
time pricing, DemSi allows choosing among a large set of DR
programs, each one modeled according to its specific
characteristics.
3.2. Loads characterization

Detailed knowledge of demand side behavior is crucial for the
success of the use of demand response. From the point of view of
each consumer or of an aggregated set of consumers, this allows to
take the best advantage of existing opportunities. From the point of
view of DNOs or retailers, this allows to take decisions that usually
minimize operating costs. The present work explores the maximi-
zation of retailers’ profit.
Please cite this article in press as: Faria P, Vale Z, Demand response in ele
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From the point of view of demand response, loads mainly differ
on the conditions they impose for reduction, under specific situa-
tions. Some approaches consider the existence of flexible supply
contracts between consumers and retailers and/or the consider-
ation of critical loads which should be supplied in every situation.
This paper applies the concept of demand elasticity to represent the
response of the loads.

For the elasticity value of each consumer a default value is
assumed, according to the type of load. However, the simulator
allows choosing distinct values for each load, not depending on the
load type. For a realistic simulation, some constraints like
maximum price and power variations are considered for each load.
This implementation is fully discussed in Section 4.3, of the paper.
The consideration of several DR programs running in the same
simulation and the simultaneous participation of each load in more
than one program is supported by DemSi.

As explained above, loads can be characterized according to the
consumer type. Loads belong to one of 5 types which have been
created according to peak power consumption, destination of
energy, and load diagram. These types are:

� Domestic (DM);
� Small Commerce (SC);
� Medium Commerce (MC);
� Large Commerce (LC);
� Industrial (IN).

After defining the consumer type, default values of several
parameters of the load contracts are attributed. The user can easily
change these values to better characterize the loads that are
involved in a DR simulation study.
3.3. Mathematical formulation

DemSi allows the implementation of resource management
methodologies. Let us consider the retailers’ point of view, aiming
at maximizing retailers profit when there is a need of consumption
reduction. This problem’s characteristics lead to a non-linear
model.

The power that can be considered to supply the loads (PSupply) is
equal to the available power (PAvailable) minus the required reserves
(PReserve) and the power losses (PLoss) (2). The value of power losses
is estimated for each run. In fact, this value is obtained from PSCAD
simulation before the implementation of demand response, but
after this implementation load flow changes, resulting in a slightly
different power losses value.

PSupply ¼ PAvailable�PReserve�PLoss (2)

The objective function can be expressed by (3) and expresses the
aim of maximizing the profit of the retailer who provides energy to
the set of considered customers. This profit is the difference
between the earnings of the retailer due to selling energy to
consumers and the costs that it bears (electricity acquisition costs
and other operational costs).

Maximize

Profit ¼ Pnc
c¼1

h�
ELoadðcÞ � ELoadRedðcÞ

�
�
�
PriceEnergyInitialðcÞ

þPriceEnergyVarðcÞ
�i

� ESupply � PriceSupply � PriceOther (3)

PriceSupply is the price at which the retailer buys the energy and
PriceOther represents the other operational costs he has. The values
of these variables to be used in a specific context for which
a reduction need is required are the values of the above referred
ctrical energy supply: An optimal real time pricing approach, Energy



START

Network simulation 
(PSCAD )

Network data

Generation
knowledge base

Consumers 
knowledge base

End 
of simulation 

time
?

NoYes

END

Demand Response 
programs management  

New demand values

DR business 
models

DR contracts

Market data

Fig. 2. DemSi general architecture.

Table 1
Network loads.

Bus Load (kW)

1 143.7
2 126.6
3 125.0
4 123.7
5 80.1
6 264.5
7 262.4
8 75.9
9 77.0
10 56.9
11 77.5
12 77.6
13 154.1
14 77.4
15 77.4
16 78.1
17 115.1
18 129.5
19 128.9
20 128.8
21 128.7
22 125.2
23 573.6
24 568.9
25 79.7
26 79.3
27 78.4
28 155.6
29 251.0
30 191.6
31 267.8
32 76.4
Total 4956.58
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costs in the considered context. PriceSupply is the mean price at
which the retailer buys energy in the considered situation (if the
retailer buys energy from several suppliers, PriceSupply is evaluated
as the weighted mean of those suppliers’ prices). In certain situa-
tions, PriceSupply can significantly increase if the retailer aims at
supplying high load demand. If PriceSupply is considered too high
without demand response, the retailer uses DemSi to determine
the optimal parameters for the RTP use and to undertake the
Fig. 3. Network configuration.
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network simulation in this context. Having reached a feasible
solution, RTP is scheduled to be triggered for the period to which
the reduction need is required.

The response of consumers to price variation cannot be assumed
as totally flexible; therefore, the following constraints are consid-
ered in this optimization problem. Maximum limits have to be
imposed for load reduction (4); price caps are also considered (5).
The balance between load and generation, which is the main
constraint of any power system, has to be guaranteed (6). The
consideration of load response is formulated based on price elas-
ticity of demand (7), therefore the elasticity should be included in
the formulation, since it shows the relation between power and
price variation and makes them mutually dependent. Assuming
a constant value for each consumer’s elasticity, changes on price
imply a corresponding change in the load consumption. Solving the
optimization problem corresponds to finding the optimal values for
load reduction and price variation for all the considered loads.

PLoadRedðcÞ � MaxPLoadRedðcÞ (4)

PriceEnergyVarðcÞ � MaxPriceEnergyVarðcÞ (5)
Table 2
Scenarios characterization.

AC BC AT BT

Price cap 1.5 2.5 1.5 2.5
Price variation Individual price

variation, not
dependent from
the customers type

Same price
variation for every
customer of the
same type

Power cap 15%

ctrical energy supply: An optimal real time pricing approach, Energy



Table 3
Loads characterization.

Type of
Consumer

Loads Elasticity Electricity Price
(V/kWh)

Domestic 5, 8, 9, 10, 11, 12, 14, 15, 16, 25, 26, 27, 32 �0.14 0.18
Small Commerce 2, 3, 4, 17, 22 �0.12 0.19
Medium Commerce 1, 13, 18, 19, 20, 21, 28, 29, 30 �0.20 0.20
Large Commerce 6, 7, 31 �0.28 0.16
Industrial 23, 24 �0.38 0.12

P. Faria, Z. Vale / Energy xxx (2011) 1e116
PSupply ¼
Xnc

c¼1

PLoadðcÞ �
Xnc

c¼1

PLoadRedðcÞ (6)

ElasticityðcÞ ¼ �PLoadRedðcÞ � PriceEnergyInitialðcÞ
PLoadðcÞ � PriceEnergyVarðcÞ

(7)

where

ElasticityðcÞ Price elasticity of consumer c
ELoadðcÞ Consumer c electricity consumption not considering the
reduction
ELoadRedðcÞ Reduction of consumer c electricity consumption
MaxPriceEnergyVarðcÞ Maximum variation permitted in energy
price for consumer c
MaxPLoadRedðcÞ Maximum variation permitted in power for
consumer c
nc Number of consumers
PriceEnergyInitialðcÞ Initial electricity price for consumer c
PriceEnergyVarðcÞ Variation in consumer c electricity price
PriceSupply Price of the energy supplied to the retailer
PriceOther Value of other costs
PAvailable Power available for the resources scheduling
PLoss Power losses
PLoadRedðcÞ Variation in consumer c power consumption
PLoadðcÞ Initial power for consumer c
PReserve Reserve power
ESupply Energy available for the considered scenario
Profit Retailer profit (earnings minus costs)

Using this approach and having knowledge on load profile to
establish supply contracts, the retailer can manage the loads in
order to optimize its operation. The optimized individual load
reductions (PLoadRedðcÞ) and the electricity price variations
(PriceEnergyVarðcÞ) for each consumer are obtained solving the
formulated optimization problem.

Some case studies consider the obligation of having the same
price variation for the loads of the same type as formulated in (8):

PriceEnergyVarðcÞ ¼ PriceEnergyVarðTÞ;cc˛T (8)

where T is the consumer type.
Fig. 4. Values of the objective function for each approach and reduction need.
3.4. Software implementation

DemSi aims to provide a flexible tool to analyze demand
response actions and schemes, providing realistic simulation
results. This requires modeling all relevant demand response
programs and also a realistic network simulation. After some
preliminary experiences, PSCAD� [34] is being used for network
simulation evidencing good results. PSCAD� allows to have detailed
models of electrical equipment and to consider transient
phenomena. On the other hand, it also allows the realistic modeling
of distributed generation resources. This had a strong influence in
the decision of using PSCAD� because we aim at applying the
Please cite this article in press as: Faria P, Vale Z, Demand response in ele
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developed simulator to study demand response in the context of
future electrical networks, which are characterized by intensive use
of distributed generation and the need of adequate management of
distributed energy resources.

To fully attain our goals, PSCAD� is linked with MATLAB� [35]
and GAMS� [36]. These links allow using programmed modules
able to model the relevant players’ behavior and all the relation-
ships among them, namely the contracts between clients and
suppliers. The solution of the formulated optimization problem is
found using MATLAB� and/or GAMS�. Using diverse approaches
for solving the optimization problems, it is possible to derive the
best approach for each type of situation. This is important because
our ultimate goal is to develop a software application that can be
used by several types of players to optimize their resource
management. Fig. 2 shows the general architecture of DemSi.

Every time the simulation starts, an initial state (e.g. value of
loads, state of breakers, etc.) is considered as the departing simu-
lation point. Apart from this initial state, the required inputs can be
divided in three major groups:

- Network data: The simulator requires detailed data concerning
network equipment (e.g. lines, transformers, VAR compensa-
tors). This includes the characteristics of electrical equipments
and an equivalent model for the upstream network that are
considered in the PSCAD simulation;

- Generation knowledge base: Detailed technical data concern-
ing each generation plant allowing their PSCAD models to be
created. This includes the electrical characteristics, generation
limits and resource forecasting for renewable based plants.
Resource forecasting is required for the entire duration of the
simulation study;

- Consumers knowledge base: The simulator requires having
knowledge on the consumers which can be divided in three
different types:

� Electric characteristics of consumers’ loads so that they can be
modeled in PSCAD;

� Load forecasting and price elasticity for the entire duration of
the simulation study;
ctrical energy supply: An optimal real time pricing approach, Energy



Fig. 5. Maximum price variations for each approach and reduction needs.
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� Detailed information concerning consumers’ contracts with
their suppliers, including the contracts that refer to demand
response. For each demand response contract, this information
includes its type (e.g. Direct Load Control, Real Time Pricing,
Critical-Peak Pricing) and the specific relevant information for
each contract (e.g. trigger logic, advance notification time,
sustained response period, minimum reduction amount,
allowance for aggregated participation).

An event timeline is used, allowing the simulator to consider the
occurrence of demand response events. For each declared event,
the situation is analyzed in terms of the balance between supply
and demand. The demand response management module is ran,
implementing the corresponding demand response programs.
Once the optimized solution is achieved, the new load values are
fed into the network simulation module. The simulation goes on,
reflecting the consequences of the declared demand response
events and pursuing through the event timeline.
4. Case study

This section presents a case study that illustrates the use of the
developed demand response simulator DemSi. Let us consider
Fig. 6. Number of loads that reached the price l
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a distribution network with 32 buses, from [37], as seen in Fig. 3.
The dashed lines represent reconfiguration branches that are not
considered in the present case study.

In an incident situation, DR can be used to reduce the incident’s
impact, strategically determining what loads should be shed when
there is a lack of supply. Consequently, DR use allows a significant
reduction in the Value of Lost Load (VOLL) even if the non supplied
load value remains the same [15]. This case study considers this
network in an updated scenario, regarding load evolution from the
initial scenario in 2008. All the results presented in this paper are
obtained for a period for which the load demand is presented in
Table 1. These values result from the load power values obtained
from [37], corrected with the forecasted load evolution till the
present.
4.1. Case characterization

For the present case study, four scenarios based on consumer
response capability have been considered. The differences between
the scenarios arise from the following aspects:

- Limits imposed for the maximum price and power variations
(power and price caps);
imit (a) and the power reduction limit (b).
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Fig. 7. Price and power variations for AT scenario for the lower and higher reduction needs.
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- Imposition or not of the same price variation for the customers
of the same type.

Table 2 summarizes the characteristics of these four scenarios.
Power cap is the same for all the scenarios and corresponds to the
reduction of 15% in the power consumption value of each customer.
Reference [12] reports values of potential load reduction, in
percentage, depending on the classification of the consumer. Using
the results published in [12], the value of 15% is a prudently
weighted value which has been chosen for this case study. The load
reduction value is assumed as equal for all consumer types, to
simplify the results’ analysis.

In what concerns the price variation limits (price cap), two
different values are considered: a maximum increase of 50% and
150% in the value of energy price for each customer (labeled as A
and B data, respectively).

The other variation in the scenario characteristics is the fact of
considering or not equal price variations for all the customers of the
same type. Approach C considers individual price variations for
each customer whereas approach T imposes the same price varia-
tion for every customer of each customer type. In the text bellow,
“A” and “B” indices are related to A data and B data, respectively,
and “C” and “T” indices are used for approaches C and T respectively.
In total, we have 4 scenarios that combine the above referred
characteristics: AC, BC, AT, and BT scenarios.

Table 3 shows the group of 32 customers classified in the five
consumer types. In this case study, a fixed value of elasticity is used
for all the customers of the same type. The last column presents the
default values of the electricity price, which correspond to the
values of flat-rate tariffs.

The consumer types are usually strongly related to the activity
sector, and depend on the used studies. A report concerning some
of these studies is presented in [38]. The data presented in Table 3,
concerning the consumer classification (type) and the corre-
sponding elasticity values, is derived from [38] and on [12].

All the obtained results consider a load reduction requirement.
The load reduction requirement can be evaluated as the total initial
Fig. 8. Price and power variations for BT scenari
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load demand level, minus the available generation amount, and
corresponds to the quantity of load that the retailer wants to
reduce, which should be obtained through the use of demand
response.
4.2. Results

The case study has been solved by the DemSi DR programs’
managementmodule, using the GAMS solver CONOPT (CONtinuous
global OPTimizer) [39], which is based on the Generalized Reduced
Gradient (GRG) method [40].

Fig. 4 presents the values of the objective function (OF) for each
approach and for each considered reduction need.

From the results shown in Fig. 4, it is possible to conclude that
when there is load flexibility to respond to higher reduction needs,
the retailers benefit from this characteristic and various opportu-
nities of higher profits will occur.

Analyzing Fig. 4, one can see that for lower load reduction needs,
the differences between the results for the four analyzed scenarios
are insignificant. However, for higher reduction needs, it is clear
that the values of the objective function are lower for the scenarios
using A data, indicating lower profits for the retailer. This means
that the retailer’s profit can be increased with the increase of the
price variation limit. If the retailer uses a part of this additional
profit as an incentive for consumers, additional demand response
can be obtained.

For the scenarios using A data there is no solution for the highest
reduction needs. The additional price variations allowed in the
scenarios using B data allow obtaining feasible solutions for all
considered reduction needs.

The comparison of the results obtained by the optimization
algorithm for scenarios considering a normalized tariff for each
consumer type with the results of the corresponding scenario,
considering individual consumer tariffs (i.e. comparing the results
of AC with AT and of BC with BT), shows that the normalization of
tariffs by consumer type does not significantly affect the maximum
o for the lower and higher reduction needs.
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Table 4
Network load and losses.

Initial Reduction need (kW)

1 31 131 231 331 431 531 631

Load (MW) 4.956 4.955 4.925 4.825 4.725 4.625 4.525 4.425 4.325
Losses (MW) 0.233 0.230 0.228 0.216 0.203 0.191 0.179 0.168 0.161
Losses (%) 4.7 4.6 4.6 4.5 4.3 4.1 4.0 3.8 3.7
Load þ Losses (MW) 5.189 5.186 5.153 5.042 4.929 4.816 4.705 4.593 4.487
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retailer profit (the maximum difference is below 26 Euros, in this
case study). Considering normalized tariffs for each consumer type
is a fairer strategy in comparison with applying different tariffs for
consumers of a same type, being more prone to be well accepted by
the consumers. This is an important conclusion to be taken into
account for retailers’ decision making.

An important aspect to be analyzed for the use of demand
response programs is the optimal variation on the energy tariff to
encourage customers to reduce their power consumption so that
the retailer’s profit is maximized. Fig. 5 presents the maximum
variations in energy price obtained for both A and B scenarios.

From the results presented in Fig. 5b) it can be concluded that,
for B data (i.e. when larger load reduction margins are allowed), the
highest price variation never reaches the maximum permitted
value. On the other hand, the results presented in Fig. 5a) show that
for A data the load response is limited by the price cap, for the
higher load reduction needs.

For the scenarios using A data, the maximum energy price
variation is generally lower for the normalized tariff for each
consumer type approach. For this approach, the reduction need
tends to be divided by all the customers of the same type, while the
approach applying different tariffs for consumers of the same type
obtains the required load reduction from a smaller number of
customers (those with lower reduction tariffs). For the scenarios
using B data this rule does not apply to 31 kW and 131 kW
reduction needs for which a larger number of customers is used by
the C approach than by the T approach.

As mentioned, A and B data have as major distinction the
predominant cap parameter (price for A and power for B). Thus,
Fig. 6 presents, for each reduction need, the number of loads that
reached the limit of price and power variations, for A and B data,
respectively in Fig. 6a) and in Fig. 6b).

For other combinations, namely price variation for B data and
power variation for A data, it has been concluded that there are no
loads reaching the variation limits. For lower reduction needs, there
are no loads reaching any variation limit. As we increase the
Table 5
Sensitivity analysis of the objective function value (in V) with respect to the variable pa

Input variable Value
change

Reduction need (kW)

1 31 131

Power cap (%) �10 100.79 144.58 266.86
�5 100.79 144.58 266.86
0 100.79 144.58 266.86
5 100.79 144.58 266.86

10 100.79 144.58 266.86
Electricity price

(V/kWh)
�0.04 e e 36.79
�0.02 1.45 41.11 151.81
0.00 100.79 144.58 266.86
0.02 200.12 248.05 381.92
0.04 299.46 351.52 496.99

Elasticity �0.10 111.74 325.17 660.80
�0.05 102.35 178.29 375.74
0.00 100.79 144.58 266.86
0.05 100.14 130.70 218.47
0.10 99.79 123.13 191.76
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reduction needs, more loads reach the variation limits and it can be
seen that for the higher reduction needs there are not any differ-
ences in the results obtained for A and B data.

For a more detailed analysis, let us focus on the lower and higher
reduction needs. Fig. 7 presents the results for the price and power
variations for A data, for the lower reduction need in Fig. 7a) and for
the higher reduction need in Fig. 7b). The results are presented only
forAT, sinceAC results are similar.Note thatbusesaregroupedbytype
of customers and are ordered from lower to higher elasticity values.

For the lower reduction need, only small commerce consumers
participate, since they have the lowest elasticity and therefore they
are the first choice for the profit maximization. On the contrary,
industrial customers, who have the highest elasticity, only partici-
pate in higher reduction needs if the retailer’s profit maximization
approach is used. If a consumers’ cost minimization approach was
used, industrial customers would be preferably chosen to satisfy
lower reduction needs due to their high elasticity.

Fig. 8 shows the results of a similar analysis that has been used
for obtaining Fig. 7 but for B data. For the lower reduction, results
are similar to those obtained with A data. For the higher reduction,
in Fig. 8b), it is important to note that its absolute value is higher
(631 kW) than the one of Fig. 7b), which is equal to 431 kW. The
increase in the maximum permitted load reduction causes an
increase of consumer participation in DR.

Table 4 presents the load and loss values for the initial network
state and for all the considered reduction needs, considering
demand response, for BT scenario.

4.3. Sensitivity analysis

A sensitivity analysis has been performed in order to reach
conclusions concerning the impact of changes in the study input
parameters on the obtained solutions. These conclusions are rele-
vant so that decision agents are aware of the risk involved in
considering, for each input, values that may differ from the real
ones, in smaller or higher extent.
rameters’ values.

231 331 431 531 631

374.34 471.70 552.91 606.39 642.81
374.70 472.53 557.40 618.14 656.45
374.93 473.23 560.61 627.68 669.13
375.03 473.79 562.36 633.85 680.83
375.03 474.23 563.34 638.74 691.56
125.42 206.33 278.50 332.57 365.55
250.16 339.77 419.55 480.13 517.34
374.93 473.23 560.61 627.68 669.13
499.73 606.71 701.66 775.23 820.92
624.54 740.20 842.71 922.79 972.71
894.99 1032.47 1099.69 1144.74 1159.74
533.20 673.66 781.42 848.87 892.07
374.93 473.23 560.61 627.68 669.13
298.52 372.00 437.90 492.34 528.78
254.96 313.07 365.63 411.10 443.39
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The sensitivity study considered the influence of three different
input variables in the results of the objective function (that repre-
sents the profit obtained by the retailer), in function of the reduc-
tion need. Therefore, the reduction need can be seen as the 4th
variable of this study. The results of the sensitivity study are shown
in Table 5. The discrete values of changes in these variables, in
percentage or absolute values, are displayed in the second column.
These changes are applied equally to all the consumers.

The first input variable is the power cap, for which increasing
and decreasing percentage changes are considered. For the second
input, the electricity price, positive and negative increments of
0.02 V/kWh are considered. For the simulations considering the
changes in the electricity price, the values of price caps, which were
considered as a percentage of the electricity price, were also
updated. For the last considered input, the value of elasticity,
positive and negative increments of 0.05 are considered.

From the analysis of the results shown in Table 5, it can be seen
that the solutions are highly sensitive to the elasticity value. For this
variable, the sensitivity increases with the increase of the reduction
need. The power cap is the input to which the solutions are less
sensitive. Changes increase with the increase of reduction needs,
and present lower absolute values. In the study of the electricity
price influence, it can be seen that there are two situations for
which there are no solutions for the problem.

These results allow concluding that an erroneous evaluation of
consumer elasticity may result in significant errors in the identified
optimal solutions. On the other hand, variations in the allowed
power caps do not bring significant changes for the objective
function value.

5. Conclusions

Although demand response is not a new concept, it can have
a much more relevant importance in the context of competitive
electricity markets. In the scope of a competitive market, with
technical and economic issues having to be equally considered,
active demand players can bring the additional required flexibility
to attain the envisaged efficiency operation levels.

This paper presented the most important demand response
concepts and programs, as well as some relevant experiences in this
field. Increasing interest on this area is leading to an increasing
number of works. However, new approaches are required in order
to take full advantage of demand response in benefit of electricity
market operation and electricity market players.

This paper presented DemSi, a demand response simulator that
allows studying demand response actions and schemes, using
a realistic network simulation based on PSCAD. DemSi allows
simulating a variety of demand response methodologies and to
optimally achieve a solution according to the available demand
response opportunities.

DemSi is used to support the case study presented in the paper.
This case study is based on the retailer’s perspective and includes
a set of events with a load reduction level being envisaged for each
one. The study considers both price and load reduction caps for
each consumer. For each envisaged load reduction, the optimal
demand response solution is determined using a non-linear
programming approach. Results show that customer’s demand
depends on price elasticity of demand, and on the real-time pricing
tariff. The optimal solution also depends on the imposed price caps
according to the concerned DR programs.

The study includes simulations considering a normalized tariff
for each consumer type and considering individual consumer
tariffs. When comparing the results obtained imposing the use of
a normalized tariff and those resulting from the consideration of
individual consumer tariffs, it can be concluded that the retailer’s
Please cite this article in press as: Faria P, Vale Z, Demand response in ele
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benefits are almost the same. Considering normalized tariffs for
each consumer type is a fairer strategy in comparisonwith applying
different tariffs for consumers of a same type, being more prone to
be well accepted by the consumers. This is an important conclusion
to be taken into account when DR programs are designed.
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