Algebras, automata and logic for languages of labeled birooted trees

Abstract : In this paper, we study the languages of labeled finite birooted trees: Munn's birooted trees extended with vertex labeling. We define a notion of finite state birooted tree automata that is shown to capture the class of languages that are upward closed w.r.t. the natural order and definable in Monadic Second Order Logic. Then, relying on the inverse monoid structure of labeled birooted trees, we derive a notion of recognizable languages by means of (adequate) premorphisms into finite (adequately) ordered monoids. This notion is shown to capture finite boolean combinations of languages as above. We also provide a simple encoding of finite (mono-rooted) labeled trees in an antichain of labeled birooted trees that shows that classical regular languages of finite (mono-rooted) trees are also recognized by such premorphisms and finite ordered monoids.
Type de document :
Communication dans un congrès
F. V. Fomin and M. Kwiatkowska and D. Peleg. ICALP, 2013, Riga, Latvia. Springer, 7966, pp.318-329, 2013, LNCS. 〈10.1007/978-3-642-39212-2_29〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00784898
Contributeur : David Janin <>
Soumis le : jeudi 25 avril 2013 - 14:48:38
Dernière modification le : jeudi 11 janvier 2018 - 06:20:16
Document(s) archivé(s) le : vendredi 26 juillet 2013 - 04:03:27

Fichier

RR1467-13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

David Janin. Algebras, automata and logic for languages of labeled birooted trees. F. V. Fomin and M. Kwiatkowska and D. Peleg. ICALP, 2013, Riga, Latvia. Springer, 7966, pp.318-329, 2013, LNCS. 〈10.1007/978-3-642-39212-2_29〉. 〈hal-00784898v2〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

234