Representing the Continuum between Arguments and Adjuncts within Predicate-Frames
Pierre Marchal, Thierry Poibeau, Yves Lepage

To cite this version:
Pierre Marchal, Thierry Poibeau, Yves Lepage. Representing the Continuum between Arguments and Adjuncts within Predicate-Frames. NINJAL International Symposium on "Valency Classes and Alternations in Japanese", Aug 2012, Tokyo, Japan. hal-00783722

HAL Id: hal-00783722
https://hal.archives-ouvertes.fr/hal-00783722
Submitted on 1 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Representing the Continuum between Arguments and Adjuncts within Predicate-Frames

Pierre Marchal1,2, Thierry Poibeau3, Yves Lepage2

1 ER-TIM, InaLCO, Paris, France
2 IPS, Waseda University, Kitakyûshû, Japan
3 LaTTiCe, CNRS – ENS – Université Paris III, Montrouge, France

pierre.marchal@inalco.fr, thierry.poibeau@ens.fr, yves.lepage@waseda.jp

Introduction

In the context of an automated task of acquisition of predicate-frames in Japanese, we introduce a method to observe and evaluate distinction criteria between arguments and adjuncts on a large scale. Rather than a binary classification, we are interested in a representation of the continuum between arguments and adjuncts.

\[
\text{complements} = \text{arguments} \cup \text{adjuncts}
\]

Method and resources

We aim at modeling the two extremes of the continuum between arguments and adjuncts.

Prototypical argument: a type of complement which appears in every predicate-frame (i.e. usage) of a given verb.

Prototypical adjunct: a type of complement which never appears in any predicate-frame of a given verb.

Here, the goal is to build two list of verbs, one list to retrieve prototypical arguments, one another to retrieve prototypical adjuncts. We rely on an existing resource: 動詞項構造シソーラス. We consider two case markers: wo (prototypical argument), and de (prototypical adjunct).

<table>
<thead>
<tr>
<th>Verbs</th>
<th>Predicate-frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo-list of verbs</td>
<td>4,761</td>
</tr>
<tr>
<td>de-list of verbs</td>
<td>9,416</td>
</tr>
<tr>
<td>動詞項構造シソーラス</td>
<td>10,364</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the two lists of verbs with 動詞項構造シソーラス

For each list of verbs we retrieve instances of predicate-frames. We process about 1.9M sentences from the BCCWJ with a dependency parser to build examples as in figure 1.

Figure 2. Ordering

Figure 3. Head dependence

Evaluation

We evaluate distinction criteria on 31,531 examples, all containing at least one complement marked with the wo particle and one complement marked with the de particle.

We add an extra criterion which is the combination of ordering and head dependence (i.e. the product of their degree of autonomy).

Our evaluation method rely on the idea of a continuum between arguments and adjuncts. For a criterion to be relevant to this task, it needs to order properly the complements along the continuum. That is, even if a criterion assigns a low autonomy to an adjunct it can still be accurate if it assigns – in the same context – an even lower autonomy to an argument (as shown in table 3).

<table>
<thead>
<tr>
<th>ウ格 (wo)</th>
<th>デ格 (de)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering (C1)</td>
<td>0</td>
</tr>
<tr>
<td>Head dependence (C2)</td>
<td>0.29</td>
</tr>
<tr>
<td>C1 + C2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Evaluation on the example of figure 1

It appears that accuracy can be slightly improved by combining different criteria.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering (C1)</td>
<td>81.40</td>
</tr>
<tr>
<td>Head dependence (C2)</td>
<td>75.07</td>
</tr>
<tr>
<td>C1 + C2</td>
<td>81.72</td>
</tr>
</tbody>
</table>

Table 4. Results of the evaluation