
HAL Id: hal-00783686
https://hal.science/hal-00783686

Submitted on 1 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PEGASE: A generic and adaptable intelligent system for
virtual reality learning environments

Cédric Buche, Cyril Bossard, Ronan Querrec, Pierre Chevaillier

To cite this version:
Cédric Buche, Cyril Bossard, Ronan Querrec, Pierre Chevaillier. PEGASE: A generic and adaptable
intelligent system for virtual reality learning environments. International Journal of Virtual Reality,
2010, 9 (2), pp.73-85. �hal-00783686�

https://hal.science/hal-00783686
https://hal.archives-ouvertes.fr

The International Journal of Virtual Reality,2010,9(2):1-13 1

Abstract— The context of this research is the creation of human

learning environments using virtual reality. We propose the

integration of a generic and adaptable intelligent tutoring system

(Pegase) into a virtual environment. The aim of this environment is

to instruct the learner, and to assist the instructor. The proposed

system is created using a multi-agent system. This system emits a

set of knowledge (actions carried out by the learner, knowledge

about the field, etc.) which Pegase uses to make informed decisions.

Our study focuses on the representation of knowledge about the

environment, and on the adaptable pedagogical agent providing

instructive assistance.

Index Terms— Virtual Learning Environment (VLE),

multi-agent system, Intelligent Tutoring System (ITS), classifiers

system.

I. INTRODUCTION

Many fields of learning, like driving or professional training for

firefighters, for instance, require learners to experience the

setting in which they will work or operate. The learners must

therefore acquire not only knowledge, but real, hands-on skills.

Virtual environments (VE) immerse learners in such situations.

Fig. 1 gives three examples of a road safety application

(AReViRoad) [1], a SEVESO plant application [2] and

Gaspar for logistics on aircraft carriers [3].

Fig. 1. From left to right: screenshots from the AReViRoad,

Virthualis and Gaspar applications.

 This work is designed to teach decision-making in VE.

Tutoring systems to instruct learners and assist instructors

already exist [4, 5], but are dedicated to a specific VE. In this

paper, we propose an independent VE tutoring system called

Pegase, in the field of procedural and collaborative work.

Manuscript received on March 30,2010.

E-mail: cedric.buche@enib.fr

II. CONTEXT: ACQUISITION OF SKILLS USING

VIRTUAL ENVIRONMENTS

Traditionally, most training programs aim to transmit

knowledge. However, to facilitate the acquisition of knowledge,

we must build on our prior knowledge and skills. In this context,

we propose the use of Intelligent Tutoring Systems (ITS) in

which this knowledge is used in conjunction with the training

setting. In this case, knowledge can be manipulated, e.g., to

automatically question the learner. Being competent does not

only mean having acquired knowledge, but also being able to

use that knowledge. In order to facilitate the acquisition of

knowledge, we must provide the learner with the right setting.

To this end, we suggest using interactive systems by which the

learners can be immersed in VEs in which they can make trial

attempts, take initiatives, make mistakes and try again in a

similar situation (which may not be possible in reality). The

simulation therefore provides an environment common to the

learner, the instructor and to the skill to be acquired. It mediates

the learning relationship (learner-skill) as well as the instructive

relationship (instructor-learner). Thus, computer-generated

simulations, combined with an ITS, create an opportunity to

improve learners’ skills by associating knowledge with the

possibility of putting their skills into practice.

ITS have already been used without being associated with

virtual reality. As [6] has shown, they usually conform to one of

four models. The first, known as the domain model, contains a

representation of the knowledge linked to the skill to be

acquired. ITS also use a learner model which defines the

learner's personal characteristics and ascertains the condition of

the knowledge at a given moment. Using the domain and learner

models, an ITS can evaluate the knowledge acquired by learners

by comparing their activity with information about the field.

However, the main objective of the ITS is to provide

appropriate assistance to the learner or the instructor, depending

on the setting (following activities or offering assistance). In this

context, the pedagogical model can be used to make choices

with regard to the training objective, with the aim of facilitating

learning. Finally, an interface model is used to exchange

information between the system and the user. Until now, this

PEGASE: A Generic and Adaptable

Intelligent System for Virtual Reality

Learning Environments
Cédric Buche, Cyril Bossard, Ronan Querrec and Pierre Chevaillier

European Center for Virtual Reality, Université Européenne de Bretagne,

Ecole Nationale d’Ingénieurs de Brest, Laboratoire d’Informatique des Systèmes Complexes,

Technopôle Brest-Iroise, 29283 Brest, Cedex 3, France

The International Journal of Virtual Reality,2010,9(2):1-13 2

model has not been reified
1
 in existing VEs designed for

learning.

Within the context of our VE, we consider an ITS as a system

which is part of the human Virtual Learning Environment

(VLE). We propose to evaluate the extent to which ITS are

integrated within existing VLE. We have grouped VLE into

three categories:

1. VLE as conventional simulators

 This first category includes those applications which include

none of the four models, such as an application designed to

assist in both maintenance and control of mobile cranes [7]. In

this kind of VE, the system provides no explanations about the

task to be performed, which would require a domain model. The

environment is therefore unable to adapt to the learner, as this

would require a learner model. Finally, the teaching method is

the instructor’s responsibility. This sort of system is not able to

make decisions regarding instructive interventions, however, it

can help learners to improve or modify pre-existing skills.

2. VLE with domain and/or learner models

 This second category of VE is made up of applications which

include a domain model and/or a learner model [8]. The most

well-known example of this type of VE is Steve, a virtual

character who assists in both teaching and learning procedural

tasks [5]. Using the domain model, Steve can demonstrate and

explain the procedure and above all, verify the learner’s actions.

However, Steve intervenes on demand. He is incapable of

knowing when, how and why to intervene, which would require

a pedagogical model. In a system such as this it is possible to

acquire skills, but the participation of the instructor is still

required for all pedagogical interventions.

3. VLE with domain, learner, and pedagogical models

 This final category groups together the VEs presenting not

only domain and learner models, but also a pedagogical model

[9]. Let us examine the example of the educational agent, Hal,

from the Fiacre system [4]. The application is designed to

instruct individuals in learning to drive TGV high speed trains,

using virtual reality (intervention on railways). As well as

having all of Steve’s abilities, Hal assists the instructors in

structuring the pedagogical discourse. In concrete terms, each

anticipated behavior corresponds to a different instructive

assistance (additional information, explanation of an object,

etc.). The instructor must therefore list the possible errors for

each piece of knowledge to be acquired. Furthermore, for each

of these errors, the instructor must specify the way in which

these pedagogical strategies should be conducted through

instructive assistance, and furthermore must do so for each

exercise. The main advantage of this kind of VLE lies in the

assistance to the instructor in terms of the educational

relationship linked to the learner, and in the didactic

relationship linked to the skill to be learnt. However, the

instructor must specify all of the knowledge to be acquired for

each exercise.

Thus, most VLEs only include representation of the

knowledge about one specific domain. Systems proposing a

diagnostic component only rarely provide a mechanism for

instructive assistance. Hal seems to us to be the most successful

1 Reification is a process through which concepts are explicitly represented

by semantic representation (classes) to conceptual manipulation

of these systems. However, the instructor must still make a list

of the possible errors and specify the educational strategies for

each exercise. Furthermore, the impact of the instructive

assistance on the learner is not taken into consideration. In

concrete terms, any proposed assistance which does not help the

learner to make progress will be updated each time that specific

situation occurs.

In order to resolve these shortcomings, we propose the

integration of an intelligent tutoring system within a VE. This

system must propose a flexible pedagogical model, i.e. a model

in which instructive concepts can be easily added, modified or

deleted. Furthermore, a model such as this must be generic,

insofar as the pedagogical model must be exploitable

independently of the task to be performed. Finally, the

knowledge of the pedagogical model, along with its past

experience, could be used to automatically suggest the

appropriate interventions by taking into account both the learner

and the context of the simulation: the system therefore becomes

adaptive. Our model is called Pegase (PEdagogical Generic

and Adaptive SystEm).

 In the next section, we will describe the global architecture of

Pegase. We will then go on to present our domain model (see

section 4) and a description of our pedagogical model (see

section 5), followed by a discussion of the advantages of our

proposed models (see section 6). It must be noted that the

proposal described here is applicable within the context of the

learning of procedural and collaborative tasks and cannot be

used in general learning situations.

III. PROPOSING AN INTELLIGENT TUTORING

SYSTEM : PEGASE

Our proposal consists of reifying the four classic ITS models

(domain, learner, pedagogical, interface), within a VE. We

believe that errors can provide crucial information and thus

decided to introduce a model called "error model". It is through

the use of this new model that we will be able to generalize

(something Hal could not do). Furthermore, we have added an

"instructor model", in which the instructor specifies the

knowledge about the exercise to be performed. The instructor

defines the guidelines which describe the procedure(s) to be

carried out and the role(s) played by the learner (and

consequently those which must also be activated automatically).

These models must provide solutions to counter the

shortcomings of the existing systems described above and must

therefore display two important characteristics: genericity and

adaptability. We thus suggest that it is possible to incorporate a

generic and adaptive ITS from a VE by reifying the 6 ITS

models. So that each model can share its information and

conduct its analyses autonomously (independently of both the

situation and of other models), an autonomous entity (known as

an agent) is associated with each model.

 The agents interact by exchanging messages containing data

(see Fig. 2). This data can be extracted from the situation or

inferred from the agent’s internal reasoning using its knowledge

(the model to which it is linked).

The International Journal of Virtual Reality,2010,9(2):1-13 3

Step 1. Observation:

Using the interface model, the system analyzes the learner’s

activity. The elements that are important for learning are

supplied to the learner model. This information concerns the

learner’s actions, those elements which the learner can observe,

and the learner’s movements.

Step 2. Detecting and Identifying an Error:

The system analyzes the learner’s actions (learner model) and

compares them with the actions to be performed (domain

model). This comparison is used in order to detect errors. If one

is detected, an error identification mechanism is set up (using

the error model).

Step 3. Proposing instructive assistance:

Using the learner model (characteristics, activities, errors, etc.),

and the domain model (knowledge of the organizational

structures), a mechanism simulating instructive reasoning

recommends the instructive assistance for the given situation. It

must be noted that this step is not optional; it occurs even if no

error is detected.

Step 4. Choosing instructive assistance:

The instructor can choose one specific type of instructive

assistance amongst those proposed.

Step 5. Representing instructive assistance:

The instructive assistance selected is presented in the VE.

To use the information from the VE, we must inform the

environment in order to obtain controllable knowledge. This

creates an informed VE (see section 4). The environment will

then be reified. This knowledge is comple mented by additional

information contained within the 6 ITS models. This data makes

up a knowledge base for the pedagogical model which we call

the pedagogical situation. This knowledge fuels the ITS’s

motor for making instructive decisions (see section 5). An

example of the way in which the rules governing this motor are

specified is presented in section 5.3.

IV. DOMAIN MODEL

To reify the concepts of the domain, we define the Veha (VE

for Human Activity) metamodel. It describes the VE, not only in

terms of geometric space, but by providing the semantics

required for the artificial agents (ITS, autonomous characters)

or humans (learners or instructors) to be able to construct for

themselves a representation of the environment and act together

to reach their goals. The Veha metamodel (M3) enables the

construction of VE models (M2) and the corresponding

concrete VEs (M1) (see table 1). Veha is based on Uml
 2
. It

extends Uml because Uml does not define the specific concepts

of virtual reality.

TABLE 1: LAYERS OF MODELING (MI):THE POSITION OF VEHA

WITHIN THE MOF FRAMEWORK, IN PARALLEL WITH UML.

M4 Mof
3
 (Uml limitation)

M3 Uml metamodel Veha metamodel

M2 Uml user model V E1 model …

M1 user object V E1a V E1b … …

2
Uml (Unified Modeling Language) an object modeling and specification

language (http://www.omg.org/spec/UML/).
3
Mof (Meta-Object Framework) a meta-model used to formally define Uml.

Fig. 2. The instructive process of our five-stage system.

http://www.omg.org/spec/UML/

The International Journal of Virtual Reality,2010,9(2):1-13 4

4.1 The Veha metamodel

 The ITS needs to know which objects make up the VE, how

to access it, its properties, its behavior, and how to interact with

it. Three kinds of knowledge can be expressed using Veha:

1. Domain concepts: This entails the semantic description of

the concepts relating to the field of activity concerned. It

represents some of the knowledge that the learner must

acquire (section 4.1.1).

2. The possibility of structuring and interacting with the

environment: These concepts resemble those suggested

in smart objects [10] which reify those properties

required for interactions. The means available to the

learner or to the ITS must be specified in order to modify

the environment (section 4.1.2).

3. Entities’ behavior: Within the framework of a VLE the

environment’s reactions to the learner’s actions must be

simulated. Entities’ behavior also represents one of the

elements of the knowledge to be transmitted and must be

enforceable (section 4.1.3). In the following part of this

section, we explain how Veha can be used to express

these three kinds of knowledge.

4.1.1 Domain concepts

Knowledge of the domain is expressed both at the model

(concept) level, and at the level of the occurrences of these

concepts (tangible objects populating the environment). In

Veha as in Uml, this knowledge is represented by classes

(Class) and instances (InstanceSpecification).

 In Veha, the notion of class is used to define a type of object

(Fig. 3) from domain-specific ontology. The aim is to be able to

apply semantics to each of the business concepts, whether or not

they are tangibly represented in the VE (concepts v.s. concrete

objects). All classes stem from the Element class. This class

enables the identification of each of the elements of a business

model from its name and the addition of a textual comment. This

can be useful when providing the user with explanations

regarding the significance of an object.

Fig. 3. Class diagram from the Veha metamodel: Features of a Classifier.

 The structural properties (Property) and behavioral

features (BehavioralFeature) of the classes are assigned

to the Classifier
4
 via the Feature class. The Property

class represents the structural component of the Classifier

(as much the attributes as the relationships with other business

concepts). As in Uml, the Operation class is the only

tangible sub-class of BehavioralFeature. It is used to

express the effect that an object or a user can have on another

4 UML metamodel class which generalizes the concept of class.

object. It does this by defining the object’s actual behavior

rather than the method used to achieve that behavior. The way in

which the behaviors associated with Operation are modeled

is described using behavioral models (see section 4.1.3).

The Veha’s second key concept is the notion of Class and

Instance, synonymous for the object. The

InstanceSpecification, Slot and

AssociationInstance classes represent the instantiation

of Class, Property and Association, respectively. The

term InstanceSpecification indicates that here, we

represent an M1 level entity (see table 1) independently of the

circumstances under which it is implemented.

The set of knowledge about the environment as specified in

Veha can be accessed by the ITS and by the users (learners or

instructors). The ITS can, for example, suggest to the learner a

list of operations to be performed on one specific kind of object.

Likewise, the instructor can modify the environment during the

simulation by changing the attribute values of a tangible object.

4.1.2 The possibility of structuring and interacting with the

environment

Most of the tangible objects within VEs are represented

geometrically and are situated within the environment. The

learner must be able to observe, recognize and manipulate these

objects. The ITS also needs to be able to manipulate them

within the context of the instructive assistance that it will

implement (transparency, refocusing from the learner’s point of

view, etc.). Knowledge about the geometry of these objects

must also be specified so that the ITS will be able to

recontextualize its suggestions within the VE. These objects are

entities and all have the properties of the instances Veha, i.e.

Class as well as geometric and topological properties (see

Fig. 4).

Fig. 4. Class diagram from the Veha metamodel: EntityClass.

Each entity is located at a global reference point. The Shape

class is used to assign an instance of EntityClass to a

graphical representation in the VE. It is possible to assign many

forms to one class of entity. The ITS can use this knowledge to

highlight an object or, on the contrary, to hide it. The

TopologicalProperty class supports the notion of

location (position and orientation) and is used to describe the

topological properties of the elements within the VE. It is

possible to assign informed points to an entity (Point) which

can be used to create an interaction. This information is used by

the ITS to turn the learner’s attention to a specific object, for

The International Journal of Virtual Reality,2010,9(2):1-13 5

example.

Any entity within the VE is an instance of the Entity class,

which derives from Kernel:InstanceSpecification.

The values of an entity’s properties are defined by its slots. So

these depend on the semantic, morphological, geometric and

topological properties of the objects within the VE (supplied by

InstanceSpecification).

4.1.3 Entities’ behaviors

When the learner carries out an action in the environment, that

environment must react in a realistic way for the learner to be

able to understand the consequences of his actions. The learner

therefore constructs a representation of the entities’ behavior.

For the ITS to be able to regulate this representation, the

knowledge of entities’ behaviors must also be specified, as for

the two previous kinds of knowledge, and it must also be

enforceable.

The role of the Behavior package is to model the possible

behaviors of the entities within the VE; the objective being for

the model to be interpreted in real-time by a behavioral

controller, and to be introspected online. As for the structural

aspects, introspection relies both on the behavioral model (M2)

and on its "instantiation", i.e., the way it is carried out (M1). The

two classes which support these notions are Behavior and

BehaviorExecution (see Fig. 5). The Veha entities have

reactive behaviors which are triggered by events that can be

caused either by the learner or by another of the VE’s entities.

Traditionally, behaviors are assigned pre-conditions and

post-conditions concerning the entities and the environment.

Behavioral modeling relies on state machines and the Uml

activity model. Finally, it can also be based on functions written

in programming language that can be consulted online

(OpaqueBehavior). The first two methods are

introspectable; the ITS can therefore describe or check the way

the behavior is carried out.

 The tutor can thus analyze, explain or check the context in

which an entity’s behavior is carried out by the learner. Better

still, if a particular behavior has been specifically described

(state machine or activity) it can also explain the way it will be

carried out.

Fig. 5. Class diagram from the Veha metamodel:Behavior::Common

package,the BehaviorExecution class.

4.2 Example of an environment in Veha

The Veha metamodel can automatically interpret a model

described in Uml. Figure 6 shows the class diagram for an

example of a VE in Veha. This example comes from an

application created in Veha, but which has been greatly

simplified for demonstration purposes. The application

(Gaspar, [3]) is made up of around fifty classes and more than

one thousand entities. This model shows the classes

Deflector and CatapultCabine (left window). The

catapult cabin shields the operators working on the catapult

deck of an aircraft carrier. A pod can open (raise above the deck)

or close (drop back down into the deck). The business model

specifies all of the pod’s properties (height, speed, etc.).

The reactive behavior of a pod is specified by a state machine

(top right-hand window). This state machine is sensitive to the

signals Open and Close. Therefore, when the pod is Closed, if

it receives the signal to Open, it changes to the Open state and

performs the operation Open(). Within the context of this

application, this operation is described in detail by an

OpaqueBehavior, a C++ code which carries out the visual

displacement of the pod depending on the speed attribute, and

updates the height attribute.

Fig. 6. Class diagram for a deflector and a catapult control pod.

 In much the same way, deflectors also react sensitively. Due

to the additional needs of this demonstration, we added a testing

operation (Test). This operation takes its settings from a

catapult control pod. The behavior of this operation is specified

by an activity diagram (bottom right-hand window). There- fore,

when a Test operation is evoked in an instance of the

Deflector class, the operation sends the signal Open to the

predefined pod.

 This model is defined using Objecteering modeling software.

It is then exported in an XMI file. The first proposal is to add an

interpreter to the Veha metamodel within the AReVi virtual

reality platform. The interpreter reads the XMI file and, for each

class of Uml metamodel, creates an instance of the

corresponding class in the Veha metamodel. Thus, for each

business class defined in the XMI file, the interpreter creates a

new instance of the Class class from the Veha metamodel. In

the context of our example, an instance of the Class class is

created for the Deflector class, and another created for the

CatapultCabine class. The interpreter enables the

reification of the business model and provides a set of methods

facilitating the introspection of this model. It is therefore

possible to ask the interpreter for the set of a class’s properties,

the signal which enables the passing from one state to another,

and the operation which will then be conducted, all

independently of any tangible object.

The International Journal of Virtual Reality,2010,9(2):1-13 6

 The VE is populated with entities, the instances of the

Entity class of the Veha metamodel. From a technical

standpoint, these instances are defined in an XML file. Using

Uml, class instances can also be described and exported in the

XMI file. However, no Uml modeler can make it simple to

attribute a shape and a position to these instances. The

geometric design of the VE is, in general, the result output by

specialist modelers such as 3DS MAX or Blender. We therefore

suggest using an export plugin for 3DS Max which would

generate the instance file read by the interpreter. Fig. 7 shows

the visual result of the file defining the model (XMI) and the

instance file (XML) in an application implemented using AReVi.

The interpreter also provides the methods for interrogating and

manipulating the entities. It is therefore possible to ask an entity

for its property values, to carry out an operation, or to send it a

signal in order to change its state.

Fig. 7. Visualization of the instances of CatapultCabine and Deflector.

4.3 Procedure and Collaboration

Here we examine the acquisition of skills. The domain model

not only contains knowledge about the environment in use, but

also knowledge about the task which must be performed within

that environment by the learners. Within the context of this

research and the examples given in the introduction, activities

are defined by the procedures describing the Actions to be

performed by a number of entities, each with specifically

defined roles. We use the same assumption as for the

environment and propose the use of a metamodel based on Uml

in order to define these activities. The procedures are therefore

defined by activity diagrams. This kind of diagram uses the

traditional possibilities for organizing its Actions

(parallelism, sequence, junction, condition, etc.) As we are

dealing with representing human activity, we consider that the

sequence of activities takes place in an asynchronous manner.

Fig. 8. Example of a procedure written using an activity diagram.

 The organization roles are represented by activity corridors.

The name of the corridor defines its role and its type, as well as

the type of agent that is authorized to take this role. As in Uml

2.1, there are many different types of activity. This could be the

execution of an agent’s operations, a basic virtual action

(playing an animation, reaching a given position, etc.) or

sending a signal to a specific resource. The resources are drawn

on by the environment’s entities and represented by objects in

Uml. The conditions are expressed in Ocl and stem from the

roles and resources participating in the procedure. Figure 8

illustrates the example of a procedure expressed using an

activity diagram. This procedure solicits the intervention of

three roles (such as Operator) which must be played by

characters of a pre-defined type (PEH for example). The

characters which play these roles are those which are effectively

instantiated in the environment. This procedure aims to make

the airplane which is to be catapulted advance towards a given

point by manipulating the deflector (a protective plate). The

example of the procedure in Fig. 8 illustrates the

complementary nature of the state machines used to define the

reactive behavior of the objects in the environment and the

activity diagrams defining a procedure. A procedure’s action

can be represented by sending an event to a given object to be

manipulated, and the conditions of moving on to the following

action can depend on the current state of the object.

 We implemented agents’ behaviors using knowledge about

the procedures to select their actions. The learner plays one or

more roles in the context of these procedures. The ITS also

draws on this knowledge in order to choose which assistance to

suggest. As for the environment, there are two levels of

modeling available to the agents (including the ITS) and the

users (instructors): the organizational structure and the

organizational instances. The intelligent tutor is therefore able

to recognize the sequence of actions independently of all

organization. It can also follow the precise progress of the

procedure being carried out in the team in which the learner

plays one or more roles. It is therefore able to detect the

learner’s errors with respect to the order of the actions to be

completed and compliance with the conditions defined in the

procedure [11].

V. PEDAGOGICAL MODEL

Knowledge about the environment (the entities and about the

task to be performed) are represented with the Veha model. Our

ITS can thus manipulate them in order to construct its own

knowledge, as shown in (section 5.1), and can simulate

pedagogical reasoning 5.2). Finally, a tangible implementation

of the ITS is proposed in section 5.3 (specification of the rules

of simulated pedagogical reasoning).

5.1 Pedagogical Situation

It must be emphasized here that our work is done in the context

of in situ learning. Within this theoretical framework, the

contextual elements are paramount in the ITS’s

decision-making [12, 13]. In our case, we refer to context as the

pedagogical situation which serves as a basis for

decision-making. The aim is to define this sort of context from

The International Journal of Virtual Reality,2010,9(2):1-13 7

a ”generic” standpoint, which would enable us to alter

information without having to take into account the specific task

being carried out. To do so, we must separate knowledge about

the task to be performed (see section 5.1.1) from knowledge

about the learner (see section 5.1.2).

5.1.1 Information concerning the task to be performed

We positioned our work in the context of training for procedural

work. The aim of the ITS is to assist learners in their progression

through the procedure. The skill to be acquired relates to the

completion of the procedure in a dynamic environment.

First of all, we can consider the procedure as a sequence of

actions defined by an expert. The elements to be considered are

therefore subject to sequencing which cannot be questioned,

and sometimes cannot be explained. Secondly, we think that

memorization of the sequence of actions could be facilitated

through understanding. In this context [14] suggests adding the

notion of sub-objectives to the procedure. To meet this aim, i.e.

the completion of the procedure, a set of causally linked

sub-objectives must be conducted. The procedure must

therefore be studied taking into account the distance to the

procedure’s goal from a causal, rather than a chronological

standpoint.

The above analysis highlights two ways of dealing with

procedural learning: the study of business sequencing links

which are strongly linked to the roles in the procedure, and the

study of causal links between sub-objectives:

1. Sequencing Links

 Sequencing links conduct the relationships between the

actions using the strict description of the procedure. They are

the direct consequence of the sequencing of actions as defined

by the expert. We are interested in the information linked to the

actions closest to the action requested by the learner. More

precisely:

 • the last correct action completed before that which the

learner has just solicited;

 • the action which has just been solicited by the learner;

 • the correct actions to be carried out, taking into account

the role(s) to be played (which are potentially different from the

solicited action);

 • the correct actions to be performed, when considering

that all roles are played by the learner; and

 • those actions following all the correct actions.

 We chose the actions closest to that solicited in order to try to

reduce the ”distance” between the goal (the end of the

procedure) and the learner’s location in the procedure.

Technically, this is done by carrying out plan recognition based

on the Veha activity diagram shown in section 4.3. The

pedagogical situation thus retains the knowledge linked to the

actions that are chronologically close to that which is requested.

2. Causal links between sub-objectives

 The procedure can be considered like a graph representing

the sequence of causal sub-objectives. We therefore are looking

at all of the actions linked to the one the learner is performing. In

concrete terms, this means the actions requiring the effect of

the correct desired action (usage conditions, state of a resource,

etc.). A distinction must be made between these links, which

correspond to individual logic, and sequencing, whose links

correspond to the organization of a collective procedure.

Technically, we are dealing with the links between

post-conditions and pre-conditions mentioned in section 4.1.3.

 It must be stressed that our objective here is to extract

knowledge relating to the work to be carried out in order to

assist pedagogical decision-making. Within this context, we

look at the knowledge described in table 2. All the actions which

have been identified up to this point (sequential and causal links)

make up the pedagogical situation. More specifically, we are

interested in the information related to the selected actions. At

this point, we must specify the knowledge relating to the

concept of action. From this perspective, the "action context” is

made up of knowledge that is directly linked to the Action

(description, resources, etc.), knowledge relating to the

Operation, which is the target of the Action, as well as

knowledge relating to the agent that has requested the action,

since that agent is the central character. We therefore use action

contexts in order to represent the knowledge associated with

particular actions (a sub-group of the environment made up of

the entities and agents considered relevant in the context of the

action).

 It is the responsibility of the pedagogical agent to construct

this set of knowledge. The pedagogical agent retrieves or

constructs the knowledge required about the task to be

performed when it receives a message from the interface agent

detailing an action which has been requested. This choice is

debatable and indeed another possible solution is to update the

knowledge when an error occurs. We chose to reconstruct the

knowledge of the actions in order to retain the option to

intervene, even if the learner’s actions are correct. This means

that we can provide pedagogical assistance in order to reassure

the learner about the decisions that they've made, or conversely

to imply doubt if it looks like they are about to make a mistake

(e.g., confirming false rules which contradict the choices the

learner has made).

5.1.2 Information concerning the learner

The information about the learner comes from a number of

sources, but all of it is collected by the learner model. This

information relates both to static data (such as age) and dynamic

data (such as elements of memory at a given time).

 It should be noted that the learner’s errors are recorded and are

analyzed. Our error model is based on the Cognitive Reliability

and Error Analysis Method (CREAM). This approach proposed

a classification scheme which makes a distinction between

observations of errors (phenotypes) and its causes (genotypes).

The causal links between phenotype and genotype are

represented using a number of consequent-antecedent links.

Finally, the pattern could be associated with a method of

retrospective analysis (the search for causes). The most

The International Journal of Virtual Reality,2010,9(2):1-13 8

probable cause-effect links is found using Dempster-Shafer’s

theory presented in [15].

 Similarly, the contexts relating to the actions are also

recorded. This information allows us to see whether or not

learner has already used a particular resource, for example.

In concrete terms, we have just defined the input information

and the relevant elements from which pedagogical decisions can

be made.

TABLE 2: THE PEDAGOGICAL SITUATION: KNOWLEDGE ABOUT THE

TASK TO BE PERFORMED.

Knowledge Nature Description

Context of the

previous

action

Sequential The last correct action to have

been performed. This action

serves as a point of reference

from which one can position

oneself in the procedure.

Context of the

requested

action

Sequential The requested action. This

action could be correct or

incorrect. The action has not

necessarily been performed, in

accordance with the

pedagogical model.

Context of the

correct

action(s)

without

considering

their roles

Sequential In considering the last correct

action, we can determine the

actions to be performed within

the context of the current

procedure.

Context of the

correct

action(s)

Sequential A sub-group of the previous

item which does not take the

roles played by the learner into

account.

Context of the

following

action(s)

Sequential For each correct action, we

determine the actions which

follow it according to the

current procedure.

Context of

related

action(s)

Causal In considering the actions to be

performed following the last

correct action, we retrieve the

"causal” links between the

actions independently of the

procedure. We therefore

obtain the actions which are

related.

5.2 The Pedagogical Agent

The pedagogical situation (section 5.1) gives us the option of

triggering pedagogical assistance relating to the elements

detailed within it. It thus provides the possible outcomes of the

pedagogical decision-making process. We now go on to define a

model to simulate the behavioral decision-making of the

pedagogical agent providing instructive assistance, i.e., a model

linking knowledge and the proposed assistance. It must be noted

that we are working within the context of learning procedural

and collaborative tasks. We must therefore consider:

 The atypical nature of the knowledge involved

(knowledge stemming from basic pedagogical

methods to virtual reality);

 Adaptability (the agent’s reasoning processes must

self-adapt in order to take past experience into

account);

 This reasoning must be specified prior to the event

(initial specifications can therefore be made by an

instructor).

The criteria which arise from these considerations are as follows:

expressiveness, hierarchy, modularity, reactivity and

adaptability.

After examining the existing families of behavioral architecture

(connectionist, automata-based, rule-based), we opted for the

rule-based families which best respond to the criteria outlined

above. More precisely, we chose classifier systems [16]. This is

a reactive and adaptive form of architecture, based on

conditional rules.

 We propose the use of a model based on a hierarchical

classifier system. This system organizes knowledge while taking

the abstraction of the data involved into account. It structures

knowledge according to three levels, from rules based on

abstract knowledge of educational methods (the pedagogical

approach), to the rules based on concrete knowledge of virtual

reality (pedagogical techniques), via an intermediary level

(pedagogical attributes).

Each level of abstraction contains sets which group together a

number of rules. One set represents a way of dealing with a

particular approach, attitude or pedagogical technique. The

rules are conditioned by the elements of the pedagogical

situation, and favor the sets from the lower level. The system

therefore uses a diffusion mechanism on all three levels which

considers the rules matching the pedagogical situation. This

gives rise to a list which then arranges the different suggestions

for pedagogical assistance.

 Fig. 9 illustrates the structure and the dynamics of the

pedagogical model controlling the pedagogical agent’s

behavior. The information taken into account in the conditional

part of the rules is retrieved by our ITS (pedagogical situation).

These "inputs” are available at the three levels of data

abstraction (approach, attitudes and pedagogical techniques).

The rules whose conditional elements are satisfied in terms of

input favor some of the sets of pedagogical rules from the lower

level. The upper level (techniques), directly favors those

pedagogical suggestions which can be applied within the

environment. These suggestions are made to the instructor who

chooses the one considered to be the most relevant.

Simulating pedagogical reasoning has two advantages:

1. As instructors are not always teachers, they too are being

given pedagogical assistance.

2. Instructors are not simulation software experts, so the

pedagogical agent will offer assistance to the learner, who

will have the opportunity to make the most of the VE.

The International Journal of Virtual Reality,2010,9(2):1-13 9

5.3 Specifications of the Pedagogical Model

In order to implement the pedagogical model, the teacher must

specify:

 1. The sets of rules for the three levels of abstraction.

 2. The pedagogical rules for each of the sets of rules.

 Here, we will discuss information from the literature which

can be used when specifying the pedagogical model.

5.3.1 Specifying the sets of pedagogical rules

We worked from the studies by [4] in order to define the sets of

pedagogical rules. We obtained the following tables; 3, 4 and 5

corresponding to the three levels; approaches, attitudes and

techniques, respectively. This information provides an

opportunity to specify sets of rules at each of the three levels

(see Fig.10)

5.3.2 Specifying the Pedagogical Rules

Once the sets of pedagogical rules are defined, the teacher must

specify the associated rules.

A rule is represented by a sequence of characters. The effect and

condition parts are based on the elements of the pedagogical

situation

 In the following example, we position ourselves at the

Pedagogical Methods abstraction level, with a set of rules

called Active. The first rule for this set is fulfilled if the learner is

a novice (Learner.Level==novice), if they have per

formed an organization error

(Learner.Error.type==procedural) and if the action

performed is different from the correct action
(!Task.RequestedAction in

Task.CorrectActions). In this case, the rule favors the

Explain set from the following level.

if (Learner.Level == novice &&

 Learner.Error.type==procedural &&

 ! Task.RequestedAction in

 Task.CorrectActions)

then (Explain)

Fig. 9. Complete Representation of the Pedagogical Model.

The International Journal of Virtual Reality,2010,9(2):1-13 10

TABLE 3: EXAMPLES OF SET DEfiNITIONS FOR THE "PEDAGOGICAL

APPROACH” LEVEL OF ABSTRACTION BASED ON [4]

Pedagogical Approach Description

Active / Constructivist An active approach is

learner-centered, considering

them to be the main actors in the

learning process. This approach

suggests techniques through

which they can produce, create

and search. The knowledge

required can be found in the

environment.

Expositive / Affirmative This is the most traditional

approach which uses the display

technique. It is based on a

content-transfer approach.

Knowledge is external.

Interrogative This approach makes

recommendations to the learners,

guiding them towards the desired

outcome. Learners may have the

impression that they have

discovered something new, but it

is the instructor who will have

guided the thought process.

Knowledge is internal.

5.3.3 Use

A specific pedagogical model was created from the structure

described above and from articles by [4]. These sets are

described in Fig. 10, with each set containing an average of five

rules. This pedagogical model was applied to two distinct VEs

designed for learning collaborative procedures. No

modification of the pedagogical model (sets and rules) is

required for either of these applications, which although very

different, are both based on the same kind of learning. However,

we believe that these changes would only need to be made at the

intermediate level. For other types of learning (for example for a

scientific practice), these rules would probably need to be

changed.

5.4 Artificial learning

Thanks to artificial learning, the weight of the rules for adapting

to the instructors' preferences can be refined and their expertise

imitated.

The learning algorithm is inspired by the Bucket Brigade [17,

18]. This system distributes remunerations to the rules which

enabled them to be obtained. It is adapted to classifier systems

[16] with a list of rules which, when followed one after the other,

lead to an action. In our case,this sequence of events

corresponds to the passing from one level to another.

Remuneration is reflected by the instructor’s choice: the

pedagogical technique which they choose defines the rules in

the third level which will be compensated. By back-chaining,

the rules in levels one and two are also compensated. The

weights of the rules which match the pedagogical situation, but

which participate in activating a technique other than that

chosen by the instructor will decrease. The algorithm shares out

the remuneration, including a tax which means that the rules

which rarely match are not put at a disadvantage, and that the

strong rules are penalized in order to retain the adaptive nature

of the system.

 Therefore, as the exercises progress, the pedagogical agent

must make suggestions which correspond more and more

closely to the instructor’s decisions. The pedagogical agent

Fig. 10. Specifying the three levels of the pedagogical

decision-making model.

The International Journal of Virtual Reality,2010,9(2):1-13 11

could therefore temporarily take over and directly apply the

assistance that it has chosen itself, should there be more than

one learner at a time.

5.5 Use case: Gaspar

Gaspar is a virtual reality application developed to simulate

human activities on an aircraft carrier. In Gaspar, a typical scene

such as that shown in Fig. 11 is made up of around 1,000 entities,

each with 3D representation (VRML), i.e. a total of 1 million

facets. In this scene, there are around 50 agents, divided into 10

teams, each with an average of 5 roles. Each of these teams is

responsible for an average of 5 procedures. The most complex

procedure activates 9 roles and organizes 45 actions. In this

scene, at each moment, around 50 behaviors are activated (both

NPCs and entities). This sort of scene is implemented using

AReVi
5
 and is simulated in real-time (around 40 frames per

second) on a desktop computer with 2GB of RAM, a 64 bit

processor running at 1.3 GHz, and a GeForce card with 1GB of

video memory.

TABLE 4: EXAMPLES OF SET DEfiNITIONS FOR THE "PEDAGOGICAL

ATTITUDES” LEVEL OF ABSTRACTION BASED ON [4].

Pedagogical Attitudes Description

Perform Perform the task in the place of the

learner. This strategy can be used

by the instructor to show the

learner the correct technique or

move.

Disruption Some instructors tease and disrupt

the learners by giving them

incorrect information or

potentially incorrect solutions in

order to test the learners'

conviction of their ability to

reason independently.

Suggest Showing where the learners can

find theoretical information or

where to find information within

the environment. These attitudes

allow the instructor to show the

learners that they can find the

required information

independently and therefore deal

with the situation in a calm

manner.

Independent learning This attitude encourages the

instructor to remain in the

background as an observer rather

than to intervene.

Explain The explanations and information

are also designed, quite simply, to

explain the functioning of certain

devices, rules of analysis, safety

rules, etc.

Encourage Encouraging the learners when

they perform a task correctly.

5 http://sourceforge.net/projects/arevi/

TABLE 5: EXAMPLES OF SET DEfiNITIONS FOR THE "PEDAGOGICAL

TECHNIQUES” LEVEL OF ABSTRACTION BASED ON [4].

Pedagogical

Techniques

Description

Improvement Addition of visual and audio symbols or

animated films.

Deterioration Unrealistic images. (points of reference

erased, feed-back, deteriorated

proprioceptive elements, altered colours,

blurred background/surround, reduction of

objects, iconization, etc.).

Upscaling Exaggeration of reality (representing objects

on a larger scale, or that are surreal, brighter

or shinier, etc.).

Simplification Simplification of the virtual scene (a crowd

can be represented by people with simplified

movements, simplified objects, simplified

kinetic systems, wireframe images, etc.),

schematic representations of certain devices.

Restriction Limitation of certain movements or actions

(limiting the area within which the learner

can move around, etc.)

Animation Animated sequence (automatic positioning,

keys which turn automatically once in place,

etc.).

Perspective Altering the learner's normal viewpoint (view

from behind, above, etc.).

Modification Changes in appearance and texture (colours,

flickering objects, etc.).

Modeling The representation of abstract concepts, of

physical phenomena invisible to the naked

eye, types of errors, etc.

Visualisation Hidden mechanisms (the inside of a motor,

gears, etc.).

The decisional behavior of the ITS relies on a classifier

system in which each rule presents a set of conditions required

to activate an educational method, attitude or assistance. The

main advantage here is that the rules are formulated in a general

way, at the M2 level, and deal with the data from the concrete

environment (M1 level). The ITS knows how to evaluate rules

such as: "IF the entity is not in the state required to carry out the

correct action and if the learner is novice THEN simplify the

environment”. Rules such as these can be expressed using the

Veha metamodel, independently of the model of the virtual

environment.

Fig. 11. View of a scene on an aircraft carrier in Gaspar.

The International Journal of Virtual Reality,2010,9(2):1-13 12

Fig. 12. The effect of applying the pedagogical assistance “simplify the

environment” in the Gaspar application. (a) before; (b) after..

The veracity of these conditions is evaluated by the

manipulation of the model, contextualized for specific

environments using M1-level knowledge. For example in

Gaspar, if the correct action is tensioning the hook in the context

of the procedure catapulting the Hawkeye aircraft, the previous

condition rule is automatically contextualized to ”IF the

Hawkeye aircraft is not in the state launch bar down required to

carry out the operation tensioning the hook”.

The classifier system builds up a list of proposals for

educational assistance made up of the action elements of

activated rules. The assistances are evaluated by the

manipulation of the model, contextualized for specific

environments using M1-level knowledge. For example, the

assistance: "simplify the environment” translates to a

corresponding solution proposed to the instructor "make

transparent all entities except the Hawkeye aircraft” (see

Fig. 12).

VI. DISCUSSION

Before concluding, we would like to discuss the benefits of our

proposal. The study described in this article began by examining

previous studies in this field and analyzing the uses of

pre-existing ITS within VLE. We then went on to show that the

Hal system is the most successful, and highlighted the elements

which could be improved. Indeed, in this system, the

pedagogical model depends partly on the exercise, and the

errors and pedagogical strategies must be defined.

Furthermore, the instructor can only choose between two

pedagogical methods (active or explanatory). We believe that it

is possible to resolve the pedagogical model’s problems of

genericity and modularity.

Without re-examining every element of our work, we can show

how our proposal could solve some of the diffculties of existing

models. The knowledge used for pedagogical reasoning does

not depend on the specifics of the task to be performed.

Therefore pedagogical rules do not, and indeed do not need to,

consider specific information, (”if the learner can see airplane 2

then...”), but will rather use general knowledge independently of

the exercise (”if the resources of the correct actions are visible,

then...”). In much the same way, although the pedagogical

assistance proposes tangible solutions to the instructor (”make

the fireman flicker”), generic knowledge is also manipulated

independently of the exercise (”make the characters involved in

the following actions flicker”). Thus, the genericity of our

proposal is one of its strongest characteristics, as illustrated by

the inclusion of our ITS at the core of numerous applications:

learning of collaborative procedures on aircraft carriers

(Gaspar) [3] and for firefighters intervening in Seveso high

risk areas (SecuReVi) [19]. In addition, the pedagogical

model of our ITS has strong modularity, as it offers the option of

adding, deleting or modifying each of its components that

participates in pedagogical decision making (rules or sets of

rules). Moreover, the artificial learning mechanism adapts the

proposed pedagogical assistance to the learner-instructor pair.

Therefore, our proposition provides solutions for the problems

raised in the introduction. Finally, it must be emphasized that

Pegase is directly based on the learner-instructor relationship.

However, we must not forget that there will undoubtedly be

limitations linked to the use of our ITS in contexts of

non-procedural learning. To be able to deal with this kind of

training, we would have to rethink the elements which are so

strongly linked to the notion of procedure, i.e. knowledge about

the pedagogical situation.

REFERENCES

[1] D. Herviou and E. Maisel, “ARéViRoad : a virtual reality tool for traffic

simulation,” in Proceedings of Urban Transport, 2006, pp. 297–306.

[2] L. Edward, D. Lourdeaux, D. Lenne, J. Barthes, and J. Burkhardt,

“Modelling autonomous virtual agent behaviours in a virtual environment

for risk,” IJVR : International Journal of Virtual Reality, vol. 7, no. 3,

pp.13–22, September 2008.

[3] N. Marion, C. Septseault, A. Boudinot, and R. Querrec, “Gaspar : Aviation

management on an aircraft carrier using virtual reality,” in Cyberworlds

2007 proceedings, October 2007, pp. 15–22.

[4] D. Lourdeaux, J. Burkhardt, F. Bernard, and P. Fuchs, “Relevance of an

intelligent agent for virtual reality training,” International Journal of

Continuous Engineering and Life-long Learning, vol. 12, no. 1/2/3/4, pp.

131–143, 2002.

[5] J. Rickel and W. L. Johnson, “Animated agents for procedural training in

virtual reality : Perception, cognition, and motor control,” Applied

Artificial Intelligence, vol. 13, 1999. [6] E. Wenger, Artificial Intelligence

and Tutoring Systems. Los Altos, California: Morgan Kaufmann, 1987.

[7] P. Levesque, “Creation and use of 3d as-built models at EDF,” in FIG

Working Week 2003, 2003.

[8] R. Hubal, “Embodied tutors for interaction skills simulation training,”

IJVR : International Journal of Virtual Reality, vol. 7, no. 1, pp. 1–8,2008.

[9] K. Amokrane, D. Lourdeaux, and J. Burkhardt, “Hera: Learner tracking in a

virtual environment,” IJVR : International Journal of Virtual Reality, vol.

7, no. 3, pp. 23–30, September 2008.

[10] M. Kallmann and D. Thalmann, “Modeling objects for interaction tasks,”

in Proceedings of Computer Animation and Simulation’98, 1998, pp.

73–86.

[11] T. Trinh, C. Buche, R. Querrec, and J. Tisseau, “Modeling of errors

realized by a human learner in virtual environment for training,”

International Journal of Computers, Communications and Control, vol.

IV, no. 1, pp.73–81, Mar. 2009.

[12] R. M. Turner, “Context-sensitive reasoning for autonomous agents and

cooperative distributed problem solving,” in Proceedings of the IJCAI

Workshop on Using Knowledge in its Context, 1993, pp. 141–151.

[13] J. Pomerol and P. Brézillon, “About some relationships between

knowledge and context,” in Modeling and Using Context: Third

International and Interdisciplinary Conference, Context 2001, V.

Akman, P. Bouquet, R. Thomason, and R. A. Young, Eds. Berlin:

Springer-Verlag, 2001, pp.461–464.

[14] J. F. Richard, Les activités mentales : Comprendre, Raisonner, Trouver

des solutions. Paris: Armand Colin, 1990, iSBN 2-200-2187-0.

The International Journal of Virtual Reality,2010,9(2):1-13 13

[15] N. El-Kechaï and C. Després, “A plan recognition process, based on a task

model, for detecting learner’s erroneous actions,” in Intelligent Tutoring

Systems, 2006, pp. 329–338.

[16] O. Sigaud and S. W. Wilson, “Learning classifier systems: A survey,”

Journal of Soft Computing, vol. 11, no. 11, pp. 1065–1078, 2007.

[17] J. H. Holland, “Escaping brittleness: The possibilities of general-purpose

learning algorithms applied to parallel rule-based systems,” in Machine

Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G.

Carbonell, and T. M. Mitchell, Eds. Los Altos, CA: Kaufmann, 1986, vol.

2, pp. 593–623.

[18] S. W. Wilson, “Hierarchical credit allocation in a classifier system,”

in10th International Joint Conferences on Artificial Intelligence

(IJCAI’87), Milan, Italy, 1987, pp. 217–220.

[19] R. Querrec, C. Buche, E. Maffre, and P. Chevaillier, “Multiagents systems

for virtual environment for training. application to fire-fighting,” Special

issue ”Advanced Technology for Learning” of International Journal of

Computers and Applications (IJCA), vol. 1, no. 1, pp. 25–34, juin 2004.

Cédric Buche (1979) is an assistant professor in

computer science and works at the European Center for

Virtual Reality (CERV). He is working on the use of

behavior modeling agents applied to virtual environments

for human learning. He is the leader of the Pegase project

in MASCARET.

Cyril Bossard (1980) holds a Ph.D in Sport Sciences and

works at the CERV. His research interests include

decision-making in dynamic and collaborative situations

and transfer of learning, applied to Virtual Environments.

Ronan Querrec (1973) is an assistant professor in

Computer Science and works at the CERV. His research

concerns virtual environments for training. On this theme,

he is working on the MASCARET virtual environment

meta-model project.

Pierre Chevaillier (1960) has been an associate

professor in Computer Science at the Computer Science

Laboratory for Complex Systems (LISyC) since 1996. He

has been the head of the CERV since 2008. His research

interests lie in virtual reality, knowledge representation

and multi-agent systems. His research aims to develop

virtual reality environments for human learning, based on

adaptive tutoring systems (MASCARET project).

