HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Asymptotically hyperbolic manifolds with small mass

Abstract : For asymptotically hyperbolic manifolds of dimension $n$ with scalar curvature at least equal to $-n(n-1)$ the conjectured positive mass theorem states that the mass is non-negative, and vanishes only if the manifold is isometric to hyperbolic space. In this paper we study asymptotically hyperbolic manifolds which are also conformally hyperbolic outside a ball of fixed radius, and for which the positive mass theorem holds. For such manifolds we show that the conformal factor tends to one as the mass tends to zero.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00783618
Contributor : Romain Gicquaud Connect in order to contact the contributor
Submitted on : Friday, February 1, 2013 - 1:25:59 PM
Last modification on : Tuesday, March 1, 2022 - 1:38:48 PM

Links full text

Identifiers

Collections

Citation

Mattias Dahl, Romain Gicquaud, Anna Sakovich. Asymptotically hyperbolic manifolds with small mass. Communications in Mathematical Physics, Springer Verlag, 2014, 325 (2), pp.757-801. ⟨10.1007/s00220-013-1827-6⟩. ⟨hal-00783618⟩

Share

Metrics

Record views

61