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Abstract— In this paper, a new method to optimize the noise
shape of a bandpass delta sigma (BPDS) modulator for a
digital transmitter is presented. The optimal coefficientsof BPDS
structure are achieved by minimization of a quadratic criterion
based on prediction error. To demonstrate the effectiveness of
this approach, simulated results for a 6th order BPDS structure
are presented.

I. I NTRODUCTION

Trend in CMOS transceiver is to replace analog blocks by
digital ones. Future transmitter could be built based on Sigma
Delta modulators (SDM) [1]. One of SDM major properties is
its ability to shape the quantization noise [2]. This in turncould
create an issue in meeting spurious emission requirements.
In current state of the art BPDS modulators, design methods
are used to minimize the noise at proximity of the signal
frequency, leading to improvement of the Signal to Noise Ratio
(SNR) [3]-[4]. The objective of the proposed method is to
optimize the shape of quantization noise according to spurious
specification defined in particular frequency bandwidths . To
demonstrate the interest of the method, it was validated with
an usual RF standard, WCDMA FDD: at the top of spurious
emission requirements, this standard requires the transmitter to
generate a very low noise in the receive channel. Because other
elements of the transmitter can modify the Noise Transfer
Function (NTF), the frequency response of a generic duplexer
is taken in account in the noise shape specification

The proposed method is based on parameter estimation by
minimization of quadratic error between an ideal filter and
BPDS modulator. Ideal filter will be design usingDigital
Filter Design from MATLAB /SIMULINK according to the
noise shape specification achieved from a generic frequency
response of duplexers and the standard. Initialization of the
parameter estimation is achieved by a Delta Sigma Tool-
box1. Performances studied are the Adjacent Channel Leakage
power Ratio (ACLR) and the margin with standard (spurious).

1Delta Sigma Toolbox can be downloaded fromMATWORKS web site
http://www.mathworks.com/matlabcentral and the function RealizeNTFwas
use to calculate the initial BPDS coefficients

II. WCDMA AND NOISE SHAPE SPECIFICATION

Among the WCDMA standard bands, Band 1 was selected
as it has many spurious specifications defined in different
frequency bands, and a gap of 130 MHz between Transmit
(TX) and Receive (RX) bands. WCDMA band 1 spurious
specifications close to Tx carrier are detailed on Table I.

TABLE I

WCDMA BAND 1 SPECIFICATIONS

Specifications Values
Frequency Carrier (Tx band) 1920-1980MHz
Output Power 24dBm (+1/-3 dBm)

ACLR F
� 5MHz F
� 10MHz
33dB 43dB

1GHz� f � 12.5GHz -30dBm/1MHz

Spurious 1.805GHz� f � 1.88GHz -71dBm/100kHz
1.8449GHz� f � 1.8799GHz -60dBm/3.84MHz
1.8845GHz� f � 1.9196GHz -41dBm/300kHz

2.11GHz� f � 2.17GHz -60dBm/3.84MkHz

Fig. 1-a displays WCDMA band 1 emission restrictions
according to Table I. Resolution bandwidth has been re-
calculated indBm=Hz to achieve a continuity in the specifica-
tion. Then the overall transfer function depends on frequency
response of both amplifier and duplexers.

A BPDS modulators can be used in a transmitter as de-
scribed in [1]-[5] and shown on Fig. 2.

Commercially available duplexers, implemented for
WCDMA band 1, have similar frequency responses. To
demonstrate the flexibility and power of the approach, a
generic frequency response has been used, as represented in
Fig. 1-b.

From the WCDMA standard spurious requirements and
generic frequency response, it results a noise shape specifi-
cation for the BPDS. The resulting curve is shown in Fig. 1-c.
The noise rejection must be maximum in two frequency bands
(1.8-1.88GHz and 2.1-2.17GHz (Rx band)).

According to the noise rejection, BPDS must have at least
three notches. They will be placed in order to maximized the
noise rejection especially in the Rx band.
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Fig. 1. Noise shape specification : -a- WCDMA band 1; -b- Generic duplexer
frequency response for WCDMA band 1; -c- Noise rejection target
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Fig. 2. Diagram of simulated architecture

III. BPDS MODEL

A. structure

A discrete time BPDS design requires to choose differ-
ent elements like discrete resonator cell (z�1 or z�2 ),
structure (Butterworthor Chebyshev) and form (Cascade-of-
Integrators, FeedBack/FeedForward(CIFB/F) or Cascade-of-
Resonators, FeedBack/FeedForward(CRFB/F)) [2]. For the
proposed study,z�1 delay cell combined withChebyshev
structure under CRFB form has been chosen to allow a
frequency asymmetric repartition of the notches in the noise
shape. Finally, a 6th order BPDS is choosen to achieve the
required three notches, as illustrated in Fig. 3.

Input signal is modulated at frequency carrier (F
) and
BPDS is sampled at four timesFs = 4:F
.
B. State space representation

BPDS is defined by two transfer functions, the Signal
Transfer Function (STF) and the Noise Transfer Function
(NTF). In our case, the NTF function is used in optimization
to extract the BPDS feedback parameters notedai and notches
coefficients notedgi as referenced on Fig. 3. The CRFB
structure is described in state space model. This representation
based on transition matrix allows to describe easily the STF

and the NTF function. For a 6th order BPDS2, the state space
model is defined by the following equations :� xn+1 = Axn +B enyn = CT : xn (1)

whereA = 26666664 1 �g1 0 0 0 01 1� g1 0 0 0 00 1 1 �g2 0 00 1 1 1� g2 0 00 0 0 1 1 �g30 0 0 1 1 1� g3
37777775

B = 26666664 1 �a11 �a1 � a20 �a30 �a3 � a40 �a10 �a1 � a1
37777775, C = 26666664 000001

37777775xTn = [x1 x2 � � � x6℄ : transposed state space vectoren = � unvn �
: input vector

The state space diagram is represented in Fig. 4. Using this
representation, the discrete STF and NTF functions can be
achieved according to:[STF NTF ℄ = CT (z I �A0)�1 B +D (2)

whereA0 = A+B � [ 0 � � � 1 ℄ andD = [0 1℄
C
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Fig. 4. Block diagram of corresponding state space representation

IV. PARAMETER IDENTIFICATION ALGORITHM

Parameter estimation is the procedure which allows the
determination of the mathematical representation of a real
system from experimental data [6]. The block diagram of
parameter identification with Output Error technique is shown
in Fig. 5. This technique is based on minimization of quadratic
error in time domain between desired discrete filter and NTF
function of BPDS.

For the case of 6th BPDS optimization, the previous state
space model is considered (1) and the following parameter
vector is defined :� = [a1 a2 � � � a6 g1 g2 g3 ℄T (3)

The identification problem is to estimate the values of the
parameters� usingK samples of the desired filter output (yn)
which is excited byK samples of a white noise uniformly
distributed over[�1; 1℄ (vn) [8]. Thus, the output prediction
error is defined as follow:

2The proposed state space model can be generalized to an nth order
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Fig. 3. The 6th order BPDS modulator with CRFB structure"n = yn � ŷn(�̂; v) (4)

where the estimated NTF outputŷn is obtained by simulations
of the NTF (2) and̂� is an estimation of optimal parameter
vector� (bestai andgi).

As a general rule, parameter estimation with Output Error
technique is based on minimization of a quadratic criterion
defined as: J = KXn=1 "2n = KXn=1( yn � ŷn)2 (5)

Optimal values of� are achieved by Non Linear Program-
ming (NLP) methods. Practically, Marquardt’s algorithm [7]
is used for off-line estimation:�̂i+1 = �̂i � f[J 00�� + � � I ℄�1:J 0�g�̂=�i (6)

withJ 0� = �2 �PKn=1 "Tn � �n;� : gradient.J 00�� � 2 �PKn=1 �n;� � �Tn;� : hessian.� : monitoring parameter.�n;� = �ŷ�� : output sensitivity function.
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Fig. 5. BPDS optimization scheme

V. SIMULATION RESULTS

A. Digital filter design

First, a discrete Chebyshev StopBand filter (NTF form) is
designed according to the noise shape specification shown
in Fig. 1-c. Filter coefficients are tuned in order to have
an important noise rejection in frequency ranges defined in
section II.

Notches positions are defined by poles placement in the
unit disk to satisfy the stability condition. However, the noise
rejection form of the desired NTF is obtained with the zeros

placement. During simulation, the filter is excited by the white
noise previously defined in section IV. The coefficients of this
digital filter and its simulation results in time-domain will be
used in optimization procedure.

B. Estimation results

The proposed parameter identification method is used to ad-
just the BPDS coefficients. Appropriated initial values, noted�init, are required to assure convergence of the identification
procedure. For example,�init can be achieved using Delta
Sigma Toolbox. Initial coefficients are listed in Table II and
the resulting NTF is presented on Fig. 7, notedInitialNTF .
In this case the NTF correspond to a important reduction of
noise around the carrier frequency.

At the end of the proposed identification procedure, a new
set of coefficients (̂�) is achieved. Table II showŝ�. The re-
sulting BPDS parameters allow closed performances between
NTF and ideal filter, as illustrated by time or frequency domain
simulations.

TABLE II

INITIAL AND OPTIMIZED COEFFICIENTS

index (i) 1 2 3 4 5 6�init ai 0.042811 -0.043716 -0.246777 0.002641 -0.555591 0.555591gi 1.9952 2 2.0047 – – –�̂ ai -0.030688 -0.086103 -0.357849 -0.00282 -0.461228 0.602107gi 1.7941 2.2532 1.9524 – – –

Fig. 6-a illustrates simulation results in Time-domain of the
output desired filter and the estimated NTF. Fig. 6-b shows
quadratic error ("n) and confirms that the BPDS coefficients
calculated are in agreement with the response of the desired
filter.

Fig. 7 shows simulated NTF at the BPDS output with
initialization coefficients, optimized coefficients and WCDMA
constraints. The result clearly shows that the NTF is optimized
to satisfy the target standard unlike NTF corresponding to
initial values which is optimized for Signal to Noise Ratio
( SNR).

For more evaluation, simulations are done withADVANCED

DESIGN SYSTEM(ADS software) using an input signal with a
frequency carrier ofF
 = 1:98GHz and a power of�26dBm,
sampling frequency ofFs = 7:92GHz and a commercial
duplexer. Fig. 8 shows the filtered BPDS output spectrum for
different bandwidth resolutions and the corresponding spurious
band for WCDMA band 1 standard.
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Fig. 6. Time-domain simulation
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Fig. 8. Output filtered with different resolution bandwidth

As can be seen, the BPDS spectrum has been correctly
shaped and would have 10 dB margin with the spurious emis-
sion requirements. However we can notice that the simulated
structure would still generate significant amount of noise in
the receive band. Output power in the channel equal24dBm.
ACLR results given in Table III, demonstrated that the ACLR
specifications are achieved while the SNR in the Tx band has
been reduced.

TABLE III

ACLR VALUES

Frequency F
 � 10MHz F
 � 5MHz F
 + 5MHz F
 + 10MHz
ACLRstandard(dB) 43 33 33 43
ACLRachieved(dB) 61.34 55.43 53.3 55.43

VI. CONCLUSION

A new method for BPDS modulators optimization has been
developed. The procedure is based on output error approach
allowing the parameters estimation according to quadratic
criterion. The BPDS feedback and notches parameters are
iteratively corrected to satisfy the spurious and ACLR of
the WCDMA band 1 standard. The proposed optimization
method allows to take into account the frequency response
of transmitter components, like the output filter. The method
can be implemented for analog/digital, Lowpass/Bandpass and
generalized to nth modulators order.
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