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Chapter 1

Diagnosis of Induction Machines by Parameter
Estimation

1.1. Introduction

In a simple technology, the asynchronous machine or induction motor, is inten-
sively used in most electrical drives, especially for constant speed applications such
as ventilation and pumping. All progress of power electronics associated with modern
control allowed to consider efficient variable speed applications that previously was
reserved for DC engine and more recently in synchronous drives. An illustration is
the three generations of high-speed trains used in France (TGV): the first one (south-
east), commercialized in 1981 is equipped with a DC motor, the second (south-west in
1989) by synchronous motors and the latest, Eurostar in 1994with asynchronous mo-
tors. Thus, in view of all these economic issues, a general reflection has been initiated
for safety operating oriented to the diagnosis of inductionmachines. The aim of this
monitoring is to detect the electrical and mechanical faults in the stator and the rotor
of induction motors.

The diagnosis of induction machine under fixed speed has beenintensively studied
in the literature contrary to the applications under variable speed. Indeed, the signals
being highly non-stationary, approaches based on conventional Fourier analysis of
currents lines [ABE 99, INN 94, FIL 94], stator voltages and electromagnetic torque
[MAK 97, MAL 99] proving inadequate. A considerable effort has been undertaken in
the last decade in parameters identification of continuous models [TRI 88, MEN 99,
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MOR 99b]. Requiring rich excitation of machine modes, parameter estimation is well
suited for diagnosis in variable speed drive. Thus, algorithms development dedicated
to a realistic physical parameters estimation [MOR 99b, TRI99], taking into account
a prior knowledge of the machine, has allowed promising advancing in diagnosis of
induction machines. This approach based on parameter identification of a model, one
of the most important goals, is the development of mathematical models really repre-
sentative of default operations.

In faulty case, the induction machine present in addition toa conventional dy-
namic behavior, a default one [BAC 01a, BAC 01b, BAC 06]. In modeling for diag-
nosis, it is essential to consider two modes: a "common" and a"differential" mode.
The common mode describes the dynamic model of the inductionmachine and trans-
lates the healthy model of the machine. The differential mode gives information on
a defect. The parameters of this mode should be essentially sensitive to the faults.
This situation is useful to the effective detection and localization. Indeed, a change in
temperature or magnetic state is reflected by a change in the state of common-mode
parametric model, but does not affect differential mode [SCH 99, BAC 01a]. This di-
agnosis method required to carry out a global parameter estimation of the two model
modes. Thus, the electrical parameters of common-mode indicate the dynamic state
of the machine (constant rotor time, magnetizing inductance, etc.). Parameters of dif-
ferential mode explain the default information and the monitoring of these parameters
allows detection and localization of the imbalance.

In this chapter, we study in the first part two faulty models which takes into account
the effects of inter turn faults resulting in the shorting ofone or more circuits of stator
phase winding and broken rotor bars. To take into account a simultaneous stator and
rotor faults, a global faulty model of the machine will be presented. The corresponding
diagnosis procedure based on parameter estimation of the stator and rotor faulty model
and more experimental results are presented on the second part.

1.2. Induction motor model for faults detection

For diagnosis of induction motors, it is useless to consideran unbalanced two
axis Park’s model [MOR 99b, SCH 99]. The deviation of their electrical parameters
is certainly an indication of a new situation in the machine,but this evolution can be
due to heating or an eventual change in magnetic state of the motor [MOR 99b]. On
the other hand, it is very difficult to distinguish stator faults from rotor ones. The use
of Fast Fourier’s analysis of identification residuals is anoriginal method to localize a
fault, but estimation of electrical parameters is unable toobtain the fault level.

A good solution is the introduction of an additional model toexplain the faults
[BAC 02][BAC 01b]. The parameters of this differential model allow detection and
localization of the faulty windings.
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1.2.1. Stator faults modeling in induction motor

In order to take into account the presence of inter turns short circuit windings in
the stator of an induction motor, an original solution is to consider a new winding
dedicated to the stator fault [SCH 99]. The new model is composed of an additional
shorted winding in three phases axis. Figure (1.1) shows a three phases, 2-poles, in-
duction machine in case of short circuit winding. This faults induces in stator a new
windingsBcc short circuited and localized by the angleθcc.

ccB
ccθθ

θθ
sa

sb sc

rc

rb

ra

Figure 1.1. Motor windings with a short circuit

Two parameters are introduced to define the stator faults

– The localization parameterθcc which is a real angle between the short circuit
inter turn stator winding and the first stator phase axis (phasea). This parameter allows
the localization of the faulty winding and can take only three values0, 2π

3
or 4π

3
,

corresponding respectively to a short circuit on the statorphasesa, b or c.

– The detection parameterηcc equal to the ratio between the number of inter turn
short circuit windings and the total number of inter turns inone healthy phase. This
parameter allows to quantify the unbalance and to obtain thenumber of inter turns in
short circuit.

1.2.1.1.Short circuit model

On three-phase windings, we define the vector of stator voltages and currents,
respectivelyus andis, and the vector of rotor currentsir :

us =





ua

ub

uc



 is =





isa

isb

isc



 ir =





ira

irb

irc




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In general case, as a result of a short circuit it follows vibrations and torque oscilla-
tions synonymous with the presence of new components in the electromagnetic torque
and therefore in the stator currents [MOR 99b, BAC 06]. Indeed, a short-circuiting of
turns is at origin of a new stator winding with a strong current and consequently, an
additional magnetic field in the machine. For example, consider the case of a healthy
machine withp poles-pairs. When the three phases currents system with a pulsation
of ωs = 2πfs flows through the stator windings, three stationary magnetic excitations
directed along the axis of each phase will be created. It is the sum of these excitations
which creates a rotating field in the airgap at the pulsation of Ωs = ωs

p
according to

the original winding.

When a stator fault occurs, an additional shorted circuit windingBcc appears in the
stator. This winding creates a stationary magnetic fieldHcc at the pulsationΩs ori-
ented according to the faulty winding. In this case, a strongcurrent, notedicc, flows
through the short circuit windingBcc. It is the interaction ofHcc with a rotating mo-
tor field which introduces a torque ripples and a new electromagnetic forces. With
assumption of system linearity, this situation is equivalent to a superposition of "com-
mon" operating mode producing a rotating field and a "differential" one producing a
faulty field. Voltage and flux equations for faulty model of induction machine can be
written as :

us = [Rs] is +
d

dt
φ

s
[1.1]

0 = [Rr] ir +
d

dt
φ

r
[1.2]

0 = Rcc icc +
d

dt
φcc [1.3]

φ
s

= [Ls] is + [Msr] ir + [Mscc] icc [1.4]

φ
r

= [Mrs] is + [Lr] ir + [Mrcc] icc [1.5]

φcc = [Mccs] is + [Mccr] ir + Lcc icc [1.6]

where

[Rs] =





Rsa 0 0
0 Rsb 0
0 0 Rsc



 [Rr] =





Rra 0 0
0 Rrb 0
0 0 Rrc





[Ls] =





Lpsa + Lfsa −Lsab

2
−Lsac

2

−Lsab

2
Lpsb + Lfsb −Lsbc

2

−Lsac

2
−Lsbc

2
Lpsc + Lfsc




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[Lr] =





Lpra + Lfra −Lrab

2
−Lrac

2

−Lrab

2
Lprb + Lfrb −Lrbc

2

−Lrac

2
−Lrbc

2
Lprc + Lfrc





[Msr] =





Msara
cos(θ) Msarb

cos(θ + 2π
3

) Msarc
cos(θ − 2π

3
)

Msbra
cos(θ − 2π

3
) Msbrb

cos(θ) Msbrc
cos(θ + 2π

3
)

Mscra
cos(θ + 2π

3
) Mscrb

cos(θ − 2π
3

) Mscrc
cos(θ)





[Mrs] = [Msr]
T

Rsx (resp.Rry) : proper resistance of stator phase (resp. rotor phase)
Lpsx etLfsx : inductance and leakage stator inductance
Lpsx + Lfsx : proper inductance of stator phase
Lsxy (resp.Lrxy) : mutual inductance between two stator phases (resp. rotorphases)
Msxry

: mutual inductance between stator phasex and rotor phasey
Mscc (resp. Mrcc) : mutual inductance between of stator phase (resp. rotor phase)
and short-circuit winding
θ = p · θmechanical: electrical rotor angle
p : number of pole-pairs

HYPOTHESIS. The previous electrical equations can be simplified with these usual
hypothesis :

– symmetry and linearity of the electrical machine,

– both magnetomotive force in the airgap and the flux are sinusoidal,

– the magnetic circuit is not saturated and has a constant permeability,

– skin effect and core losses are neglected.

With these assumptions, we can write :

Rsx = Rs

Rry = Rr

Lpsx = Lpry = Lsxy = Lrxy = Msxry
= Lp

In the previous electrical equations, the leackage are divided between stator and ro-
tor phases. This method generate two coupled parametersLfsx andLfsy. One solution
to simplify theses equations is to globalize the leakage in the stator phase according
to the relations:

Lfry = 0

Lfsx = Lf [1.7]
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The winding resistance are proportional to the number of inter turns, then the resis-
tanceRcc of faulty windingBcc can be written as :

Rcc = ηcc Rs

with

ηcc =
ncc

ns

=
Number of interturns short-circuit windings
Total number of interturns in healthy phase

[1.8]

According to the previous hypothesis, the expressions of inductance and mutual in-
ductances can be simplified :

Lcc = η2
cc (Lp + Lf)

[Mccs] = ηcc Lp

[

cos(θcc) cos(θcc −
2π
3

) cos(θcc + 2π
3

)
]

[Mccr] = ηcc Lp

[

cos(θcc − θ) cos(θcc − θ − 2π
3

) cos(θcc − θ + 2π
3

)
]

[Mrcc] = [Mccr]
T , [Mscc] = [Mccs]

T

1.2.1.2.Two-phases stator faulty induction model

To minimize the number of model variables, we use Concordia transformation
which givesαβ values of same amplitude asabc ones. Thus, we define three to two
axis transformationT23 as:

xαβs
= T23 xs : stator variables

xαβr
= P (θ)T23 xr : rotor variables

[1.9]

wherexαβ is projection ofx following α andβ axis. Matrix transformations are de-
fined as:

[T23] =
√

2

3

[

cos(0) cos(2π
3

) cos(4π
3

)
sin(0) sin(2π

3
) sin(4π

3
)

]

P (θ) =

[

cos(θ) cos(θ + π
2
)

sin(θ) sin(θ + π
2
)

]

: rotational matrix

The short circuit variables are localized on one axis, theseprojections on the two
Concordia axisα andβ is defined as:

iαβcc
=

[

cos(θcc)
sin(θcc)

]

· icc , φ
αβcc

=

[

cos(θcc)
sin(θcc)

]

· φcc [1.10]
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Thus, equations (1.1-1.6) becomes:

Uαβs
= Rs iαβs

+
d

dt
φ

αβs
[1.11]

0 = Rr iαβr
+

d

dt
φ

αβr
− ω P (

π

2
)φ

αβr
[1.12]

0 = ηccRs iαβcc
+

d

dt
φ

αβcc
[1.13]

φ
αβs

= (Lm + Lf) iαβs
+ Lm iαβr

+

√

2

3
ηcc Lm iαβcc

[1.14]

φ
αβr

= Lm (iαβs
+ iαβr

) +

√

2

3
ηcc Lm iαβcc

[1.15]

φ
αβcc

=

√

2

3
ηcc Lm Q(θcc) (iαβs

+ iαβr
)

+

(

2

3
Lm + Lf

)

η2
cc Q(θcc) iαβcc

[1.16]

where

ω = dθ
dt

is rotor electrical pulsation

Lm = 3

2
Lp : magnetizing inductance

Q(θcc) =

[

cos(θcc)
2 cos(θcc) sin(θcc)

cos(θcc) sin(θcc) sin(θcc)
2

]

If we neglect the leakage inductanceLf according to magnetizing inductanceLm

in short circuit flux expressions (1.14-1.16), we can write new flux equations as:



















φ
αβs

= φ
αβf

+ φ
αβm

= Lf iαβs
+ Lm (iαβs

+ iαβr
− ĩαβcc

)

φ
αβr

= φ
αβm

= Lm (iαβs
+ iαβr

− ĩαβcc
)

φ̃
αβcc

= ηcc Q(θcc)φ
αβm

[1.17]
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where

ĩαβcc
= −

√

2

3
ηcc iαβcc

, φ̃
αβcc

=

√

3

2
φ

αβcc
[1.18]

φ
αβm

, φ
αβf

are respectively magnetizing and leakage flux.

Then, short circuit current equation (1.13) becomes:

ĩαβcc
=

2

3

ηcc

Rs

Q(θcc)
d

dt
φ

αβm
[1.19]

sR

mL rRccQ

fL
m

).2/(P. αβαβφφππωω
s

iαβαβ
'

s
iαβαβ

r
iαβαβ

s
Uαβαβ

cc
i~αβαβ

m
iαβαβ

Figure 1.2. A short-circuit model of induction machine

According to this equation, the faulty windingBcc becomes a simple unbalanced
resistance element in parallel with magnetizing inductance. The existence of localiza-
tion matrixQ(θcc) in equation [1.19] makes complex the state space representation in
Concordia’s axis. In a large range of industrial application, voltage drop inRs andLf

is neglected according to stator voltageUαβs
then, we can put a short circuit element

Qcc in input voltage border (Fig. 1.2). Line currentsiαβs
become the sum of short

circuit current̃iαβcc
and usual currenti′αβs

in classical Concordia model.

It is much simpler to work in the rotor reference frame because we have only two
stator variables to transform. Therefore, in state operation, all the variables have their
pulsations equals tos ωs (wheres is the slip andωs is stator pulsation). We define
Park’s transformation as:

xdq = P (−θ)xαβ [1.20]

Afterward, the faulty model will be expressed under Park’s reference frame. So,
short circuit current [1.19] becomes:

ĩdqcc
=

2

3

ηcc

Rs

P (−θ)Q(θcc)P (θ)Udqs
[1.21]



Diagnosis of Induction Machines by Parameter Estimation 255

1.2.1.3.Example of stator faulty model validation by spectral analysis

It is interesting to study the properties of currentĩdqcc
in the short-circuit winding.

In literature, it is shown that a spectral analysis of statorcurrent allows to specify the
nature of the defect [MOR 99b]. Indeed, a failure in the stator is reflected on the power
spectral density by the appearance of spectrum lines aroundfrequencies of2 ω whose
origins can be explained in the following manner: The three phases stator currents
create in the machine airgap a magnetic field turning at synchronous speedωs = ω

1−g
.

This magnetic filed sweeps the rotor windings, which causes rotation of the motor.
When the stator defect appears, it creates with the direct stator field an opposite field
running at the speed−ωs. The stator currents are now direct and inverse following the
imbalance of windings. The interaction of this field with that from the stator windings
induce an electromagnetic forces at the frequency equal to2 ωs.

Therefore, with Park’s transformation, we can find in statorcurrents measurement an
harmonic frequency at2 ω. For example, to validate a previous faulty model, it is
necessary that the stator current in Park frameidqs

presents a sinusoidal component
around this frequency. We will use the additional short-circuit current term of̃idqcc

(Eq. 1.21) to justify the default model. For example, consider the case where a short
circuit occurs on the first stator phase localized by the angleθcc = 0. In this case, we
can write:

Q(θcc) =

[

1 0
0 0

]

The short-circuit current becomes:

ĩdqcc
= R(θ)Udqs

[1.22]

with :

R(θ) = 2

3

ηcc

Rs
P (−θ)Q(θcc)P (θ) = ηcc

3 Rs

[

cos(2θ) + 1 − sin(2θ)
− sin(2θ) 1 − cos(2θ)

]

The input voltagesUdqs
is almost continuous in the Park frame, so they vary slowly

compared to the terms of the matrixR(θ) (except during the transient corresponding
to a change of torque). The short-circuit currentĩdcc

and ĩqcc
are then a linear com-

binations of terms whose instantaneous pulsation at2θ̇ = 2 ω. These sinusoidal com-
ponents at2 ω can be found in the measurement of stator currentsidqs

, explaining a
possible stator imbalance.

For illustration, we present in the figure (1.3) a comparisonbetween the power
spectral density (Fourier Transform) of direct current Park ids in healthy and faulty
case (short-circuiting of 58 turns on phasea). For a 1.1 kW induction machine, 4-
poles, whose rotational speed is around750 rpm (25 Hz), we measured the stator
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Figure 1.3. Power spectral density of stator current(fs = 25 Hz)

currents vectoris and performed the Park’s transformation. Thus, we can observe
on the figure (1.3) the appearance of additional spectrum lines in faulty case around
2 · fs = 2 · 25 Hz.

1.2.1.4.Global Stator faulty model

Fundamentally, we show that in faulty case, an induction machine can be char-
acterized by two equivalents modes. The common mode model corresponds to the
healthy dynamics of the machine (Park’s model) whereas the differential one explains
the faults. This model, very simple to implement because expressed in Park’s frame,
offers the advantage to explain the defect through a short circuit element dedicated
to the faulty winding. On the other hand, it is unsuitable in case of simultaneous de-
fects on several phases. Indeed, this representation is only adapted in case of single
phase defect. In the presence of short circuits on several phases, this model translates
the defect by aberrant parameters values, because it takes into account only a single
winding.

To remedy it, we generalize this model by dedicating to each phase of the stator a
short circuit elementQcck

to explain a possible faulty winding [BAC 01a][BAC 01b].
So, in presence of several short circuits, each faulty element allows the diagnosis of a
phase by watching the value of the parameter. This simple deviation allows to indicate
the presence of unbalance in the stator. The short-circuit current, noted̃idqcck

, in kth

differential model can be expressed as:

ĩdqcck
=

2

3

ηcck

Rs

P (−θ)Q(θcck
)P (θ)Udqs

[1.23]

Q(θcck
) is the localization matrix (if the faults occurs on the phasea (resp. b and c)

then the angleθcck
is equal to0 rad (resp.2π

3
and 4π

3
).
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sdqU

sdqi

rdqi

mdqi

mL rR

fL'
dqs

i

1ccQ 2ccQ
3ccQ

sdq).2/(P. φφππωωsR

1ccdqi~
2ccdqi~

3ccdqi~

Figure 1.4. A global stator faulty model indq frame

Figure (1.4) shows the global stator faulty model indq Park’s axis with global
leakage referred to the stator.

1.2.2. Rotor faults modeling

As for stator fault, rotor fault is modeled by a new axisB0 referred to the first
rotor axisar by the angleθ0 [BAC 02]. This additional short circuited winding is at
the origin of a stationary rotor fieldH0(t) steered according to rotor fault axis (Fig.
1.5).

bar  1
bar  2

ra

rb rc

bn bar

E nd-rin g

B ro k en  ro to r 
   b a r a x is

0θθ

0B

1-bn bar

Figure 1.5. Broken rotor bar representation

Recently, rotor faults occurring in induction motors have been investigated. Vari-
ous methods have been used, including measurement of rotor speed indicating speed
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ripple, in the same way as spectral analysis of line current [FIL 94, INN 94, MAN 96].
The main problem concerning these monitoring methods is that they are essentially in-
vasive, requiring obvious interruption of operation. Moreover, they are inappropriate
under varying speed. For these reasons, parameter estimation is preferred for fault
detection and diagnosis of induction motors [MOR 99b].

Parameter estimation is based on the simulation of a continuous state-space model of
induction motor. This model assumes sinusoidal magnetomotive forces, non saturation
of magnetic circuit and negligible skin effect. Under theseassumptions, stator indq
Park’s axis and squirrel cage rotor made ofnb bars can be modeled by an equivalent
circuit.

So, two additional parameters are introduced in "differential" mode to explain rotor
faults:

– The angleθ0 between fault axis (broken rotor bar axis) and the first rotorphase.
This parameter allows the localization of the broken rotor bar.

– To quantify the rotor fault, we introduce a parameterη0 equal to the ratio between
the number of equivalent inter turns in defect and the total number of inter turns in one
healthy phase:

η0 =
Number of inter turns in defect

Total number of inter turns in one phase
[1.24]

The number of turns in one rotor phase indeed fictitious. Fornb rotor bars, if we
assume that the rotor cage can be replaced by a set ofnb mutually coupled loops, each
loop is composed by two rotor bars and end ring portions [ABE 99, BAC 01a]; then
the total number of rotor turns in one phase for three-phasesrepresentation is equal to
nb

3
. Fornbb broken rotor bars, faulty parameterη0 becomes:

η0 =
3 nbb

nb

[1.25]

1.2.2.1.Model of broken rotor bars

As stator faults modeling, we can write voltage and flux equations of new faulty
windingB0 in dq Park’s frame [BAC 02]:

0 = η0 Rr io +
dφ0

dt
[1.26]

φ0 =
2

3
η2
0 Lm i0 +

√

2

3
η0 Lm [ cos(θ0) sin(θ0)] (idqs

+ idqr
) [1.27]
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The currenti0 in the faulty windingB0 creates a stationary magnetic fieldH0

being directed according to broken rotor bar axis. This additional magnetic field is at
origin of faulty flux φ0. By throwing i0 andφ0 on dq Park axis, one associates the
stationary vectors:

idq0
=

[

cos(θ0)
sin(θ0)

]

i0, φ
dq0

=

[

cos(θ0)
sin(θ0)

]

φ0

Equations [1.26] and [1.27] become relations between stationary vectors according
to rotor frame. So, voltage and flux equations of stator, rotor and faulty winding of
induction motor are given by:

Udqs
= Rs idqs

+
d

dt
φ

dqs
+ ω P (

π

2
)φ

dqs
[1.28]

φ
dqs

= Lf idqs
+ Lm (idqs

+ idqr
+

√

2

3
η0 idq0

) [1.29]

0 = Rr idqr
+

d

dt
φ

dqr
[1.30]

φ
dqr

= Lm (idqs
+ idqr

) +

√

2

3
η0 Lm idq0

[1.31]

0 = η0 Rr idqo
+

dφ
dq0

dt
[1.32]

φ
dq0

=

√

2

3
η0 Lm Q(θ0) (idqs

+ idqr
+

√

2

3
η0 idq0

) [1.33]

By using same transformation as to obtain primary translation of an equivalent
scheme in power transformer, we can write global flux equations as:

φ
dqs

= φ
dqf

+ φ
dqm

= Lf idqs
+ Lm (idqs

+ idqr
− ĩdq0

)

φ
dqr

= φ
dqm

= Lm (idqs
+ idqr

− ĩdq0
)

φ̃
dq0

= η0 Q(θ0)φ
dqm

[1.34]

with

ĩdq0
= −

√

2

3
η0 idq0

, φ̃
dq0

=

√

3

2
φ

dq0

[1.35]
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Also, current equation of faulty winding is given by:

ĩdq0
=

2

3

η0

Rr

Q(θ0)
dφ

dqm

dt
= R−1

0

dφ
dqm

dt
[1.36]

whereQ(θ0) is localization matrix.

1.2.2.2.Equivalent electrical schemes

According to equation (1.36), faulty winding is a simple resistance element in par-
allel with magnetizing inductance and rotor resistance. Because, the reference frame is
chosen according to rotor speed, it is impossible to translate this element in stator bor-
der Udqs

. Solution consists in establishing equivalent scheme of induction machine
with adding Park’s rotor resistanceRr to faulty oneR0. Thus, the equivalent resis-
tanceReq referred to the rotor is the stake in parallel with the rotor resistance and
faulty resistance as:

R−1
eq = R−1

r + R−1

0

= R−1
r +

2

3
η0 R−1

r Q(θ0) [1.37]

By inversion, we obtain expression of an equivalent resistance matrix:

Req = Rr + Rdefect

= Rr −
α

1 + α
Q(θ0)Rr [1.38]

with α = 2

3
η0.

Thus, equivalent rotor resistance in broken rotor bars caseis a series connection of
a healthy rotor resistanceRr and faulty resistanceRdefect. Figure (1.6) is the resulting
rotor fault circuit diagram in induction machines.

The angleθ0 allows an absolute localization of the faulty winding according to the
first rotor phase. Indeed, induced bars currents create anb-phases system and faulty
angleθ0 is fixed by initial rotor position according to stator position. On the other
hand, when two broken rotor bars occur in machine, estimation of faulty anglesθ01

andθ02
allows to obtain a gap angular∆θ between broken bars [BAC 02]:

∆θ = θ02
− θ01

[1.39]
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Figure 1.6. Broken rotor bars model

1.2.3. Global stator and rotor faulty model

In previous sections, two models of stator and rotor faults were presented. For a
global simulation and detection of simultaneous stator androtor faults, we propose the
global faulty model including:

– Park’s model with the electrical parameters (Rs Rr Lm Lf )

– Stator faulty model with the three additional parameters (ηcck
, k = 1 − 3)

– Rotor faulty model with broken rotor bars parameters (η0, θ0)

Figure (1.7) shows a global electrical model of squirrel cage induction motors for
stator and rotor faults detection.
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sdq).2/(P. φφππωωsR

defectR

Figure 1.7. Stator and rotor faulty model of induction motors

1.2.3.1.State space representation

For simulation and identification with the developed approach in chapter (7), it is
necessary to write this faulty model in state space representation. If mechanical speed
ω is assumed to be quasi stationary with respect to the dynamics of the electric vari-
ables, the model becomes linear but not stationary with fourth order differential equa-
tions [BAC 01a]. For simplicity, the state vector is chosen composed of two-phases
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components of thedq stator currentsidqs
and the rotor fluxφ

dqr
. Then, the continu-

ous time model of the faulty induction motor, expressed in the mechanical reference
frame, is given by:

ẋ(t) = A(ω)x(t) + B u(t) [1.40]

y(t) = C x(t) + D u(t) [1.41]

avec

x =
[

ids
iqs

φdr
φqr

]T
: state space vector

u =

[

Uds

Uqs

]

, y =

[

ids

iqs

]

: input and output vector

A(ω) =

[

−(Rs + Req)L−1

f − ω P (π/2) (Req L−1
m − ω P (π/2))L−1

f

Req −Req L−1
m

]

B =









1

Lf
0

0 1

Lf

0 0
0 0









, C =









1 0
0 1
0 0
0 0









T

, D =
3
∑

k=1

2 ηcck

3 Rs

P (−θ)Q(θcck
)P (θ)

Req = Rr · (I − α
1+α

Q(θ0))

1.2.3.2.Discrete time model

The discrete-time model is deduced from the continuous one by second order series
expansion of the transition matrix [MOR 99b]. By using a second order series expan-
sion and the mechanical reference frame, a sampling periodTe around1 ms can be
used. The usual first order series expansion (Euler approximation) requires very short
sampling period to give a stable and accurate model. These approximation by series
expansion are more precise with low frequency signals. Thus, discrete-time model is
given by:

xk+1 = Φk xk + Bdk
uk [1.42]

y
k

= C xk + D uk [1.43]

where

Φk = eATe = I + A
Te

1!
+ A2 T 2

e

2!
[1.44]

Bdk
= (I · Te + A

T 2
e

2 · 1!
)B [1.45]
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andxk = x(tk) andy
k

= y(tk). The components of the known input vectoruk are
the average of the stator voltage betweentk andtk+1.

1.3. Diagnosis procedure

Parameter estimation, presented in previous chapter, is the procedure that allows
the determination of the mathematical representation of a real system from experimen-
tal data. Two classes of identification techniques can be used to estimate the parame-
ters of continuous time systems: Equation Error and Output Error [LJU 87, MOR 99b]

– Equation Error techniques are based on the minimization ofquadratic criterion
by ordinary least-squares [LJU 87, TRI 88]. The advantage ofthese techniques is that
they are simple and require few computations. However, there are severe drawbacks,
especially for the identification of physical parameters, not acceptable in diagnosis,
such as the bias caused by the output noise and the modeling errors.

– Output Error (OE) techniques are based on iterative minimization of an output
error quadratic criterion by a Non Linear Programming (NLP)algorithm. These tech-
niques require much more computation and do not converge to an unique optimum.
But, OE methods present very attractive features, because the simulation of the output
model is based only on the knowledge of the input, so the parameter estimates are un-
biased [TRI 88, MOR 99b]. Moreover, OE methods can be used to identify non linear
systems. For these advantages, the OE methods are more appropriate for diagnosis of
induction motors [MOR 99b] .

Parameter identification is based on the definition of a model. For the case of fault
diagnosis in induction machines, we consider the previous mathematical model (Eqs.
1.40-1.41) and we define the parameter vector:

θ =
[

Rs Rr Lm Lf ηcc1
ηcc2

ηcc3
η0 θ0

]T
[1.46]

As soon as a fault occurs, the machine is no longer electrically balanced. Using
previous faulty modes, electrical parameters (Rs, Rr, Lm andLf ) does not change
and only the faulty parameters (ηcck

andη0) vary to indicate a fault level according to
relations:

Number of inter turns short windings at kth phase :̂ncck
= η̂cck

· ns

Number of broken bars :̂nbb = η̂0 nb

3

Thus, during industrial operation, diagnosis procedure byparameter estimation of
induction machines requires sequential electrical data acquisitions. Using each set of
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datas, identification algorithm computes a new set of electrical parameters to know the
magnetic state of the machine and new faulty parameters to have an approximation of
the number of inter turns short circuit windings and broken rotor bars.

1.3.1. Parameter estimation

Assume that we have measuredK values of input-output(u(t), y∗(t) with t =
k · Te), the identification problem is then to estimate the values of the parametersθ.
Then, we define the output prediction error:

εk = y∗

k
− ŷ

k
(θ̂, u) [1.47]

where predicted output̂y
k

is obtained by numerical simulation of the state space faulty

model (Eq. 1.43) and̂θ is an estimation of true parameter vectorθ.

As a general rule, parameter estimation with OE technique isbased on minimiza-
tion of a quadratic criterion defined in the case of inductionmotor as :

J =

K
∑

k=1

εT
k εk =

K
∑

k=1

(

(i∗dsk
− îdsk

)2 + (i∗qsk
− îqsk

)2
)

[1.48]

Usually, for induction motors, one has good knowledge on electrical induction mo-
tors parameters, so it is very interesting to introduce thisinformation in the estimation
process to provide more certainty on the uniqueness of the optimum. For this, we have
applied the modification of the classical quadratic criterion [MOR 99b, TRI 88], in
order to incorporate physical knowledge.

1.3.1.1. Introduction of prior information

In order to incorporate physical knowledge or prior information, the classical quadratic
criterion has been modified. The solution is to consider a compound criterionJc mix-
ing prior estimationθ0 (weighted by its covariance matrixM0) and the classical crite-
rion J (weighted by the variance of output noiseδ̂2). Then, the compound criterion is
usually defined as:

Jc = (θ̂ − θ0)
T M−1

0 (θ̂ − θ0) +

K
∑

(ε2
dsk

+ ε2
qsk

)

δ̂2
[1.49]
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Thus, the optimal parameter vector minimizingJc is the mean of prior knowledge
and experimental estimation weighted by their respective covariance matrix.

In real case, we have no knowledge of the fault; indeed, no prior information is
introduced on faulty parameter. Only electrical parameters (Rs, Rr, Lm andLf ) are
weighted in the compound criterion. Thus, covariance matrix is defined as:

M−1

0 = diag

(

1

σ2
Rs

,
1

σ2
Rr

,
1

σ2
Lm

,
1

σ2
Lf

, 0, 0, 0, 0, 0

)

[1.50]

σ2
Rs

, σ2
Rr

, σ2
Lm

andσ2
Lf

are respectively the variance of parameters with prior infor-
mationRs, Rr, Lm andLf .

1.3.1.2.Nonlinear programming algorithm

We obtain the optimal values ofθ by Non Linear Programming techniques. Prac-
tically, we use Marquardt’s algorithm [MAR 63] for off-lineestimation:

θ̂i+1 = θ̂i − {[J ′′

θθ + λ · I]−1.J ′

θ}θ̂=θ
i

[1.51]

with

J ′

cθ
= 2 ·

(

M−1

0 (θ̂ − θ0) −

∑

K

k=1
εT

k
·σ

k,θ

δ̂2

)

: gradient.

J ′′

cθθ
≈ 2 ·

(

M−1
0 +

∑

K

k=1
σ

k,θ
·σT

k,θ

δ̂2

)

: hessian.

λ : monitoring parameter.

σk,θ =
∂ŷ

∂θ
: output sensitivity function.

1.3.1.3.Criterion weights designation

Prior information is mainly used to avoid aberrant estimates given by minimization
of classical criterion. As a consequence, our interest is focused on the optimal choice
of θ0, M0 andδ̂2. Prior information can result from two origin:

– Experiments or motor information given by industrials. Inthis case,θ0 andM0

are obtained by usual electrical tests performed on induction machines (locked rotor,
load shedding, ...) and all material characteristics.

– Practically, prior information is given by physical knowledge and partial estima-
tion. Firstly, a set of experiment and identification of onlyelectrical parameters with
classical criterionJ is used in order to constitute an electrical reference valuedata
base, their pseudo-covariance matrixM and the noise pseudo-variance areσ̂2 defined
as:
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M = δ̂2 (φT
d φd + φT

q φq)
−1(φd + φq)

T (φd + φq)(φ
T
d φd + φT

q φq)
−1 [1.52]

σ̂2 =
Jopt

K − N
[1.53]

whereK, N andJopt are respectively the number of data, the number of parameters
and the optimal value of experimental criterion. The matrixφd andφq are matrix of
output sensitivity functions according todq current axis.

Thus, the covariance matrixM0 is obtained by diagonal values ofM . To evaluate
the noise variance, it is necessary to useδ̂2 > σ̂2 to take into account the effect of
modeling errors.

The motor used in the experimental investigation is a three phases, 1.1 kWatt, 4-
poles squirrel cage induction machine (Fig. 1.8). The data acquisition was done at a
sampling period equal to0.7ms. Before identification, measured variables are passed
through a4th order butterworth anti-aliasing filter whose cut-off frequency is500 Hz.

Speed 
controller

Data
acquisition

Figure 1.8. Motor experimental setup

With the mean of 10 realizations in healthy case, we obtainedthe reference of
electrical parameters notedθref and the weights of quadratic criterion. Then, for all
experiments estimation, we used:

θref =
[

9.81 3.83 0.436 7.62.10−2 0 0 0 0 θ0init

]T

M−1

0 = diag(5.102, 65.102, 17.105, 107, 0, 0, 0, 0, 0)

The noise variance:̂δ2 = 0.22
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1.3.2. Implementation

Experiments are performed en closed loop : The induction machine is driven by
field oriented vector algorithm included in a speed control closed-loop and run under
different loads with the help of a DC generator mechanicallycoupled to the motor. The
speed excitation is realized with a Pseudo Random Binary Sequence (P.R.B.S) equal
to 90 rpm added to the reference of the speed loop equal to 750 rpm. The mechanical
position and the three phases voltages and currents are measured and translated in low
frequencies by Park Transformation.

Stator windings were modified by addition of a number of tappings connected
to the stator coils in the1st and2nd phases (464 turns by phase). These tappings
correspond to 18 inter turns (3.88 %), 29 inter turns (6.25 %), 58 inter turns (12.5
%) and 116 inter turns (25 %). The other end of theses externalwires is connected to
a terminal box, allowing introduction of shorted turns at several locations and levels
in the stator winding. Different rotors, with broken bars, are used to simulate a bar
breakage occurring during operation.

1.3.2.1.Estimation results

Different tests (10 realizations by experiment) with interturn short-circuit wind-
ings and broken rotor bars have been performed. Table 1.1 shows the mean of faulty
parameter estimates for 10 acquisitions.

As observed in table 1.1, there is good agreement between a real fault and its
estimation. All faulty parameters vary to indicate the values of inter turn short circuit
in the three-stator windings and the number of broken rotor bars.

Experiments
ncc1

, ncc2
, ncc3

(inter turns), nbb (∆θ)

Estimation results
(mean of 10 realizations)

n̂cc1
n̂cc2

n̂cc3
n̂bc

1) Healthy machine 5.57 3.52 −0.03 0.08
2) 18, 0, 0 (inter turns), 1 bar 17.86 −1.11 2.51 0.94
3) 0, 58, 0 (inter turns), 2 bars (π/2.8) 3.11 54.52 0.28 1.86
4) 18, 58, 0 (inter turns), 2 bars (2π/28) 16.05 53.31 −2.54 1.88
5) 58, 29, 0 (inter turns), 2 bars (π/2.8) 53.69 26.87 −2.46 1.82

Table 1.1. Estimation results of stator and rotor faults

Indeed, parametric approach gives good estimations of short circuit turns number
n̂cck

. The estimation error is negligible and does not exceed five turns in each situation
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of defect. At simultaneous faults in several phases (case 4 and 5), we observe that the
estimates of the faulty parameters of each phase is a realistic indication of the faults.
This proves that each short circuit element explains the fault occurring at its phase and
that no significant correlation exists between these elements. Moreover, broken rotor
bars estimation̂nbb gives a satisfactory indication from the fault.

1.3.2.2.Parameters evolution

Figure (1.9) gives, for one realization in faulty situation(case 5), the evolution
of electrical and faulty parameters during estimation procedure. For electrical state,
It shows that their optimum values are achieved in only four iterations. On the other
hand, their variation according to the initial values corresponding to prior information
is negligible. For faulty state, it is shown that their variations, contrary from the elec-
trical parameters, are very important. Each faulty parameters varies to indicate stator
and rotor fault level occurring in the machine (example:ncc1

varies to approach the
58 inter turns in defect presents on the1st phase andnbb to approach2 broken rotor
bars).
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Figure 1.9. Estimation of electrical and faulty parameters at faulty case

This comparison is important because it is evident that onlyfaulty parameters change
when the faults occurs according to prior information principle. Moreover, electrical
parameter variations are function of the temperature and ofthe magnetic state of the
machine and are independent from the faults.

Figure (1.10) presents the evolution of inter turn short circuit estimation in one
phase for several experiments and the dispersion of the 10 estimations in different
situations of rotor faults. We observed that all the estimation results exhibit the good
approximation of the stator and rotor faults.
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Figure 1.10. Estimation of electrical and faulty parameters at stator and rotor faulty case

1.4. Conclusion

The Output Error method associated with the compound criterion is a good tool for
identification of continuous model parameters, and therefore very interesting for the
diagnosis. In this chapter, we proposed thus a procedure fordetection and localization
of defects in the induction machine based on parameter estimation and on the use of a
general faulty model.

Two faulty models, simple to implement, have been presented. The first one allows
to explain a stator faults by three short-circuit elements,each element has been dedi-
cated to a stator phase. A new equivalent Park’s rotor resistance has been expressed to
allow the decreasing of the number of rotor bars in faulty situation. Finally, the associ-
ation of stator and rotor faulty element with the nominal model on induction machine
allows to explain a simultaneous stator and rotor faults. This resulting model allows
an extensive monitoring of the induction machine.

The proposed model has been validated on experimental test bench. The identifica-
tion procedure has allowed on the one hand, the localizationof stator faults at several
phases and the determination of their number with a maximum error of six turns, and
on the other hand, the quantification of the number of rotor broken bars. Thus, in sit-
uations of real defects, the diagnosis procedure by parameter estimation gives a very
realistic indication of the imbalance occurring in the machine.

The monitoring methods based on parameter estimation has been poorly applied
so far in diagnosis of physical systems, specially in electrical engineering: our expe-
rience shows that this method is well suitable for faults detection and localization.
The association of parameter estimation technique witha prior information and faults
modeling based on common and differential modes seems perfectly adapted to the
case of the induction machine.
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