Chapitre 1

Parameter estimation for knowledge and
diagnosis of electrical machines

Jean-Claude Trigeassou?, Thierry Poinot! and Smail Bachir?

LUniversity of Poitiers, LAIl Laboratory
Avenue du Recteur Pineau
86022 Poitiers cedex, France
Emails : jean.claude.trigeassou@univ-poitiers.fr,ryipoinot@univ-poitiers.fr

2University of Poitiers, XLIM Laboratory, SIC department
Bat. SP2MI, Téléport 2, Bvd Marie et Pierre Curie, 86962 Fasuope Chasseneuil
Cedex, France
URL : http ://www.sic.sp2mi.univ-poitiers.fr/
Email : smail.bachir@univ-poitiers.fr



Chapter 1

Parameter estimation for knowledge and
diagnosis of electrical machines

1.1. Introduction

In automatic control, modeling and identification are fumgatal and essential
disciplines, which precede all operations of simulatiobservation, synthesis of a
control law or system monitoring. This stage of modeling at@htification depends
highly on the system and on the considered application. ,Téwrgcerning synthesis
of a control law, a discrete model associated with an algariterived from the least
squares technique can be suitable. In an objective of stionlar state-observation,
the same methodology can still be satisfactory. On the dtaed, if the user wants
to simulate the dynamic behavior of the system and to siradlet influence of some
characteristic parameters at the same time, the approaghdiscrete model is insuf-
ficient and it will be necessary to use a continuous-timeasgmtation with differential
equations nearer to the physical nature of the system.l¥;iirakn objective of mon-
itoring, it is sure that a continuous-time model is preféegabspecially when the user
wishes to carry out a diagnosis of the system state stantimg parameter estimation
representative of its safe or fault functioning.

In case of discrete models where the parameters and théusgw@n have lost
links with physics, one commonly speaks about black-boxetedn the other hand,

when the model is of continuous type governed by differértimations and when the
parameters and the structure can approach physical egsiatioe speaks in this case
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about knowledge models or more reasonably about grey-baelmolndeed, it is un-
realistic to describe the physical behaviours exhaustaed in fact only approximate
models (or reduced order models) are used, hence the termyebgx model which

better represents the modesty of the ambitions of the relsear

In electrical engineering, even for a control applicatitie user prefers to use
a model close to the reality, whose parameters (resistaimhsctances...) have a
tangible signification. One finds the same attitude in preeggineering or in chem-
ical engineering (for the constant kinetics of chemicakttiem for example) like in
robotics (for parameters such as masses and stiffness).

In this chapter, we are interested by the parameter estimatielectrical machines
starting from continuous-time models, close to physicse ¢bnsidered applications
concern the estimation of electrical parameters, andquéatily the monitoring of
electrical machines based on parameter estimation. Howdeesame identification
algorithms could be used for the state observation or ththegis of control laws.

In this context, special attention will be given to systeeritification using continuous-
time models. Depending on the nature of the residuals, twestyf algorithms are
commonly used: Equation-Error and Output-Error. In pgtEquation-Error algo-
rithms are suitable only for models of the differential eiipmtype having constant
coefficients. For such models, many techniques [MEN 99] wassgined in order to
express linearly the system output with respect to its patara (L.P. model). Then,
this property of linearity enables the use of least-squarethods whose essential
interest is to provide an analytical expression of the estith parameters [LJU 87].
Unfortunately, it is shown that for any L.P. model whose esgor depends directly
(or indirectly by filtering) on the output values, the resithiare of the Equation-Error
type and consequently the estimator is biased. A solutiefirtinate this bias consists
in using an instrumental variable technique [YOU 70, S6D 83lis procedure com-
plicates the identification algorithm and convergence respme cases, present some
problems. Finally, because in general electrical machamesot governed by differ-
ential equations with constant coefficients but rather bylinear differential systems,
it can be deduced that this identification methodology igeally adapted for the con-
sidered problem. However, these methods should not betedjetndeed, although
their estimates are open to criticism, they can be used tialiné the Output-Error
methods. The reader interested by this subject will be abtefer to some synthetic
presentations [JEM 97, TRI 01] and in particular with a coratige study of these
identification methods [MEN 99] where selection criteria presented.

Thus, this chapter is dedicated to the presentation of tbenskcategory of al-
gorithms which are of Output-Error type; in France they dse aalled "méthode du
modéle" (model method), according to a term imposed by fr@moter J. Richalet
[RIC 71]. These algorithms present a wide range of appboati since they do not
stay on restrictive linearity assumptions, they can be disedonlinear differential
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systems. They are not only used in electrical engineeringatao in process and
chemical engineering. Unfortunately, it is important tesify that they require a
computational load much higher than the algorithms derfveah least-squares. This
explains certainly the interest carried by many reseaschith all the alternatives of
least-squares evoked previously. It also explains whigpaligh the theory of these al-
gorithms was proposed in the Sixties, it could truly staitipose itself only recently
thanks to the rise in computing power of digital calculators

The computational load of Output-Error algorithms is mpidle to the iterative
nature of the minimization of a quadratic criterion by a Noear Programming al-
gorithm (N.L.P.) [HIM 72]. Indeed, at each iteration, it isgessary to simulate the
model of the system together with its sensitivity model,cading to the considered
variant. Moreover, the convergence to a global optimum tgnaranteed, because of
the non convexity of the quadratic criterion. Beyond thegficdlties, which can be
fortunately overcome, the principal interest of OutputeErlgorithms is to provide
an unbiased estimator, and (as opposed to Equation-Enionitpies) with a certain
immunity with respect to the modeling errors. However, ihecessary to examine
the influence of this modeling error with respect to a deteistic parametric bias.
In the same way, these Output-Error algorithms must be neatjifi necessary, when
the system is in closed-loop, inherent for example with tiecfioning of modern
electrical machines.

An important problem is the problem ef priori knowledge on the parameters.
This knowledge is necessary for the initialization of th&.R. algorithm, but in some
cases, we can arrive at the paradox that the obtained estiprates to be nonsensical
when compared to the initial physical knowledge. Thus, weppse a methodology
that allows the introduction cd priori knowledge in the estimator, according to the
general principle of the Bayesian estimation [PET 81].

Although this last methodology must be used with undersienats it will be spec-
ified, it can be useful to improve convergence of the algoridach time that an initial
and reliable knowledge is available, particularly withiretframework of machines
monitoring, using an extended model composed of the safdi@umng model of the
system (thus with a good priori knowledge) and of a model dedicated to a type of
fault.

This chapter is composed of four sections. The first sectieasgthe general
methodology of Output-Error identification. The secondisexpresents an approach
that allows introduction of priori knowledge in practice within the framework of
the Bayesian estimation. An application to the parametiémation of an induced
machine in the Park’s reference is given in the third sectibimally, a monitoring
methodology of an electrical system with fault model @anplriori knowledge of the
safe functioning are the subject of the last section. Thisitodng methodology
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based on parameter estimation is used and developed inecl3agedicated to the
monitoring of electrical machine.

1.2. Identification using Output-Error algorithms
1.2.1. Introduction

These algorithms are known in France as "méthode du modeI€'T1, RIC 91].
They are fundamentally characterized by the simulatiomefhodel output based on
the only knowledge of the input (Error-Equation algorithans based on a prediction
of the output using the knowledge of the input and past vatdi¢ise output). Using
this procedure, the simulated output is independent of #reugbation affecting the
system (if the system is in open-loop); then, residualsasmpond to this perturbation,
hence the term of Output-Error and some interesting prigsasf convergence. On the
other hand, this simulation complicates the problem of mination of the criterion
which requires the use of non-linear optimization techagjuMany approaches can
be used with Output-Error algorithms. After some brief teoa the properties of
Least-Squares algorithm used in Output-Error, we presentase where the gradient
is computed by using the sensitivity functions.

1.2.2. Least-Squares algorithm in Output-Error

In some particular cases, the system outp} is linear with respect to its pa-
rameters. Let this output model e= f (0, ), wherew(t) is the input and) the
parameter vector. The model is linear with respect to itapaters (L.P.) [WAL 97]
if y(t) can be written as follows:

y=¢" (u)l (2.1)

Wherey (u) is the regressor vector.

Let§ be an estimation of. Then, using:(t) (or ug known at each sampling time
tr), the estimated outpgj, is obtained:

e =0l (u)f (1.2)

Consider that we havkE experimental data paifs., y; }, obtained with sampling
periodT,, such that = kT,.. A quadratic criterion can thus be defined by:

i{: ZK: (vi ¢ () ) (1.3)

k=1
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where

Yr = Yk + bi (1.4)
and

ee = vi — G (B.u) (L5)
with

—y; 1 output measurement,
—yy : true value of the output,
— by, : stochastic perturbation,
— ¢y, . residual.

Since the model is linear with respect to its parametersyaheed ;. of éwhich
minimize J, is obtained analytically [LJU 87]:

K -1 K
e = (Z @k@f> kay;i (1.6)
k=1

k=1

Using (1.4), we obtain:
e =0+ A0y (1.7)
whereAg,, is the estimation error such that

K -1 K
Abyo = (Z@,ﬂ’:) kabk (1.8)
k=1

k=1

Consider that the system is in open-loop, the sequencéuy, } is independent of
the noise sequendeé; }. Moreover, let us suppose that the perturbation is zeraamea
Then:

E {Ekbk} =0 (1.9)
and

i.e. the estimatd, - is asymptotically unbiased [LJU 87, WAL 97].
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Let us suppose that the perturbatidn } is independent and stationary, then

Var {b,} = o*

The variance of the estimatéar {0,,} is given by [LJU 87]:

K —1
Var{0yc} = o’ <Z %ﬂ’{) (2.12)
k=1
Since the terne? is unknown, it is necessary to estimate it:
~ JOpe)
2 ZMC

= =822 1.12

0t = N (1.12)
where

—J (8,;¢) is the value of the criterion with = Orics
— K is the number of measurements,
— N is the number of parameters.

REMARK. The expression (1.11) is attractive by its simplicity; emdinately, this
expression is rarely used because it is unrealistic. In fa rare that the random
perturbation verifies the preceding hypotheses. Genetlaélyperturbation can be cor-
related and non stationary. Moreover, a deterministic garesponding to modeling
error adds to the perturbation. This part is directly caed to the inpufuy }. Then

E {gkmk} # 0 and the estimator is asymptotically biased. Hence, (1.ahhat

be used to define realistic uncertainty domains of estimptgemeters. Neverthe-
less, this relation gives valued information on the sevigitof the quadratic criterion
in comparison with the variation of the parameters (in thigmgorhood of the opti-
mum), which is a relative uncertainty (and not an absolugd.on

1.2.3. Principle of the Output-Error method in the general case

Consider a system given by the gene¥all order state-space model depending on
parameter vectd:

i=g(z,0,u)
{y=f@ﬁw) (1.13)

wherey(t) andu(t) are considered as single output and input to simplify theqme
tation. One can notice that no hypothesis on the linearityeisessaryy and f are
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based on the physical laws, which are generally non-lingae only hypothesis is
that the system is identifiable. [WAL 97].

Letd be an estimation of. Then, using the input(¢) and a numerical integration
technique, a simulation of the system output is obtained:

i=g(2,0,u
T~ (1.14)
y=1r(z96, u)
The optimuny,, ,, is the value which minimizes the quadratic criterion:
K K ) N2
J=3et =3 (vi— e (wh)) (1.15)
k=1 k=1

wherey;, is the measure of the noised outpiytbeing the noise signal.

Sincey(t) is not linear in paramete% a non-linear optimization technique is used
[RIC 71]. Many techniques can be used; our choice is basedadmigues based on
the gradient and more precisely on the Levenberg-MargystAR 63] algorithm:

-1
0,00 =0, {[ J" g9 + ] Jg}ézﬁj (1.16)

where

K
_1/0 = -2 z €k Tk g - gradient,
k=1 -

K

—Jg =2 gk&g{’ex: Gauss-Newton'’s approximation of the Hessian,
k=1 ) -

— \: control parameter,

—Qk@i = g—;’“ output sensitivity function.

This algorithm, using the control parametigr tends to the gradient algorithm
when the estimation is far from the optimum (th&n>> 1). Near the optimum,
it tends to a Newton'’s technique (when— 0) which allows acceleration of the
convergence near the optimum. This procedure ensuresti@iugrgence, even with
a bad initialization.

Fundamentally, this technique is based on the calculatfogradient and Hes-
sian, themselves dependent on the numerical integratidheogensitivity functions
[TRI 88, KNU 94, WAL 97]. These sensitivity functions are equivalent to the re-
gressofy in the L.P. case. Thus, let us consider the simulation(of obtained with
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the estimated paramete&s

gk = Ji (2.0,u) (1.17)
and Ietdé be a variation o@\. Then

i (0-+db) = i (8) + T b+ - (1.18)
or, with a development limited to the first order:

dijp ~ o df (1.19)

In the L.P. case, the predictign is given by:
i = ;0 (1.20)
or
dji = ¢y 5d0 (1.21)

Moreover, ifd,, ,, is the parameter vector which minimizésand if we consider a

variationdd aroundd,;, it is easy to show that:

I (8o + dB) T (6,,) + dB (Z 0k0k> dé (1.22)

In the L.P. case, i), is the parameter vector which minimizésone obtains:

J (QMC + dé) J(0,4,0) + db (Z %%) df (1.23)

These two examples show the analogy between regressorsiasitivty functions
and the interest of the sensitivity functions to analyze Gheaput-Error estimators,
particularly their accuracy.

1.2.4. Sensitivity functions

In practice, it is necessary to differentiate two kinds ohsgvity functions
[KNU 94, MOR 991
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— 0y, = Bg—éf): output sensitivity function, used for the calculationtod gradient

and the hessian,

3'2’;5“ : state sensitivity function.

—0g,,0; =

Let us recall that

Then,o, 4 is a vector of dimensiod ando,, ¢ is a matrix of dimensiofiNV x 1]
such that

Te = [ Ty " Lo, 7 Za6g ] (124)

For each parametél;, o, o, is obtained by partial derivation of the equation
(1.13). Thus:

O 99 (z,0,u) Oz  0Og(z,0,u)

90, Og0, = oz 00, + 26, (1.25)
Then,o,,, ¢, is the solution of a non-linear differential system:

byy, = LY %’;’ Dy o+ LY %HQ %) (1.26)
Finally, 0y/090; is obtained by partial derivation of equation (1.13):

a@g _ <8f %’f’ u>>T%9i Lo %éi@ w) (1.27)

1.2.5. Convergence of the estimator

Because the simulatiof = f(Z,,v) is non-linear ind, the quadratic criterion
J@ is not parabolic as in the L.P. case and the uniqueness ofptirawm 6, ,, is
not guaranteed [WAL 97]. Secondary optima can exist and ptien@zation algorithm
can converge to one of these optima. A solution to convergbaalobal optimum
consists to use a global approach, like genetic algoritif@N 95]. A "map" of the
criterion and of its optima is obtained. The global optim@y, is then obtained using

the Marquardt’s algorithm.
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In the presence of noise affecting the output, the estinttoverges to:
Qopt =0+ A0 (128)

whereg is the true parameter vector ad the estimation error. Using the sensitivity
functions,A@ can be approached by:

K -1 /K
Af ~ (Z a,p{) (Z akbk> (1.29)

which is equivalent to:

K -1 /K
Af = (Z soksof) (Z %J)k) (1.30)
k=1 k=1

[

opt

obtained in the L.P. case.

Then, if E{b;,} = 0 and if the system is in open-loop is independent af;, and
E{Af} = 0 (sinceg,, depends only om;). The Output-Error estimator is asymptot-
ically unbiased, whatever the nature of the zero mean outgse [WAL 97].

REMARK. When the system is in closed-loop (which is the case with AChimes
with vector control), the perturbatiofby } is necessarily correlated with the control
input through the corrector (or the control algorithm). ihe, which depends of the
input {uy } is correlated with the noisgy. }, i.e. the estimatiord,,,, is asymptotically
biased. Fortunately, this bias is really very significanyomhen the signal to noise
ratio is weak. Thus, as a first approximation, it can be negtecdMoreover, Output-
Error algorithms functioning in closed-loop have been pima; they are able to reject
this bias using a more complicated identification proced@RO 00, LAN 97].

1.2.6. Variance of the estimator

Using the analogy between regressor and sensitivity fonsfiit is possible to
define an approximated expression of the varianag,gf Thus, by replacin@k by
o, in expression (1.11), one obtains:

x -1
Var {0, } ~ & (Z wﬁ) (1.31)
k=1

Note that this expression is approximated for the followiegsons:
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— since the output model is non linear in parameteiss a local approximation of
Py i.e. this expression is an approximation of the quadratic ¢aitely a paraboloid;

— like in the L.P. case, the perturbation is not charactdrtnethe only ternt?,
i.e. this expression gives only an information on the relativeuaacy.

1.2.7. Implementation

Output-Error algorithms are more complex than EquatiorEalgorithms be-
cause of the non-linear optimization. However, this is et only difficulty to im-
plement these algorithms. It is also necessary to studyuheerical simulation, the
problem of initial conditions and the normalization of thensitivity functions.

1.2.7.1. Simulation of the differential system

In the Least-Squares case, the implementation of the poedi trivial in the
discrete-time case; in the continuous-time case, it is rdiffieult [TRI 01].

In the Output-Error case, we are confronted with a real gnoldf numerical simu-
lation of differential systems, for the simulation of the deboutput and the sensitivity
functions. Simulation error or approximate calculationls give a systematic error or
deterministic bias.

When the system is linear, the differential equations camtegrated using the
exponential matrix technique [ISE 92] which allows coratitbn of accuracy and ra-
pidity of the computations.

When the system is non-linear, which is almost always the withgohysical sys-
tems, it is necessary to give importance to accuracy and nicahstability. Accuracy
is guaranteed by an algorithm like Runge-Kutta of order 4. tlénother hand, the
discretization of the differential equations can makerthrgegration unstable. Then,
implicit techniques can be used, for instance the Adamsrétgms [NOU 89].

Nevertheless, some errors can subsist, even if all the gireg@recautions are
taken. In fact, it is very important to well consider the tygfethe input in the nu-
merical integration algorithm: the simplest case is whenitiput is derived from a
numerical command. The applied input is then continuoustaadecessary to spec-
ify how the input varies between two sample instants: a limbange is sufficient in
the major cases, otherwise, a parabolic (or of a higher pederapolation should be
used [ISE 92].

1.2.7.2. Initial conditions in OE algorithms

Initial conditions of the state are supplementary unknoarameters which need
identification [WAL 97]. When the number of data is relativedgnall, particularly
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in regard of the transient of the system output, that is theesgary solution. Then,
an extended parameter vector is considered which contamsytstem parameters
and the initial conditions. The identification algorithmmains unchanged, but the
computation time and the convergence difficulties increadéhen the acquisition
time is higher than the transietit [RIC 91], thek,. first data &, = t,./T.) are not
used in the criterion in order to avoid the estimation ofiahitonditions. Then, the
criterion becomes:

K
J=Y e (1.32)
k=k

and the differential system is simulated frers: 0.

Let us recall that in the two situations, if the initial cotidins are not taken into
account, an important bias appears.

1.2.7.3. The normalization

In an academic situation, the user chooses numerical valbheh are close. In
a real situation, numerical values can be very differenenthbsome difficulties for
the convergence of the identification algorithm appear. l&tgm consists to normal-
ize the parameters, which in practice consists in the nazat@n of the sensitivity
functions [MOR 99, RIC 71].

Consider the parametéy,, with an initial estimatiorg,,,, such tha¥,, = 6,,, +
Ad,,. The estimation of,, is equivalent to that of\g,,.

Let us define,, = (1 + uyn)0n, WhereAd,, = u,,0,,. The sensitivity function
linked tod,, is then :

9 _ 1 0y
90, Ony Opin
where the sensitivity functiony/dpu,, are now normalized and closed.

(1.33)

In practice and thug) are estimated using the non linear programming algorithm
and we obtain:

1.3. Parameter estimation witha priori information
1.3.1. Introduction

Despite all the numerical precautions stated in the pregeparagraph, Output-
Error algorithms can, in certain situations, provide ine@nt estimates such as nega-
tive resistances or inductances (refer to [ALM 95, JEM 97hia electrical engineer-
ing case). It is necessary to seek the cause of these anerimaliee optimization
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mechanism: indeed, the latter determines the set of paeasnehich allows best fit
of the data by the selected model, without any physical caimt Moreover, when
that occurs, only some parameters are affected by this dgoma

It is fundamentally a problem of parameter sensitizatiothoaigh theoretically
identifiable, the concerned parameters are almost unf@dné and balancing phe-
nomena can be observed. The traditional reflex in front dfi gwoblem is to propose
to improve the excitation [LJU 87, KAB 97]: however, in maritgations, this optimal
excitation can turn out to be unrealistic in practice (evangkrous for the process) or
can transgress the validity conditions of the model!

In addition, these problems of excitation must be conneiti¢de selected model
and its modeling error. Within the framework of control ugislack-box models, the
engineer increases the complexity of these models untittfiduals become indepen-
dent and uncorrelated to the input [LJU 87]. On the other h#ra "physicist” uses
models of voluntarily reduced complexity, adapted to thecdgtion of a specific phe-
nomenon: that does not prevent him to estimate the correéppparameters without
systematic error, but with specific and dedicated appraach@en, the question is
to know if these same models, used with the identificatiohrigpies developed in
automatic control, can provide estimates which are cohevigh physical laws.

A solution suggested in this chapter consists in introdyieixplicitly the physical
knowledge in order to replace the lack of excitation or toriave it.

In addition, even with a good excitation, it is interestimgimprove the conver-
gence of the estimator (and its accuracy) by introducing priori knowledge (given
that this knowledge is not erroneous!).

1.3.2. Bayesian approach

A possible misunderstanding should be immediately cleapedeffectively, it is
recommended to initialize the optimization algorithm wjtarameters close to the
optimum in order to accelerate the convergence and to rettheceomputation time.
For this, an initial knowledge is used but the optimizatidgoathm quickly forgets
this initialization! In the best situation, the convergero a secondary optimum can
be avoided.

It is therefore necessary to introduce explicitly this pknowledge: thus, a mod-
ified or compound criterion is defined. The major justificataf this new criterion
can be found in the Bayesian approach [EYK 74, GOO 77, PET 81, 93]. This
approach consists in considering the estimation probleanprobabilistic context.

Consider a set of experimental dat,a yr (orU,Y™); we propose to estlmaﬂaby
maximizing the probability density @ conditionally to the data™*, i.e. PG/Y* (or
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a posterioridensity). Otherwise, we hawepriori information on@ characterized by
P@. Then, the Bayes's relation is:

PoPY* /b

POy~

BecausePY ™ does not explicitly depend o, the maximization ofP@\/X* is
equivalent to the maximization d? PY* /9: this is the technique known asposte-
riori maximum.

In order to tackle this problem, some hypothesis are nepessaually, P@ and
PY™ /6 are considered as Gaussian densities. Then, we can write:

PO/Y* = Aexp [—; @ —QO)TMa1 (0- )

) (2o

— A'is a constant,

— 0, initial knowledge off,

— M, : covariance matrix of,,

— Ry, : covariance matrix of the stochastic perturbation.

(1.36)

Finally, by considering the natural logarithm of this exgsien, it is easy to show
that the maximization of9/Y ™ is equivalent to the minimization of the compound
criterion:

Je= (0-00) a5 (0-0,)
Jo

+ (Z* -y (é,g))T R,! (g* —v (Q, Q)) (1.37)

J*

Jo= Jo+J*

In practice, the covariance matrix of the perturbation ikngwn andR; is re-
placed byo21 (whereo? is the variance of the noise atdidhe identity matrix). Then,
exceplr? (representing the variance of output noisg)represents the usual quadratic
criterion, containing experimental information. On thé&et hand,.J, is a second
quadratic criterion which introduces an "elastic" corigtran the minimization of the
global criterionJc: in fact, it prevents) to move away frond,,, with a "return force"
dependent oﬁ— 6.
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1.3.3. Minimization of the compound criterion

Let

Jo= (2-0) Wi (1) + 5D (- ()

2
b k=1

This new criterion is minimized using the Marquardt’s algon with:

K
1
Jo, =2 | My — - ErO (1.39)
K GDEEYRS
and
1 K
Iy = lMo +t53 Ukak] (1.40)
b k=1

Let 6 be the value OE\ minimizing J¢ and obtained using the optimization al-
gorithm. In order to demonstrate the interestgsriori information, we propose to
show the links betweefy-, ¢,,,, andg,,.

Thus, let us consider théf,,, andd, are near td., i.e. the sensitivity functions
f are approximately equal. Then, one can write:

Je (8) ~ Jewan + (6-60) (73) " (8- 60) (1.42)
where
Jy =2 (Mg1 (é—@o) - S:;) (1.42)
and
Jyy 72 ( STS) (1.43)
b
with
af
S=|
T
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When the Newton'’s algorithm is used to minimizg from the initial valued,), this
optimumg. is obtained in one iteration because is a quadratic form of. Then:

" -1 /
Oc =10y — { {Jee} Je} (1.44)
9
with
/ 28T , .
{4}, == (' -1@) (1.45)
which gives:
L STSTTRST L
Oc =0y + [MO 14 p ] o7 (X —X(QO)) (1.46)

Letp~! — 78 where P,,,; is the covariance matrix linked to the conventional

opt o2
criterion minimized byd_ .. Then, let us define:

opt*
Pt=M;'+P,, (1.47)
i.e.
pst , . .
QC = Qo + 7 (X -Y (Qo)) (1.48)

b

which can be written as:
b0 =0,+ K (Y - (8)) (1.49)

whereK is the gain of a Kalman filter applied to the particular sysfAD 84]:

91‘ = Qi = Q
{ i (1.50)

This interpretation confirms the preceding probabilistid atochastic approach:
from 6, the optimal value to obtaifi is determined, taking into account the gain
K and the information given by the data g€t (corresponding t@,,,,). Moreover,
taking into account [1.47], the estimdtg is necessarily more precise thgnor 6,
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1.3.4. Deterministic interpretation

The Bayesian approach is comforted by the interpretatiothefKalman filter
which can be interpreted like a regularization techniqué[17, JOH 97, SAY 98].
Unfortunately, this interpretation failed in the case of/gibal parameter estimation
using a model of reduced complexity.

It is to be noted that the output perturbatidh), } is not really a random pertur-
bation but a deterministic one: the major part of the outgutyybation is due to the
modeling error. The perturbation is determinist becausegénerated by the input

Thus, a new interpretation is proposed, essentially basegtiedgeometry of the
quadratic criterion (see [MOR 99] for more information).

Let5? be the pseudo-variance of the output perturbation whichtiaioed using:

T Copr) (1.51)

K
whereJ is the conventional criterion anel the number of samples.

52 =

K
We can notice thafl (6,,,) = > (v; — fx (uk,Qopt))2 takes into account the

noiseb;, and the modeling error.e. 57 is a pseudo-variance.

Usinga?, a pseudo-covariance matrix can be defined by:

Py = 62 (S75) ™ (1.52)

In the neighborhood d,,,;, it is possible to write:

’ J(;) = (8- 0) 5 (0 0) + 23 (153)
Finally

Jom (0-0,) My (0-05) + (8- 0,) Pot (8- 0,,,) + K (158

This expression shows thdt: is the result of two paraboloid, centered @nand
0,1, characterized by the spreatif and P,;. Jc is a unigue paraboloid, centered
ond., such that:

Oc ~ 0y + [My " + Pt (Mg 0y + Ppptf,,) (1.55)
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(8¢ is the barycentre of, andd,,,;) characterized by the spreddc, such that:

MEI — Mo—l +

Let

Jor (0-00) Mgt (8- 0) + Je (00)

-1
Popt

(1.56)

(1.57)

Let us consider a monovariable example in order to illustthts result (figure

1.1):

Jo, J*

Figure 1.1. Determinist interpretation of the compound criterion - monovariable case

When§,, is close tod,

opt?

the criterionJ is more convex than the conventional

criterion. Secondary optima tend to disappear. Conselyyehe introduction of
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{8,, Mo} accelerates the convergence of the optimization algorifhine estimation
6. is generally more precise thép or 6, because the paraboloif}: is less "open”
than the preceding criteria.

opt

Moreover, if the estimatiofi,, ,, is ill-sensitizedj.e. the optimum is straight, then
the global optimund - will be attracted by, which is equivalent to an "elastic” return
force (especially if the paraboloid, is "closed").

REMARK. The conventional probabilistic interpretation has dalyabeen an ob-
stacle to the use of the Bayesian approach. On the conth@rgdterminist interpre-
tation shows the advantages of this technique on the coemeegof the optimization
algorithm and on the uniqueness of the optimum.

Moreover, it is important to notice that the covariance ioas ofg, and of the
noise can be significantly simplified, with no influence onithgoperties. Thus,
matrix M, can be favorably reduced to a diagonal form, with an ovetatain of
each variance if necessary as it will be shown in the appdinatparagraph. Moreover,
the covariance matrix of the noise can be reduced to a singlficent constituted by
the variance of the perturbation, which is particularhtifiesd when a modeling error
occurs.

1.3.5. Implementation

The implementation of this methodology implies handlingwb types of infor-
mation:

— thea priori information{6,, M, } obtained from a preceding global estimation
or from specific and partial estimations. In this more reiglisase, the matrid/ is
at best diagonal (some examples are proposed in the nexirpphg;

— the varianc&? of the perturbation: this is an essential parameter in thghtiag
betweenJ; and.J. The deterministic interpretation has shown thts linked to the
spread of the paraboloid/57: a lower value gives more weight to experimental data,
while a high value gives more importance to the initial imfiationg,,.

In practice, it is necessary to define a practical procedorét§ determination
because it principally depends on the modeling error, unknioefore optimization.
Concretely, a prior value is used, which is approximatednthriance of the stochastic
perturbation; whed is estimated, a new valug is obtained using/(6) (where.J
is the conventional criterion). B? is very far from its initial value, a new estimation
of 8, is performed. This last point is considered in the next paaly

The value ofs? obtained using/ (§.) can also be used as a guideline of the
coherence between initial information and prior knowledgkus, whers?, ¢, and
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My are reliable informationg? allows us to test if the experimental information is
compatible with the knowledge on the system: a valug7a$ignificantly greater than
o2 can correspond to a non-stationarity of the system whicbl#es a modification
of its model. Then, the modeling error increases @atbo.

REMARK. M, anda; play an essential part in the weighting betwespriori in-
formation and experimental data. The variance ofalpeiori information M, should
result from a decisive choice: a low variance increasesdenée irg,,. Thus, in prac-
tice, this value can be increased in order to allow the vianatf 6, if this variation
is expectable (see the paragraph dedicated to fault diegnos

The estimated valugé? can need to be adjusted thanks to a new identification, as
it was previously described : in practice, the example égén the next paragraph
shows that this convergence is very fast.

Finally, let us recall that the use of the Bayesian approaabtioe justified by a
truea priori information{8,, My}: it is necessary to be persuaded that an erroneous
initial information will irremediably bias the estimatoHowever, when this use is
justified, this technique improves significantly the cogerce of the optimization
algorithm (and thus computing time) and guarantees theesds of only one opti-
mum. In addition, it allows reconsideration of some teche&|based on parameter
estimation, like fault detection.

1.4. Parameter estimation of the induced machine
1.4.1. Introduction

We propose to illustrate the application of Output-Erraht@ques (with and with-
outa priori knowledge) to the induced machine in the dynamic case.

At first, it is necessary to specify the model of this machfivstly in the three-
phase context and secondly using the Park’s transformatibith is well adapted
for parameter estimation of that kind of machine. Then, vasent the model iden-
tification starting from experimental data with the two tgp# algorithms previously
defined.

1.4.2. Modeling in the three-phases referential
The general model of the induced machine is obtained by derieg a uniform

air-gap and a sinusoidal distribution of the magnetic fiflde machine is supposed
to work in an unsaturated magnetic state and the iron losseseglected. In those
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conditions, the dynamic model of the machine with the leadded up at the stator

can be described by:

U, = [Rs] ls + %QS
0 = [R/]i. + %ﬂ.
(1.58)
?5 = [Lé] Z.s + [Msr] 1,
?'r‘ = [MST‘] Zs + [L'r] ZT
with:
[R)=Rs-I et [R]=R,-I
Ly, L,
LP + Lfsa — 5 -5
[Ls] = — Lp+ Ly _%
_% _% Ly + Ly
L, L,
L, -L -L
[Ly] = *? Lf 7%
-5 —2 Ly
Ly, cos(0) L, cos(0 + %’r) L, cos(0 — %”)
[M,,] = | Lycos(d —2F) L, cos(0) Ly cos(0 + 3F)
h Lycos(+ %) Lycos(d — %) L, cos(0)
where:

—u,, i, andi, respectively represent the voltage vector, the statoeatsvector
and the rotor currents vector;

— ¢, andg : vectors of stator and rotor fluxes;

- Rs (resp.R,) : resistance of a stator phase (resp. rotor);

— L, andL;: principal inductance and leakage inductance added u atétor,
— 0 : electrical angle of the position of the rotor.

The equations of voltages obtained above are relativelplsineven if the num-
ber of state-variables is high. Nevertheless, the matrimofual inductancef\/,

depends on the electrical angle Then, the writing of the state-space representa-

tion remains complex. These equations are simplified usiadPark’s transformation
[CHA 87, CAR 95, GRE 97] which is described below.
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1.4.3. Park’s Transformation

The Park’s Transformation, largely used for the modelind\Gf machines, cor-
responds to a projection of the three-phase variables omengudiphasic frame, the
goal being to eliminate the position in the matrices of mLitnductances. For that, it
is sufficient to carry out a transformation of the three-grasstenubc to the diphasic
systema,3 using the transformatiofi,; (Concordia’s transformation) followed by a
rotation of reference fram®(—6) in order to link the reference frame to the rotation
Park’s axesiq (Fig. 1.2).

Figure 1.2. Park’s transformation linked to the rotor

In a matrix way, the essential variables of the machine bed@AR 95]:
—inthe stator z,, = P(—0) Ty z,

—intherotor iz, =Ty z,

with
T — 2 [ cos(0) cos(3F) cos(iF)
2 7 V3 | sin(0) sin(3F) sin(47)
cos() cos(0+F) |. : .
P(9) [ sin(6) sin(6+ 2)  rotation matrix of anglé
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Equations of the induced machine [1.58] in the Park’s framieed to the rotor,
with leaks added up at the stator are:

qus = R qus + %?dqs tw P(%) édqr
— : d
0 = Rpigy + Eédq,,, (1.59)
qus - (Lm + Lf) qus + L Z:dqr
qum = LTYL (ZdQS + quT)

where

—w = % represents the electrical pulsation (Whére= p,cchanicar aNdp :
number of pairs of poles per phase),

—L,, = %L,, : magnetizing inductance.

The obtained model of the induced machine is essentiallyackerized by four
physical parameterg,, R,, L,, andL;. These parameters are the parameters that
need estimation.

1.4.4. Continuous-time state-space model

For the majority of the industrial applications of the inddanachine, the inertia
of the rotating parts is significant. Consequently, therrsfzeed is generally slowly
variable as compared to other electrical parameters of Hulhime [MOR 99]. Thus, a
4t non-linear state-space representation of the inducedineishobtained (because
of dependency on the speed) by associating the state-welici contains the stator
currents and rotor fluxes as well as the input and the outpilteo$ystem correspond-
ing respectively to the voltages and stator currents of&aisdg [CAR 95, MOR 99]:

i(t) = A(w)xz(t) + Bu(t)
{y(t) = Cuz(t) (1.60)

with

z=1[ia, iq G4 ¢q | :-State-vector

U = { Ua, } , Y= { st } : respectively machine input and output

qu qs
R.+R, w R, w
Ly Lm-Ly Ly
e _BaxR e R
Alw) = 1z Ly Imly
R, 0 —E 0
0 R, 0o -4
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1.4.5. Output-Error identification

The considered system is multivariable, with two inpufg (andU,,) and two
outputs ¢4, andi,,).

Thus, a criterion/ composed of two quadratic terms is considered:

K 2 K 2
J=3" (i, ~ta,) > (i, —ia,) (1.61)
k=1 k=1
wherez’j;% andi;Sk are sampled measurements with sampling pefiod= 0.7 ms
(t = KT, k varying from1 to K = 4500). 14, andi,, represent the simulation of
the model [1.60] based on the estimatbwhereg” = | Rs R, Lm Lj].

Bia,

At each iteration, it is also necessary to simulate the geitgifunctions 57 and

85%5 according to the preceding paragraph.

Experimental data are obtained with an induced machirieldW supplied by a
generator with a vector control. The machine is regulateitstaominal speed, and
coupled with a continuous generator which acts as a load.

The machine input is a pseudo-random binary sequence (PBBEY0 tr/mn
added to the speed referencerab tr/mn. Rotor currents and voltages are measured,
as well as the mechanical position of the rotor (which alleasputation of the pul-
sationw). The input vecto{U,,,U,, } and the output vectofi; ,i; } are obtained
by using Park’s transformation.

Minimizing the quadratic criterion (1.61) using the Margitzs algorithm, the
optimum is given by:

R, 9.507 Q2
o _| B |_| 20100
Fort = | L | T | 0.4364H

Ly 0.0751 H

Figure 1.3 shows the estimati@raccording to the iterations of the identification
algorithm.

At the optimum, an estimation of the noise variance is olg@wvith:

~2 Jopt
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Figure 1.3. Estimation o according to algorithm iterations

1.4.6. Output-Error identification and a priori information

We propose to estimate the same parameters, buavgtlori information, consti-
tuted by the average of ten preliminary estimations (cpoeding to the knowledge
of the "healthy" functioning of the machine). For that, tleenposite criterion is min-
imized:

K
S, a2, i)

Je=(0-0,)T My (0—6,) + k 5 (1.62)
with
R., 9.81 Q
o | Be | _| 3830
07 Ly | 7| 0436 H

Ly, 0.0762 H
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and

[ 012%5 (2) 0 0
0 o4 0 0
Mo="1"0 0 o2 o0
o0 0" o

[ 210°3 0 0 0

B 0 210* 0 0

o 0 0 6107 0

0 0 0 1077

The same data as previously are used; then, we choose:

82 =52 = 2([‘(]% = 0.0462

Minimizing J¢ using the Marquardt’s algorithm, we obtaip:

R, 9.667 2
0. _ | B | _| 30200
2T Ly | T | 0.4366 H
Ly 0.0762 H

Figure 1.4 shows the evolution ég according to algorithm iterations: it is obvi-
ous that the addition ad priori information has significantly accelerated the conver-
gence of the algorithm.

Considering the variance of thepriori information (better precision on induc-
tances than on resistances), only resistances estimatienslightly different from
those corresponding .

REMARK. The second part of the criterion enables us to estimateathiance of
the noise fo@ = 0. Thus, we obtaiﬁ,? = 0.0483 which is close to the value initially
chosen fo?: it is thus useless in this case to reiterate the algorithdetermine the
optimal value of2.

Nevertheless, the question of the choicéomust be evoked if initial information
on the residuals variance is erroneous. Again with the saatee .- was initialized
with an erroneous value @ and the estimation of,,,, was iterated. The results
are shown on figures 1.5 and 1.6. It can be seen that thisiveeraibcess converges
almost in only one iteration t&* = 0.0483, whatever the initial value af?.
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Figure 1.4. Evolution of@c according to algorithm iterations
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Figure 1.5. Evolution of§? according to algorithm iterations
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Figure 1.6. Evolution of§? according to algorithm iterations

1.5. Fault detection and localization based on parameter &mation
1.5.1. Introduction

The fundamental assumption to monitor (or supervise) &ry$ly parameter es-
timation is that a fault results in the variation of one (ovesal) characteristic pa-
rameter(s) of the system, thus constituting the signattitie fault. According to
this assumption, supervising a system involves monitooiinits parameters using an
identification algorithm, either off-line (or by parts ofraples) or in a recursive way.

In fact, this assumption can easily be invalidated by thetfat this methodology
is not able to distinguish a normal parametric variations@oly foreseeable) from
that corresponding to a fault occurring randomly. That is thuthe fact that in order
to estimate parameters, a model should initially be defitleefirst reflex is indeed
to use the model of normal operation of the system. Howevaylatends to modify
this model and modifies also, in some cases, its structurgnandst cases a modeling
error is introduced.

Thus, we will propose a methodology again based on pararest@nation, but
that combines two characteristics:

— the general model will include a model of safe functioningrfominal model)
and a fault model (specific to each considered fault),
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— parameter estimation will be used watpriori information, which corresponds
to the expertise (or knowledge) of the user on the safe fonictg of the system.

1.5.2. Principle of the method

The principle of the method is exposed here in the case oadisgstems gov-
erned by differential equations with constant parametdtBpugh this methodology
is general.

Let H,,(s) be a system of nominal transfer function, characterized \mctorg,,.
When a fault occurs, a modeling err®H;(s) signing the fault also appear&H;(s)
is characterized by a vectéy). Thus, the input/output transfer function becomes:

H(s) = Hy(s) + AH(s) (1.63)

The general model of the system, in a fault situation, is shomfigure 1.7, where
b(t) is a random perturbationy(t) is the input and,* (¢) is the measured output.

AH; (s)
b(t)
ut) 1) DLy )

Figure 1.7. General model of the system corresponding to the fault

The nominal modeH,,(s), or safe functioning model, summarizes the user exper-
tise on the functioning of the systeie. the knowledge on the nominal parameters
én and on their variancé’ar{gn}, as well as noises affecting the outpug. their
varianceos?. In addition, the modeling erro¥H;(s) must constitute a true signature
of the fault, not only by its structure but as well as its paeternst, .

The general model of the systeHi(s) is then composed of a term of "common
mode" (the nominal modeH,,(s)) and of a term of "differential mode" (the fault
model § H;(s)) only sensitivized when a fault; appears. In addition, the nominal
model must take into account foreseeable variations of #rarpeters whereas the
fault model must for its part remain insensitive to theseeaariations.
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Finally, the nominal model must include the expertise ofuker,i.e. summarized
by {0,,, var{0,,}}. Thus, this methodology is naturally linked to identificatiwith a
priori information. An extended parameter vector is thus defined:

0.~ 5] (1.64)

Moreover, an extended covariance matrix is defined:

Var{6,} = { V“r(){Q"} VarO{QZ-} (1.65)

The a priori knowledge can be essentially defined on the nominal modetn,Th
we obtain:

0, = [én } (1.66)

and

991,

Var{8,,} = o (1.67)

Notice thatVar{@ ,) takes into account only the diagonal terms resulting from
Var{@ }. In addition, the termse , resulting from a safe functioning, must be over-
estimated in order to tolerate foreseeable parametetticansa(for example according
to the temperature or to the magnetic state).

On the other hand, as one does not know if the fault will ocitsig priori value
0, is null while its initial variance is infinite (or very large)rhus, the optimization
algorithm responsible for the minimization of the criterio

) T 1 /a 1 E N2
Jo = (=) Var{e (& -0.)+ 5 3 (vi—ie (2)) 69
k=1

will affect the expertise of the user in the nominal model,tblgrating foreseeable
variations (included i mve 1), and will be on the other hand very sensitive to the vari-
ationsg, of the differential model, characteristic of the fadt
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1.5.3. Simulations

In order to specify the methodology which has been just pitesk let us consider
an academic electrical example.

A reel of N turns winded up on a magnetic circuit of sectiSrand of average
length! (see figure 1.8) is considered.

Figure 1.8. Magnetic circuit

The iron of the magnetic circuit is supposed to be charamdrby the relation
B = uH (wherep = cst). Neither the iron saturation nor the magnetic hysterasis i
taken into account.

In addition, itis assumed that the iron losses are negég# first approximation).
Then, according to the Ampere’s theorefh:= % the total fluxg is given by:

2
%Si (1.69)

¢=NBS=p

The reel inductancé can be defined according o= Li:

N2S
l

L=y (1.70)

Moreover, the reel resistandeis proportional to the length of the electric wire,
i.e. to the number of turns. One can thus write tRat k; N andL = ko N2.

Let us define a problem (academic) where the fault is constitby a variation
O N of the number of turns of the reel (compared to nominal nunderin practice,
it can be due to a winding with commutation of the number afsur

Then, if N varies byAN:
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— R varies byAR with AR = k1 AN,
— L varies byAL with AL = (4&) AN, i.e. AL = 2k, NAN,

thus, the variations aR and L are linked.

In the nominal state of the reel:
L ko N

wherer is the time constant of the reel while:

AL 2kyN

AR- 27 (1.72)

Then, a nominal model (nominal impedance) of the reel carefiaalby:

Zn(s)=R,+ Lys (1.73)
and a fault model by:

AZ(s)=AR+ AL(s) = AR(1+ 27s) (1.74)
which lead to the extended model of the reel:

Z(8)=2Zn(s)+AZ(s)=Rn+ Lpns+ AR (1+27s) (1.75)

In addition, R and L can vary without the appearance of a fault, for example with
changes in the temperature or in the magnetic state of iramce% was assumed
constant, we cannot consider variation/ofvithout modification of this assumption.
On the other hand, we can consider a variation of the resisté@one) under the
effect of heating, therefore of an increase in temperafuréhen

R(T)=R,+AR(T) (1.76)

and
L(T)=1L, 2.77)
REMARK. An important problem concerns the identifiability of thergraeters

of the fault model. For this, let us consider the sensitifitgctions. Knowing that
I(s) = ) it can easily be shown that:

Z(s)
or, (5) = L{og, (t)} = A2
n n Z(s)
oL, (s) = L{ow, (1)} = =5 (1.78)

oar(s) =L{oar(t)} = %
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whereL{.} is the Laplace’s transform.
Then:

oar (t) =og, (t)+ 27 o, (¢) (1.79)

Sinceoar (t) is a linear combination ofz, (¢) andoy, (¢), the fault parameter
K
AR is unidentifiable as the pseudo-hessififyy ~ 2 > gkﬁ_g{& of the direct
k=1

method is non invertible.

On the other hand, when the composite critetignis used, which incorporates
priori information{6,, My}, we obtain the corresponding hessian [1.43]:

1
J 90

1" ~ _1
Tep ~2M5 "+
b

which is now invertible thanks td/, and the fault parametek R becomes identifi-
able.

This example shows clearly the interest to associate a numtbtated to a type
of fault with the knowledge obtained on the safe functionimghe framework of a
strategy of fault detection.

1.5.4. Numerical simulations

1.5.4.1. Study of the safe functioning

Let us consider a reel characterizedBy= 4 Q2 andL = 0.1 H. The functioning
of this reel was simulated numerically wiify = 1 ms and a PRBS input voltage. The
current output was disturbed by a white noise in such a walyttieasignal to noise
ratio.S/B = 10. An input/output data file is then constituted (see figurg.1.9

Using the Output-Error identification algorithm (withcapriori knowledge), the
values ofR and L have been estimated. These values will be the basis of oertése
on the safe functioning.

Thus, for the modek,, (s) = R,, + L, s, we have:
=4.012Q op, =3.851072Q

R,
Ln=00989H o7, =1.811073H
Fo=0.024Ts 62 =1641073



44  Short Title
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Figure 1.9. Input/output data

The prior information is then defined by:

Ry =4.012Q, Ly=0.0989H, 7=0.0247s
or, =10 > op, (which authorizes the variations &f with the temperature)

ULO = O-Ln
2 __ A2
0y = 0y

1.5.4.2. Study of the functioning with a fault

Let us consider a variation & N of the total number of turns, which corresponds
to the fault model:

Z(s)=Rp+L,s+AR(14275) (1.80)
with 0 = [ R, L, AR].

Let us consider in addition variations &, due to the temperature, that is to say
OR(T).
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Test 1 2 3 4 5
R () 4 5 5 5 5
AR((Q) 1 0 0.2 1 —0.2

R (€2) | 3.966 | 4.965 | 4.962 | 5.066 | 4.979
L (H) 10.0990/0.0988/0.0989|0.0989| 0.0989
AR ()| 1.066 | 0.047 | 0.172 | 0.886 |—0.148

Table 1.1.Results of parameter estimation

For each considered situation, the same input as beforeds bst the realization
of the white noise was different (however with the same digmaoise ratio). All the
results are presented in table 1.1.

Test1 corresponds to an increase &f (corresponding tAAR = 1£2) without
temperature variation: the increaserbin the fault model is perfectly detected (taking
into account of the noise level).

Reciprocally, tesR corresponds to a temperature variation (increasg of the
common mode), without variation 6fr of the differential mode: only the resistance
of the common mode varied.

Tests3, 4 and5 correspond to simultaneous variations of the temperatutieoé
the number of turns (increase or decreasé&m):. the results show the corresponding
changes of resistances of the common and differential modewse connection with
their cause (always taking into account of the noise leved)iadependently of their
amplitude.

In conclusion, the association of a fault model (with comnzom differential
modes) and an algorithm of parameter estimation wighiori knowledge constitutes
a tool for the fault detection, making it possible moreoveeffectively distinguish
them from the parameter variations of common mode.

1.6. Conclusion

This chapter was devoted to Output-Error identification padicularly to the
estimation of physical parameters within the frameworke€eical engineering. Two
approaches held our attention:

— the traditional approach is the extension of the leastreguaethod to the non-
linear systems; despite its computational load, its essldnterest lies in its natural
immunity against random disturbances thus guaranteeinghiased estimator;
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— the Bayesian approach makes it possible to inciudeori knowledge available
on the system, mainly when the user has to deal with physiohlgms; however, this
initial knowledge must be completed by the variance infdiomaso as to avoid the
risk of biasing the estimator.

The Error-Equation approaches, afflicted with a bias intet@ the construction
of the regressor, should not be systematically rejectedy Emable, despite this bias,
initialization of the research of the optimization algbrit (thus avoiding possible
secondary optima) and, if required, they can take part indthelopment of the
priori information within the framework of the Bayesian approach.

The two Output-Error techniques of parameter estimatiore Hzeen tested and
compared in the case of the induced machine. In addition,ave proposed a new
methodology of faults detection, based on the Bayesiaroagpr(thea priori knowl-
edge corresponds to the expertise of the user on the safedining of its system)
and on the use of a fault model, true signature of this fauttis Thethodology, vali-
dated by a numerical simulation, will be taken again and gdized with the case of
the asynchronous machine in the next chapter which is davotthe detection of its
stator and rotor faults.
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