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Chapter 1

Parameter estimation for knowledge and
diagnosis of electrical machines

1.1. Introduction

In automatic control, modeling and identification are fundamental and essential
disciplines, which precede all operations of simulation, observation, synthesis of a
control law or system monitoring. This stage of modeling andidentification depends
highly on the system and on the considered application. Thus, concerning synthesis
of a control law, a discrete model associated with an algorithm derived from the least
squares technique can be suitable. In an objective of simulation or state-observation,
the same methodology can still be satisfactory. On the otherhand, if the user wants
to simulate the dynamic behavior of the system and to simulate the influence of some
characteristic parameters at the same time, the approach using discrete model is insuf-
ficient and it will be necessary to use a continuous-time representation with differential
equations nearer to the physical nature of the system. Finally, in an objective of mon-
itoring, it is sure that a continuous-time model is preferable, especially when the user
wishes to carry out a diagnosis of the system state starting from parameter estimation
representative of its safe or fault functioning.

In case of discrete models where the parameters and the structure can have lost
links with physics, one commonly speaks about black-box models. On the other hand,
when the model is of continuous type governed by differential equations and when the
parameters and the structure can approach physical equations, one speaks in this case
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about knowledge models or more reasonably about grey-box models. Indeed, it is un-
realistic to describe the physical behaviours exhaustively and in fact only approximate
models (or reduced order models) are used, hence the term of grey-box model which
better represents the modesty of the ambitions of the researcher.

In electrical engineering, even for a control application,the user prefers to use
a model close to the reality, whose parameters (resistances, inductances...) have a
tangible signification. One finds the same attitude in process engineering or in chem-
ical engineering (for the constant kinetics of chemical reaction for example) like in
robotics (for parameters such as masses and stiffness).

In this chapter, we are interested by the parameter estimation of electrical machines
starting from continuous-time models, close to physics. The considered applications
concern the estimation of electrical parameters, and particularly the monitoring of
electrical machines based on parameter estimation. However, the same identification
algorithms could be used for the state observation or the synthesis of control laws.

In this context, special attention will be given to system identification using continuous-
time models. Depending on the nature of the residuals, two types of algorithms are
commonly used: Equation-Error and Output-Error. In practice, Equation-Error algo-
rithms are suitable only for models of the differential equation type having constant
coefficients. For such models, many techniques [MEN 99] wereimagined in order to
express linearly the system output with respect to its parameters (L.P. model). Then,
this property of linearity enables the use of least-squaresmethods whose essential
interest is to provide an analytical expression of the estimated parameters [LJU 87].
Unfortunately, it is shown that for any L.P. model whose regressor depends directly
(or indirectly by filtering) on the output values, the residuals are of the Equation-Error
type and consequently the estimator is biased. A solution toeliminate this bias consists
in using an instrumental variable technique [YOU 70, SöD 83]. This procedure com-
plicates the identification algorithm and convergence can,in some cases, present some
problems. Finally, because in general electrical machinesare not governed by differ-
ential equations with constant coefficients but rather by nonlinear differential systems,
it can be deduced that this identification methodology is notreally adapted for the con-
sidered problem. However, these methods should not be rejected. Indeed, although
their estimates are open to criticism, they can be used to initialize the Output-Error
methods. The reader interested by this subject will be able to refer to some synthetic
presentations [JEM 97, TRI 01] and in particular with a comparative study of these
identification methods [MEN 99] where selection criteria are presented.

Thus, this chapter is dedicated to the presentation of the second category of al-
gorithms which are of Output-Error type; in France they are also called "méthode du
modèle" (model method), according to a term imposed by theirpromoter J. Richalet
[RIC 71]. These algorithms present a wide range of applications; since they do not
stay on restrictive linearity assumptions, they can be usedfor nonlinear differential
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systems. They are not only used in electrical engineering but also in process and
chemical engineering. Unfortunately, it is important to specify that they require a
computational load much higher than the algorithms derivedfrom least-squares. This
explains certainly the interest carried by many researchers with all the alternatives of
least-squares evoked previously. It also explains why, although the theory of these al-
gorithms was proposed in the Sixties, it could truly start toimpose itself only recently
thanks to the rise in computing power of digital calculators.

The computational load of Output-Error algorithms is mainly due to the iterative
nature of the minimization of a quadratic criterion by a Nonlinear Programming al-
gorithm (N.L.P.) [HIM 72]. Indeed, at each iteration, it is necessary to simulate the
model of the system together with its sensitivity model, according to the considered
variant. Moreover, the convergence to a global optimum is not guaranteed, because of
the non convexity of the quadratic criterion. Beyond these difficulties, which can be
fortunately overcome, the principal interest of Output-Error algorithms is to provide
an unbiased estimator, and (as opposed to Equation-Error techniques) with a certain
immunity with respect to the modeling errors. However, it isnecessary to examine
the influence of this modeling error with respect to a deterministic parametric bias.
In the same way, these Output-Error algorithms must be modified, if necessary, when
the system is in closed-loop, inherent for example with the functioning of modern
electrical machines.

An important problem is the problem ofa priori knowledge on the parameters.
This knowledge is necessary for the initialization of the N.L.P. algorithm, but in some
cases, we can arrive at the paradox that the obtained estimator proves to be nonsensical
when compared to the initial physical knowledge. Thus, we propose a methodology
that allows the introduction ofa priori knowledge in the estimator, according to the
general principle of the Bayesian estimation [PET 81].

Although this last methodology must be used with understanding as it will be spec-
ified, it can be useful to improve convergence of the algorithm each time that an initial
and reliable knowledge is available, particularly within the framework of machines
monitoring, using an extended model composed of the safe functioning model of the
system (thus with a gooda priori knowledge) and of a model dedicated to a type of
fault.

This chapter is composed of four sections. The first section gives the general
methodology of Output-Error identification. The second section presents an approach
that allows introduction ofa priori knowledge in practice within the framework of
the Bayesian estimation. An application to the parameter estimation of an induced
machine in the Park’s reference is given in the third section. Finally, a monitoring
methodology of an electrical system with fault model anda priori knowledge of the
safe functioning are the subject of the last section. This monitoring methodology
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based on parameter estimation is used and developed in chapter 8 dedicated to the
monitoring of electrical machine.

1.2. Identification using Output-Error algorithms

1.2.1. Introduction

These algorithms are known in France as "méthode du modèle" [RIC 71, RIC 91].
They are fundamentally characterized by the simulation of the model output based on
the only knowledge of the input (Error-Equation algorithmsare based on a prediction
of the output using the knowledge of the input and past valuesof the output). Using
this procedure, the simulated output is independent of the perturbation affecting the
system (if the system is in open-loop); then, residuals correspond to this perturbation,
hence the term of Output-Error and some interesting properties of convergence. On the
other hand, this simulation complicates the problem of minimization of the criterion
which requires the use of non-linear optimization techniques. Many approaches can
be used with Output-Error algorithms. After some brief recall on the properties of
Least-Squares algorithm used in Output-Error, we present the case where the gradient
is computed by using the sensitivity functions.

1.2.2. Least-Squares algorithm in Output-Error

In some particular cases, the system outputy(t) is linear with respect to its pa-
rameters. Let this output model bey = f (θ, u), whereu(t) is the input andθ the
parameter vector. The model is linear with respect to its parameters (L.P.) [WAL 97]
if y(t) can be written as follows:

y = ϕT (u) θ (1.1)

Whereϕ (u) is the regressor vector.

Let θ̂ be an estimation ofθ. Then, usingu(t) (or uk known at each sampling time
tk), the estimated output̂yk is obtained:

ŷk = ϕT

k
(u) θ̂ (1.2)

Consider that we haveK experimental data pairs{uk, y∗

k}, obtained with sampling
periodTe, such thatt = kTe. A quadratic criterion can thus be defined by:

J =

K∑

k=1

ε2
k =

K∑

k=1

(
y∗

k − ϕT

k
(u) θ̂

)2

(1.3)
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where

y∗

k = yk + bk (1.4)

and

εk = y∗

k − ŷk

(
θ̂, u
)

(1.5)

with

– y∗

k : output measurement,

– yk : true value of the output,

– bk : stochastic perturbation,

– εk : residual.

Since the model is linear with respect to its parameters, thevalueθMC of θ̂ which
minimizeJ , is obtained analytically [LJU 87]:

θMC =

(
K∑

k=1

ϕ
k
ϕT

k

)−1
K∑

k=1

ϕ
k
y∗

k (1.6)

Using (1.4), we obtain:

θMC = θ + ∆θMC (1.7)

where∆θMC is the estimation error such that

∆θMC =

(
K∑

k=1

ϕ
k
ϕT

k

)−1
K∑

k=1

ϕ
k
bk (1.8)

Consider that the system is in open-loop,i.e. the sequence{uk} is independent of
the noise sequence{bk}. Moreover, let us suppose that the perturbation is zero-mean.
Then:

E
{

ϕ
k
bk

}
= 0 (1.9)

and

E {∆θMC} = lim
K→∞

∆θMC = 0 (1.10)

i.e. the estimateθMC is asymptotically unbiased [LJU 87, WAL 97].
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Let us suppose that the perturbation{bk} is independent and stationary, then

V ar {bk} = σ2

The variance of the estimateV ar {θMC} is given by [LJU 87]:

V ar {θMC} = σ2

(
K∑

k=1

ϕ
k
ϕT

k

)−1

(1.11)

Since the termσ2 is unknown, it is necessary to estimate it:

σ̂2 =
J (θMC)

K − N
(1.12)

where

– J (θMC) is the value of the criterion witĥθ = θMC ,

– K is the number of measurements,

– N is the number of parameters.

REMARK. The expression (1.11) is attractive by its simplicity; unfortunately, this
expression is rarely used because it is unrealistic. In fact, it is rare that the random
perturbation verifies the preceding hypotheses. Generally, the perturbation can be cor-
related and non stationary. Moreover, a deterministic partcorresponding to modeling
error adds to the perturbation. This part is directly correlated to the input{uk}. Then

E
{

ϕ
k
mk

}
6= 0 and the estimator is asymptotically biased. Hence, (1.11) cannot

be used to define realistic uncertainty domains of estimatedparameters. Neverthe-
less, this relation gives valued information on the sensitivity of the quadratic criterion
in comparison with the variation of the parameters (in the neighborhood of the opti-
mum), which is a relative uncertainty (and not an absolute one).

1.2.3. Principle of the Output-Error method in the general case

Consider a system given by the generalN th order state-space model depending on
parameter vectorθ:

{
ẋ = g (x, θ, u)
y = f (x, θ, u)

(1.13)

wherey(t) andu(t) are considered as single output and input to simplify the presen-
tation. One can notice that no hypothesis on the linearity isnecessary:g andf are
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based on the physical laws, which are generally non-linear.The only hypothesis is
that the system is identifiable. [WAL 97].

Let θ̂ be an estimation ofθ. Then, using the inputu(t) and a numerical integration
technique, a simulation of the system output is obtained:






̂̇x = g
(
x̂, θ̂, u

)

ŷ = f
(
x̂, θ̂, u

) (1.14)

The optimumθopt is the value which minimizes the quadratic criterion:

J =

K∑

k=1

ε2
k =

K∑

k=1

(
y∗

k − f̂k

(
u, θ̂
))2

(1.15)

wherey∗

k is the measure of the noised output,bk being the noise signal.

Sinceŷ(t) is not linear in parameterŝθ, a non-linear optimization technique is used
[RIC 71]. Many techniques can be used; our choice is based on techniques based on
the gradient and more precisely on the Levenberg-Marquardt[MAR 63] algorithm:

θj+1 = θj −
{

[J ′′

θθ + λI]
−1

J ′

θ

}

θ̂=θj

(1.16)

where

– J ′

θ = −2
K∑

k=1

εk σk,θi
: gradient,

– J ′′

θθ ≈ 2
K∑

k=1

σk,θi
σT

k,θi
: Gauss-Newton’s approximation of the Hessian,

– λ: control parameter,

– θk,θi
= ∂ŷk

∂θi
: output sensitivity function.

This algorithm, using the control parameterλ, tends to the gradient algorithm
when the estimation is far from the optimum (thenλ >> 1). Near the optimum,
it tends to a Newton’s technique (whenλ −→ 0) which allows acceleration of the
convergence near the optimum. This procedure ensures robust convergence, even with
a bad initialization.

Fundamentally, this technique is based on the calculation of gradient and Hes-
sian, themselves dependent on the numerical integration ofthe sensitivity functions
[TRI 88, KNU 94, WAL 97]. These sensitivity functionsσ are equivalent to the re-
gressorϕ in the L.P. case. Thus, let us consider the simulation ofy(t) obtained with
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the estimated parametersθ̂:

ŷk = fk

(
x̂, θ̂, u

)
(1.17)

and letdθ̂ be a variation of̂θ. Then

ŷk

(
θ̂ + dθ̂

)
= ŷk

(
θ̂
)

+ σT

k,θ̂
dθ̂ + · · · (1.18)

or, with a development limited to the first order:

dŷk ≈ σT

k,θ̂
dθ̂ (1.19)

In the L.P. case, the prediction̂yk is given by:

ŷk = ϕT

k,θ̂
θ̂ (1.20)

or

dŷk = ϕT

k,θ̂
dθ̂ (1.21)

Moreover, ifθopt is the parameter vector which minimizesJ , and if we consider a

variationdθ̂ aroundθopt, it is easy to show that:

J
(
θopt + dθ̂

)
≈ J

(
θopt

)
+ dθ̂

T

(
K∑

k=1

σkσT
k

)
dθ̂ (1.22)

In the L.P. case, ifθMC is the parameter vector which minimizesJ , one obtains:

J
(
θMC + dθ̂

)
= J (θMC) + dθ̂

T

(
K∑

k=1

ϕ
k
ϕT

k

)
dθ̂ (1.23)

These two examples show the analogy between regressors and sensitivity functions
and the interest of the sensitivity functions to analyze theOutput-Error estimators,
particularly their accuracy.

1.2.4. Sensitivity functions

In practice, it is necessary to differentiate two kinds of sensitivity functions
[KNU 94, MOR 99]:
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– σy,θi
= ∂ŷ(t)

∂θi
: output sensitivity function, used for the calculation of the gradient

and the hessian,

– σxn,θi
= ∂xn(t)

∂θi
: state sensitivity function.

Let us recall that

{
dim (x) = N
dim (θ) = I

Then,σy,θ is a vector of dimensionI andσxn,θ is a matrix of dimension[N × I]
such that

σx,θ =
[

σx,θ1
· · · σx,θi

· · · σx,θI

]
(1.24)

For each parameterθi, σxn,θi
is obtained by partial derivation of the equation

(1.13). Thus:

∂ẋ

∂θi

= σ̇x,θi
=

∂g (x, θ, u)

∂x

∂x

∂θi

+
∂g (x, θ, u)

∂θi

(1.25)

Then,σxn,θi
is the solution of a non-linear differential system:

σ̇x,θi
=

∂g (x, θ, u)

∂x
σx,θi

+
∂g (x, θ, u)

∂θi

(1.26)

Finally, ∂y/∂θi is obtained by partial derivation of equation (1.13):

∂y

∂θi

=

(
∂f (x, θ, u)

∂x

)T

σx,θi
+

∂f (x, θ, u)

∂θi

(1.27)

1.2.5. Convergence of the estimator

Because the simulation̂y = f(x̂, θ̂, u) is non-linear inθ̂, the quadratic criterion
J(θ̂) is not parabolic as in the L.P. case and the uniqueness of the optimum θopt is
not guaranteed [WAL 97]. Secondary optima can exist and the optimization algorithm
can converge to one of these optima. A solution to converge tothe global optimum
consists to use a global approach, like genetic algorithms [FON 95]. A "map" of the
criterion and of its optima is obtained. The global optimumθopt is then obtained using
the Marquardt’s algorithm.
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In the presence of noise affecting the output, the estimatorconverges to:

θopt = θ + ∆θ (1.28)

whereθ is the true parameter vector and∆θ the estimation error. Using the sensitivity
functions,∆θ can be approached by:

∆θ ≈






(
K∑

k=1

σkσT
k

)−1(
K∑

k=1

σkbk

)


θopt

(1.29)

which is equivalent to:

∆θ =






(
K∑

k=1

ϕ
k
ϕT

k

)−1(
K∑

k=1

ϕ
k
bk

)


θopt

(1.30)

obtained in the L.P. case.

Then, ifE{bk} = 0 and if the system is in open-loop,uk is independent ofbk and
E{∆θ} = 0 (sinceσk depends only onuk). The Output-Error estimator is asymptot-
ically unbiased, whatever the nature of the zero mean outputnoise [WAL 97].

REMARK. When the system is in closed-loop (which is the case with AC machines
with vector control), the perturbation{bk} is necessarily correlated with the control
input through the corrector (or the control algorithm). Then, σk which depends of the
input{uk} is correlated with the noise{bk}, i.e. the estimationθopt is asymptotically
biased. Fortunately, this bias is really very significant only when the signal to noise
ratio is weak. Thus, as a first approximation, it can be neglected. Moreover, Output-
Error algorithms functioning in closed-loop have been proposed; they are able to reject
this bias using a more complicated identification procedure[GRO 00, LAN 97].

1.2.6. Variance of the estimator

Using the analogy between regressor and sensitivity functions, it is possible to
define an approximated expression of the variance ofθopt. Thus, by replacingϕ

k
by

σk in expression (1.11), one obtains:

V ar
{
θopt

}
≈ σ̂2

(
K∑

k=1

σkσT
k

)−1

(1.31)

Note that this expression is approximated for the followingreasons:
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– since the output model is non linear in parameters,σk is a local approximation of
ϕ

k
, i.e. this expression is an approximation of the quadratic criterion by a paraboloid;

– like in the L.P. case, the perturbation is not characterized by the only term̂σ2,
i.e. this expression gives only an information on the relative accuracy.

1.2.7. Implementation

Output-Error algorithms are more complex than Equation-Error algorithms be-
cause of the non-linear optimization. However, this is not the only difficulty to im-
plement these algorithms. It is also necessary to study the numerical simulation, the
problem of initial conditions and the normalization of the sensitivity functions.

1.2.7.1. Simulation of the differential system

In the Least-Squares case, the implementation of the predictor is trivial in the
discrete-time case; in the continuous-time case, it is moredifficult [TRI 01].

In the Output-Error case, we are confronted with a real problem of numerical simu-
lation of differential systems, for the simulation of the model output and the sensitivity
functions. Simulation error or approximate calculations will give a systematic error or
deterministic bias.

When the system is linear, the differential equations can be integrated using the
exponential matrix technique [ISE 92] which allows conciliation of accuracy and ra-
pidity of the computations.

When the system is non-linear, which is almost always the casewith physical sys-
tems, it is necessary to give importance to accuracy and numerical stability. Accuracy
is guaranteed by an algorithm like Runge-Kutta of order 4. Onthe other hand, the
discretization of the differential equations can make their integration unstable. Then,
implicit techniques can be used, for instance the Adams’ algorithms [NOU 89].

Nevertheless, some errors can subsist, even if all the preceding precautions are
taken. In fact, it is very important to well consider the typeof the input in the nu-
merical integration algorithm: the simplest case is when the input is derived from a
numerical command. The applied input is then continuous andit is necessary to spec-
ify how the input varies between two sample instants: a linear change is sufficient in
the major cases, otherwise, a parabolic (or of a higher order) extrapolation should be
used [ISE 92].

1.2.7.2. Initial conditions in OE algorithms

Initial conditions of the state are supplementary unknown parameters which need
identification [WAL 97]. When the number of data is relativelysmall, particularly
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in regard of the transient of the system output, that is the necessary solution. Then,
an extended parameter vector is considered which contains the system parameters
and the initial conditions. The identification algorithm remains unchanged, but the
computation time and the convergence difficulties increase. When the acquisition
time is higher than the transienttr [RIC 91], thekr first data (kr = tr/Te) are not
used in the criterion in order to avoid the estimation of initial conditions. Then, the
criterion becomes:

J =

K∑

k=kr

ε2
k (1.32)

and the differential system is simulated fromt = 0.

Let us recall that in the two situations, if the initial conditions are not taken into
account, an important bias appears.

1.2.7.3. The normalization

In an academic situation, the user chooses numerical valueswhich are close. In
a real situation, numerical values can be very different: then, some difficulties for
the convergence of the identification algorithm appear. A solution consists to normal-
ize the parameters, which in practice consists in the normalization of the sensitivity
functions [MOR 99, RIC 71].

Consider the parameterθn, with an initial estimationθn0
, such thatθn = θn0

+
∆θn. The estimation ofθn is equivalent to that of∆θn.

Let us defineθn = (1 + µn)θn0
where∆θn = µnθn0

. The sensitivity function
linked toθn is then :

∂ŷ

∂θn

=
1

θn0

∂ŷ

∂µn

(1.33)

where the sensitivity functions∂ŷ/∂µn are now normalized and closed.

In practice,µ and thusθ are estimated using the non linear programming algorithm
and we obtain:

θn = (1 + µn) θn0
(1.34)

1.3. Parameter estimation witha priori information

1.3.1. Introduction

Despite all the numerical precautions stated in the preceding paragraph, Output-
Error algorithms can, in certain situations, provide incoherent estimates such as nega-
tive resistances or inductances (refer to [ALM 95, JEM 97] inthe electrical engineer-
ing case). It is necessary to seek the cause of these anomalies in the optimization
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mechanism: indeed, the latter determines the set of parameters which allows best fit
of the data by the selected model, without any physical constraint. Moreover, when
that occurs, only some parameters are affected by this anomaly.

It is fundamentally a problem of parameter sensitization: although theoretically
identifiable, the concerned parameters are almost unidentifiable and balancing phe-
nomena can be observed. The traditional reflex in front of such problem is to propose
to improve the excitation [LJU 87, KAB 97]: however, in many situations, this optimal
excitation can turn out to be unrealistic in practice (even dangerous for the process) or
can transgress the validity conditions of the model!

In addition, these problems of excitation must be connectedto the selected model
and its modeling error. Within the framework of control using black-box models, the
engineer increases the complexity of these models until theresiduals become indepen-
dent and uncorrelated to the input [LJU 87]. On the other hand, the "physicist" uses
models of voluntarily reduced complexity, adapted to the description of a specific phe-
nomenon: that does not prevent him to estimate the corresponding parameters without
systematic error, but with specific and dedicated approaches. Then, the question is
to know if these same models, used with the identification techniques developed in
automatic control, can provide estimates which are coherent with physical laws.

A solution suggested in this chapter consists in introducing explicitly the physical
knowledge in order to replace the lack of excitation or to improve it.

In addition, even with a good excitation, it is interesting to improve the conver-
gence of the estimator (and its accuracy) by introducing ana priori knowledge (given
that this knowledge is not erroneous!).

1.3.2. Bayesian approach

A possible misunderstanding should be immediately clearedup: effectively, it is
recommended to initialize the optimization algorithm withparameters close to the
optimum in order to accelerate the convergence and to reducethe computation time.
For this, an initial knowledge is used but the optimization algorithm quickly forgets
this initialization! In the best situation, the convergence to a secondary optimum can
be avoided.

It is therefore necessary to introduce explicitly this prior knowledge: thus, a mod-
ified or compound criterion is defined. The major justification of this new criterion
can be found in the Bayesian approach [EYK 74, GOO 77, PET 81, TUL 93]. This
approach consists in considering the estimation problem ina probabilistic context.

Consider a set of experimental datauk, y∗

k (or U, Y ∗); we propose to estimateθ by
maximizing the probability density of̂θ conditionally to the dataY ∗, i.e. P θ̂/Y ∗ (or
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a posterioridensity). Otherwise, we havea priori information onθ̂ characterized by
P θ̂. Then, the Bayes’s relation is:

P θ̂
/

Y ∗ =
P θ̂PY ∗

/
θ̂

PY ∗
(1.35)

BecausePY ∗ does not explicitly depend on̂θ, the maximization ofP θ̂/Y ∗ is
equivalent to the maximization ofP θ̂PY ∗/θ̂: this is the technique known asa poste-
riori maximum.

In order to tackle this problem, some hypothesis are necessary: usually,P θ̂ and
PY ∗/θ̂ are considered as Gaussian densities. Then, we can write:

P θ̂
/

Y ∗ = A exp

[
− 1

2

(
θ̂ − θ0

)T

M−1
0

(
θ̂ − θ0

)

− 1
2

(
Y ∗ − Ŷ

(
θ̂, U

))T

R−1
b

(
Y ∗ − Ŷ

(
θ̂, U

))] (1.36)

where:

– A is a constant,

– θ0: initial knowledge ofθ,

– M0 : covariance matrix ofθ0,

– Rb : covariance matrix of the stochastic perturbation.

Finally, by considering the natural logarithm of this expression, it is easy to show
that the maximization ofP θ̂/Y ∗ is equivalent to the minimization of the compound
criterion:

JC =
(
θ̂ − θ0

)T

M−1
0

(
θ̂ − θ0

)

︸ ︷︷ ︸
J0

+
(
Y ∗ − Ŷ

(
θ̂, U

))T

R−1
b

(
Y ∗ − Ŷ

(
θ̂, U

))

︸ ︷︷ ︸
J∗

JC = J0 + J∗

(1.37)

In practice, the covariance matrix of the perturbation is unknown andRb is re-
placed byσ2

b I (whereσ2
b is the variance of the noise andI the identity matrix). Then,

exceptσ2
b (representing the variance of output noise),J∗ represents the usual quadratic

criterion, containing experimental information. On the other hand,J0 is a second
quadratic criterion which introduces an "elastic" constraint in the minimization of the
global criterionJC : in fact, it preventŝθ to move away fromθ0, with a "return force"
dependent on̂θ − θ0.
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1.3.3. Minimization of the compound criterion

Let

JC =
(
θ̂ − θ0

)T

M−1
0

(
θ̂ − θ0

)
+

1

σ2
b

K∑

k=1

(
y∗

k − ŷk

(
θ̂, u
))2

(1.38)

This new criterion is minimized using the Marquardt’s algorithm with:

J
′

Cθ
= 2

[
M−1

0

(
θ̂ − θ0

)
−

1

σ̂2
b

K∑

k=1

εkσk

]
(1.39)

and

J
′′

Cθθ
≈ 2

[
M−1

0 +
1

σ̂2
b

K∑

k=1

σkσT
k

]
(1.40)

Let θC be the value of̂θ minimizing JC and obtained using the optimization al-
gorithm. In order to demonstrate the interest ofa priori information, we propose to
show the links betweenθC , θopt andθ0.

Thus, let us consider thatθopt andθ0 are near toθC , i.e. the sensitivity functions

θ̂ are approximately equal. Then, one can write:

JC

(
θ̂
)
≈ JC min +

(
θ̂ − θC

)T (
J

′′

θθ

)
−1 (

θ̂ − θC

)
(1.41)

where

J
′

θ = 2

(
M−1

0

(
θ̂ − θ0

)
−

ST ε

σ2
b

)
(1.42)

and

J
′′

θθ ≈ 2

(
M−1

0 +
ST S

σ2
b

)
(1.43)

with

S =




σT

1
...

σT
K




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When the Newton’s algorithm is used to minimizeJC from the initial valueθ0, this
optimumθC is obtained in one iteration becauseJC is a quadratic form of̂θ. Then:

θC = θ0 −

{[
J

′′

θθ

]
−1

J
′

θ

}

θ
0

(1.44)

with

{
J

′

θ

}

θ
0

=
−2ST

σ2
b

(
Y ∗ − Ŷ (θ0)

)
(1.45)

which gives:

θC = θ0 +

[
M−1

0 +
ST S

σ2
b

]−1
ST

σ2
b

(
Y ∗ − Ŷ (θ0)

)
(1.46)

Let P−1
opt = ST S

σ2

b

wherePopt is the covariance matrix linked to the conventional

criterion minimized byθopt. Then, let us define:

P−1 = M−1
0 + P−1

opt (1.47)

i.e.

θC = θ0 +
PST

σ2
b

(
Y ∗ − Ŷ (θ0)

)
(1.48)

which can be written as:

θC = θ0 + K
(
Y ∗ − Ŷ (θ0)

)
(1.49)

whereK is the gain of a Kalman filter applied to the particular system[RAD 84]:

{
θi+1 = θi = θ

Y ∗

i = Y i (θ, u) + bi

(1.50)

This interpretation confirms the preceding probabilistic and stochastic approach:
from θ0, the optimal value to obtainθC is determined, taking into account the gain
K and the information given by the data setY ∗ (corresponding toθopt). Moreover,
taking into account [1.47], the estimateθC is necessarily more precise thanθ0 or θopt.
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1.3.4. Deterministic interpretation

The Bayesian approach is comforted by the interpretation ofthe Kalman filter
which can be interpreted like a regularization technique [TIK 77, JOH 97, SAY 98].
Unfortunately, this interpretation failed in the case of physical parameter estimation
using a model of reduced complexity.

It is to be noted that the output perturbation{bk} is not really a random pertur-
bation but a deterministic one: the major part of the output perturbation is due to the
modeling error. The perturbation is determinist because itis generated by the inputu.

Thus, a new interpretation is proposed, essentially based on the geometry of the
quadratic criterion (see [MOR 99] for more information).

Let σ̂2
b be the pseudo-variance of the output perturbation which is obtained using:

σ̂2
b =

J(θopt)

K
(1.51)

whereJ is the conventional criterion andK the number of samples.

We can notice thatJ
(
θopt

)
=

K∑
k=1

(
y∗

k − fk

(
uk, θopt

))2
takes into account the

noisebk and the modeling error,i.e. σ̂2
b is a pseudo-variance.

Usingσ̂2
b , a pseudo-covariance matrix can be defined by:

Popt = σ̂2
b

(
ST S

)−1
(1.52)

In the neighborhood ofθopt, it is possible to write:

J
(
θ̂
)

σ̂2
b

≈
(
θ̂ − θopt

)T ST S

σ̂2
b

(
θ̂ − θopt

)
+

Jopt

σ̂2
b

(1.53)

Finally:

JC ≈
(
θ̂ − θ0

)T

M−1
0

(
θ̂ − θ0

)
+
(
θ̂ − θopt

)T

P−1
opt

(
θ̂ − θopt

)
+ K (1.54)

This expression shows thatJC is the result of two paraboloid, centered onθ0 and
θopt, characterized by the spreadsM0 andPopt. JC is a unique paraboloid, centered
onθC , such that:

θC ≈ θ0 +
[
M−1

0 + P−1
opt

]−1 (
M−1

0 θ0 + P−1
optθopt

)
(1.55)
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(θC is the barycentre ofθ0 andθopt) characterized by the spreadMC , such that:

M−1
C = M−1

0 + P−1
opt (1.56)

Let

JC ≈
(
θ̂ − θC

)T

M−1
C

(
θ̂ − θC

)
+ JC (θC) (1.57)

Let us consider a monovariable example in order to illustrate this result (figure
1.1):

ˆ

0J   , J*

ˆ

CJ

0

C

opt

Figure 1.1. Determinist interpretation of the compound criterion - monovariable case

Whenθ0 is close toθopt, the criterionJC is more convex than the conventional
criterion. Secondary optima tend to disappear. Consequently, the introduction of
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{θ0,M0} accelerates the convergence of the optimization algorithm. The estimation
θC is generally more precise thanθ0 or θopt because the paraboloidJC is less "open"
than the preceding criteria.

Moreover, if the estimationθopt is ill-sensitized,i.e. the optimum is straight, then
the global optimumθC will be attracted byθ0 which is equivalent to an "elastic" return
force (especially if the paraboloidJ0 is "closed").

REMARK. The conventional probabilistic interpretation has certainly been an ob-
stacle to the use of the Bayesian approach. On the contrary, the determinist interpre-
tation shows the advantages of this technique on the convergence of the optimization
algorithm and on the uniqueness of the optimum.

Moreover, it is important to notice that the covariance matrices ofθ0 and of the
noise can be significantly simplified, with no influence on their properties. Thus,
matrix M0 can be favorably reduced to a diagonal form, with an overevaluation of
each variance if necessary as it will be shown in the applications paragraph. Moreover,
the covariance matrix of the noise can be reduced to a single coefficient constituted by
the variance of the perturbation, which is particularly justified when a modeling error
occurs.

1.3.5. Implementation

The implementation of this methodology implies handling oftwo types of infor-
mation:

– thea priori information{θ0,M0} obtained from a preceding global estimation
or from specific and partial estimations. In this more realistic case, the matrixM0 is
at best diagonal (some examples are proposed in the next paragraph);

– the variancêσ2
b of the perturbation: this is an essential parameter in the weighting

betweenJ0 andJ . The deterministic interpretation has shown thatσ̂2
b is linked to the

spread of the paraboloidJ/σ̂2
b : a lower value gives more weight to experimental data,

while a high value gives more importance to the initial informationθ0.

In practice, it is necessary to define a practical procedure for its determination
because it principally depends on the modeling error, unknown before optimization.
Concretely, a prior value is used, which is approximately the variance of the stochastic
perturbation; whenθC is estimated, a new valuêσ2

b is obtained usingJ(θC) (whereJ
is the conventional criterion). If̂σ2

b is very far from its initial value, a new estimation
of θC is performed. This last point is considered in the next paragraph.

The value ofσ̂2
b obtained usingJ (θC) can also be used as a guideline of the

coherence between initial information and prior knowledge. Thus, when̂σ2
b , θ0 and
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M0 are reliable information,̂σ2
b allows us to test if the experimental information is

compatible with the knowledge on the system: a value ofσ̂2
b significantly greater than

σ2
b can correspond to a non-stationarity of the system which involves a modification

of its model. Then, the modeling error increases andσ̂2
b too.

REMARK. M0 andσ̂2
b play an essential part in the weighting betweena priori in-

formation and experimental data. The variance of thea priori informationM0 should
result from a decisive choice: a low variance increases confidence inθ0. Thus, in prac-
tice, this value can be increased in order to allow the variation of θC , if this variation
is expectable (see the paragraph dedicated to fault diagnosis).

The estimated valuêσ2
b can need to be adjusted thanks to a new identification, as

it was previously described : in practice, the example treated in the next paragraph
shows that this convergence is very fast.

Finally, let us recall that the use of the Bayesian approach must be justified by a
truea priori information{θ0,M0}: it is necessary to be persuaded that an erroneous
initial information will irremediably bias the estimator.However, when this use is
justified, this technique improves significantly the convergence of the optimization
algorithm (and thus computing time) and guarantees the existence of only one opti-
mum. In addition, it allows reconsideration of some techniques based on parameter
estimation, like fault detection.

1.4. Parameter estimation of the induced machine

1.4.1. Introduction

We propose to illustrate the application of Output-Error techniques (with and with-
out a priori knowledge) to the induced machine in the dynamic case.

At first, it is necessary to specify the model of this machine,firstly in the three-
phase context and secondly using the Park’s transformation, which is well adapted
for parameter estimation of that kind of machine. Then, we present the model iden-
tification starting from experimental data with the two types of algorithms previously
defined.

1.4.2. Modeling in the three-phases referential

The general model of the induced machine is obtained by considering a uniform
air-gap and a sinusoidal distribution of the magnetic field.The machine is supposed
to work in an unsaturated magnetic state and the iron losses are neglected. In those
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conditions, the dynamic model of the machine with the leaks added up at the stator
can be described by:






us = [Rs] is + d
dt

φ
s

0 = [Rr] ir + d
dt

φ
r

φ
s

= [Ls] is + [Msr] ir

φ
r

= [Msr]
T is + [Lr] ir

(1.58)

with:

[Rs] = Rs · I et [Rr] = Rr · I

[Ls] =




Lp + Lfsa −

Lp

2 −
Lp

2

−
Lp

2 Lp + Lf −
Lp

2

−
Lp

2 −
Lp

2 Lp + Lf





[Lr] =




Lp −

Lp

2 −
Lp

2

−
Lp

2 Lp −
Lp

2

−
Lp

2 −
Lp

2 Lp





[Msr] =




Lp cos(θ) Lp cos(θ + 2π

3 ) Lp cos(θ − 2π
3 )

Lp cos(θ − 2π
3 ) Lp cos(θ) Lp cos(θ + 2π

3 )
Lp cos(θ + 2π

3 ) Lp cos(θ − 2π
3 ) Lp cos(θ)





where:

– us, is andir respectively represent the voltage vector, the stator currents vector
and the rotor currents vector;

– φ
s

andφ
r
: vectors of stator and rotor fluxes;

– Rs (resp.Rr) : resistance of a stator phase (resp. rotor);

– Lp andLf : principal inductance and leakage inductance added up at the stator;

– θ : electrical angle of the position of the rotor.

The equations of voltages obtained above are relatively simple, even if the num-
ber of state-variables is high. Nevertheless, the matrix ofmutual inductances[Msr]
depends on the electrical angleθ. Then, the writing of the state-space representa-
tion remains complex. These equations are simplified using the Park’s transformation
[CHA 87, CAR 95, GRE 97] which is described below.
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1.4.3. Park’s Transformation

The Park’s Transformation, largely used for the modeling ofAC machines, cor-
responds to a projection of the three-phase variables on a turning diphasic frame, the
goal being to eliminate the position in the matrices of mutual inductances. For that, it
is sufficient to carry out a transformation of the three-phase systemabc to the diphasic
systemαβ using the transformationT23 (Concordia’s transformation) followed by a
rotation of reference frameP (−θ) in order to link the reference frame to the rotation
Park’s axesdq (Fig. 1.2).

sa

sb sc

rc

rb

ra

d

q

θθ

Figure 1.2. Park’s transformation linked to the rotor

In a matrix way, the essential variables of the machine become [CAR 95]:

– in the stator :xdqs
= P (−θ)T23 xs

– in the rotor :xdqr
= T23 xr

with

T23 =

√
2

3

[
cos(0) cos( 2π

3 ) cos( 4π
3 )

sin(0) sin(2π
3 ) sin(4π

3 )

]

P (θ) =

[
cos(θ) cos(θ + π

2 )
sin(θ) sin(θ + π

2 )

]
: rotation matrix of angleθ
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Equations of the induced machine [1.58] in the Park’s frame linked to the rotor,
with leaks added up at the stator are:






Udqs
= Rs idqs

+ d
dt

φ
dqs

+ ω P (π
2 )φ

dqr

0 = Rr idqr
+ d

dt
φ

dqr

φ
dqs

= (Lm + Lf ) idqs
+ Lm idqr

φ
dqr

= Lm (idqs
+ idqr

)

(1.59)

where

– ω = dθ
dt

represents the electrical pulsation (whereθ = p θmechanical andp :
number of pairs of poles per phase),

– Lm = 3
2Lp : magnetizing inductance.

The obtained model of the induced machine is essentially characterized by four
physical parametersRs, Rr, Lm andLf . These parameters are the parameters that
need estimation.

1.4.4. Continuous-time state-space model

For the majority of the industrial applications of the induced machine, the inertia
of the rotating parts is significant. Consequently, the rotor speed is generally slowly
variable as compared to other electrical parameters of the machine [MOR 99]. Thus, a
4th non-linear state-space representation of the induced machine is obtained (because
of dependency on the speed) by associating the state-vectorwhich contains the stator
currents and rotor fluxes as well as the input and the output ofthe system correspond-
ing respectively to the voltages and stator currents of axisd andq [CAR 95, MOR 99]:

{
ẋ(t) = A(ω)x(t) + B u(t)
y(t) = C x(t)

(1.60)

with

x =
[

ids
iqs

φdr
φqr

]T
: state-vector

u =

[
Uds

Uqs

]
, y =

[
ids

iqs

]
: respectively machine input and output

A(ω) =





−Rs+Rr

Lf
ω Rr

Lm·Lf

ω
Lf

−ω −Rs+Rr

Lf
− ω

Lf

Rr

Lm·Lf

Rr 0 − Rr

Lm
0

0 Rr 0 − Rr

Lm





B =

[
1

Lf
0 0 0

0 1
Lf

0 0

]T

, C =

[
1 0 0 0
0 1 0 0

]
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1.4.5. Output-Error identification

The considered system is multivariable, with two inputs (Uds
andUqs

) and two
outputs (ids

andiqs
).

Thus, a criterionJ composed of two quadratic terms is considered:

J =
K∑

k=1

(
i∗dsk

− îdsk

)2

+
K∑

k=1

(
i∗qsk

− îqsk

)2

(1.61)

wherei∗dsk
and i∗qsk

are sampled measurements with sampling periodTe = 0.7ms

(t = kTe, k varying from1 to K = 4500). îdsk
and îqsk

represent the simulation of

the model [1.60] based on the estimationθ̂ whereθT =
[

Rs Rr Lm Lf

]
.

At each iteration, it is also necessary to simulate the sensitivity functions ∂ids

∂θ̂
and

∂iqs

∂θ̂
according to the preceding paragraph.

Experimental data are obtained with an induced machine of1.1 kW supplied by a
generator with a vector control. The machine is regulated toits nominal speed, and
coupled with a continuous generator which acts as a load.

The machine input is a pseudo-random binary sequence (PRBS)of ±90 tr/mn
added to the speed reference of750 tr/mn. Rotor currents and voltages are measured,
as well as the mechanical position of the rotor (which allowscomputation of the pul-
sationω). The input vector{Uds

, Uqs
} and the output vector{i∗ds

, i∗qs
} are obtained

by using Park’s transformation.

Minimizing the quadratic criterion (1.61) using the Marquardt’s algorithm, the
optimum is given by:

θopt =





Rs

Rr

Lm

Lf



 =





9.507 Ω
4.010 Ω
0.4364 H
0.0751 H





Figure 1.3 shows the estimation̂θ according to the iterations of the identification
algorithm.

At the optimum, an estimation of the noise variance is obtained with:

σ̂2
b =

Jopt

2 (K − N)
= 0.0462
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Figure 1.3. Estimation of̂θ according to algorithm iterations

1.4.6. Output-Error identification and a priori information

We propose to estimate the same parameters, but witha priori information, consti-
tuted by the average of ten preliminary estimations (corresponding to the knowledge
of the "healthy" functioning of the machine). For that, the composite criterion is min-
imized:

Jc = (θ̂ − θ0)
T M−1

0 (θ̂ − θ0) +

K∑
(i∗dsk

− îdsk
)2 + (i∗qsk

− îqsk
)2

δ̂2
(1.62)

with

θ0 =





Rs0

Rr0

Lm0

Lf0



 =





9.81 Ω
3.83 Ω
0.436 H
0.0762 H




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and

M0 =





σ2
RS

0 0 0
0 σ2

Rr
0 0

0 0 σ2
Lm

0
0 0 0 σ2

Lf





=





2 10−3 0 0 0
0 2 10−4 0 0
0 0 6 10−7 0
0 0 0 10−7





The same data as previously are used; then, we choose:

δ2 = σ̂2
b =

Jopt

2 (K − N)
= 0.0462

Minimizing JC using the Marquardt’s algorithm, we obtainθC :

θC =





Rs

Rr

Lm

Lf



 =





9.667 Ω
3.920 Ω
0.4366 H
0.0762 H





Figure 1.4 shows the evolution ofθ̂C according to algorithm iterations: it is obvi-
ous that the addition ofa priori information has significantly accelerated the conver-
gence of the algorithm.

Considering the variance of thea priori information (better precision on induc-
tances than on resistances), only resistances estimationsare slightly different from
those corresponding toθ0.

REMARK. The second part of the criterion enables us to estimate the variance of
the noise for̂θ = θC . Thus, we obtain̂σ2

b = 0.0483 which is close to the value initially
chosen forδ2: it is thus useless in this case to reiterate the algorithm todetermine the
optimal value ofδ2.

Nevertheless, the question of the choice ofδ2 must be evoked if initial information
on the residuals variance is erroneous. Again with the same data,JC was initialized
with an erroneous value ofδ2 and the estimation ofθopt was iterated. The results
are shown on figures 1.5 and 1.6. It can be seen that this iterative process converges
almost in only one iteration toδ2 = 0.0483, whatever the initial value ofδ2.
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Figure 1.5. Evolution ofδ2 according to algorithm iterations
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Figure 1.6. Evolution ofδ2 according to algorithm iterations

1.5. Fault detection and localization based on parameter estimation

1.5.1. Introduction

The fundamental assumption to monitor (or supervise) a system by parameter es-
timation is that a fault results in the variation of one (or several) characteristic pa-
rameter(s) of the system, thus constituting the signature of this fault. According to
this assumption, supervising a system involves monitoringof its parameters using an
identification algorithm, either off-line (or by parts of samples) or in a recursive way.

In fact, this assumption can easily be invalidated by the fact that this methodology
is not able to distinguish a normal parametric variation (possibly foreseeable) from
that corresponding to a fault occurring randomly. That is due to the fact that in order
to estimate parameters, a model should initially be defined:the first reflex is indeed
to use the model of normal operation of the system. However, afault tends to modify
this model and modifies also, in some cases, its structure andin most cases a modeling
error is introduced.

Thus, we will propose a methodology again based on parameterestimation, but
that combines two characteristics:

– the general model will include a model of safe functioning (or nominal model)
and a fault model (specific to each considered fault),
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– parameter estimation will be used witha priori information, which corresponds
to the expertise (or knowledge) of the user on the safe functioning of the system.

1.5.2. Principle of the method

The principle of the method is exposed here in the case of linear systems gov-
erned by differential equations with constant parameters,although this methodology
is general.

Let Hn(s) be a system of nominal transfer function, characterized by avectorθn.
When a fault occurs, a modeling errorδHi(s) signing the fault also appears (δHi(s)
is characterized by a vectorθi). Thus, the input/output transfer function becomes:

H(s) = Hn(s) + ∆Hi(s) (1.63)

The general model of the system, in a fault situation, is shown on figure 1.7, where
b(t) is a random perturbation,u(t) is the input andy∗(t) is the measured output.

+

+
( )sHn

( )sH i∆

( )tu ( )ty*
+

+

( )tb

Figure 1.7. General model of the system corresponding to the faultdi

The nominal modelHn(s), or safe functioning model, summarizes the user exper-
tise on the functioning of the system,i.e. the knowledge on the nominal parameters
θ̂n and on their varianceV ar{θ̂n}, as well as noises affecting the output,i.e. their
varianceσ2

b . In addition, the modeling errorδHi(s) must constitute a true signature
of the fault, not only by its structure but as well as its parametersθi.

The general model of the systemH(s) is then composed of a term of "common
mode" (the nominal modelHn(s)) and of a term of "differential mode" (the fault
modelδHi(s)) only sensitivized when a faultdi appears. In addition, the nominal
model must take into account foreseeable variations of the parameters whereas the
fault model must for its part remain insensitive to these same variations.
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Finally, the nominal model must include the expertise of theuser,i.e. summarized
by {θ̂n, var{θ̂n}}. Thus, this methodology is naturally linked to identification witha
priori information. An extended parameter vector is thus defined:

θe =

[
θn

θi

]
(1.64)

Moreover, an extended covariance matrix is defined:

V ar {θe} =

[
V ar {θn} 0

0 V ar {θi}

]
(1.65)

The a priori knowledge can be essentially defined on the nominal model. Then,
we obtain:

θe0
=

[
θ̂n

0

]
(1.66)

and

V ar
{
θe0

}
=





σ2
θ1n

.. .
σ2

θNn

0

0

∞
. ..

∞





(1.67)

Notice thatV ar{θ̂n0
} takes into account only the diagonal terms resulting from

V ar{θ̂n}. In addition, the termsσ2
θjn

, resulting from a safe functioning, must be over-
estimated in order to tolerate foreseeable parameter variations (for example according
to the temperature or to the magnetic state).

On the other hand, as one does not know if the fault will occur,its a priori value
θi is null while its initial variance is infinite (or very large). Thus, the optimization
algorithm responsible for the minimization of the criterion:

JC =
(
θ̂e − θe0

)T

V ar
{
θe0

}
−1
(
θ̂e − θe0

)
+

1

σ2
b

K∑

k=1

(
y∗

k − ŷk

(
θ̂e

))2

(1.68)

will affect the expertise of the user in the nominal model, bytolerating foreseeable
variations (included inσ2

θjn
), and will be on the other hand very sensitive to the vari-

ationsθi of the differential model, characteristic of the faultdi.
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1.5.3. Simulations

In order to specify the methodology which has been just presented, let us consider
an academic electrical example.

A reel of N turns winded up on a magnetic circuit of sectionS and of average
lengthl (see figure 1.8) is considered.

N
l

S

v

i

Figure 1.8. Magnetic circuit

The iron of the magnetic circuit is supposed to be characterized by the relation
B = µH (whereµ = cst). Neither the iron saturation nor the magnetic hysteresis is
taken into account.

In addition, it is assumed that the iron losses are negligible (at first approximation).
Then, according to the Ampere’s theorem:H = Ni

l
, the total fluxφ is given by:

φ = NBS = µ
N2S

l
i (1.69)

The reel inductanceL can be defined according toφ = Li:

L = µ
N2S

l
(1.70)

Moreover, the reel resistanceR is proportional to the length of the electric wire,
i.e. to the number of turns. One can thus write thatR = k1N andL = k2N

2.

Let us define a problem (academic) where the fault is constituted by a variation
δN of the number of turns of the reel (compared to nominal numberN ): in practice,
it can be due to a winding with commutation of the number of turns.

Then, ifN varies by∆N :
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– R varies by∆R with ∆R = k1∆N ,

– L varies by∆L with ∆L =
(

dL
dN

)
∆N , i.e. ∆L = 2k2N∆N ,

thus, the variations ofR andL are linked.

In the nominal state of the reel:

L

R
= τ =

k2N

k1
(1.71)

whereτ is the time constant of the reel while:

∆L

∆R
=

2k2N

k1
= 2τ (1.72)

Then, a nominal model (nominal impedance) of the reel can be define by:

Zn (s) = Rn + Ln s (1.73)

and a fault model by:

∆Z (s) = ∆R + ∆L (s) = ∆R (1 + 2τs) (1.74)

which lead to the extended model of the reel:

Z (s) = Zn (s) + ∆Z (s) = Rn + Ln s + ∆R (1 + 2τs) (1.75)

In addition,R andL can vary without the appearance of a fault, for example with
changes in the temperature or in the magnetic state of iron. Since µ was assumed
constant, we cannot consider variation ofL without modification of this assumption.
On the other hand, we can consider a variation of the resistance (alone) under the
effect of heating, therefore of an increase in temperatureT . Then

R (T ) = Rn + ∆R (T ) (1.76)

and

L (T ) = Ln (1.77)

REMARK. An important problem concerns the identifiability of the parameters
of the fault model. For this, let us consider the sensitivityfunctions. Knowing that
I (s) = U(s)

Z(s) , it can easily be shown that:






σRn
(s) = L {σRn

(t)} = −I(s)
Z(s)

σLn
(s) = L {σLn

(t)} = −s I(s)
Z(s)

σ∆R (s) = L {σ∆R (t)} = −(1+2τs)I(s)
Z(s)

(1.78)
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whereL{.} is the Laplace’s transform.

Then:

σ∆R (t) = σRn
(t) + 2τ σLn

(t) (1.79)

Sinceσ∆R (t) is a linear combination ofσRn
(t) andσLn

(t), the fault parameter

∆R is unidentifiable as the pseudo-hessianJ ′′

θθ ≈ 2
K∑

k=1

σk,θi
σT

k,θi
of the direct

method is non invertible.

On the other hand, when the composite criterionJC is used, which incorporatesa
priori information{θ0,M0}, we obtain the corresponding hessian [1.43]:

J
′′

Cθθ
≈ 2M−1

0 +
J

′′

θθ

σ2
b

which is now invertible thanks toM0 and the fault parameter∆R becomes identifi-
able.

This example shows clearly the interest to associate a modeldedicated to a type
of fault with the knowledge obtained on the safe functioningin the framework of a
strategy of fault detection.

1.5.4. Numerical simulations

1.5.4.1. Study of the safe functioning

Let us consider a reel characterized byR = 4Ω andL = 0.1 H. The functioning
of this reel was simulated numerically withTe = 1 ms and a PRBS input voltage. The
current output was disturbed by a white noise in such a way that the signal to noise
ratioS/B = 10. An input/output data file is then constituted (see figure 1.9).

Using the Output-Error identification algorithm (withouta priori knowledge), the
values ofR andL have been estimated. These values will be the basis of our expertise
on the safe functioning.

Thus, for the modelZn (s) = Rn + Ln s, we have:






R̂n = 4.012 Ω σRn
= 3.85 10−2 Ω

L̂n = 0.0989 H σLn
= 1.81 10−3 H

τ̂n = 0.0247 s σ̂2
b = 1.64 10−3
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Figure 1.9. Input/output data

The prior information is then defined by:






R0 = 4.012 Ω, L0 = 0.0989 H, τ = 0.0247 s
σR0

= 1 Ω > σRn
(which authorizes the variations ofR with the temperature)

σL0
= σLn

σ2
b = σ̂2

b

1.5.4.2. Study of the functioning with a fault

Let us consider a variation of∆N of the total number of turns, which corresponds
to the fault model:

Z (s) = Rn + Ln s + ∆R (1 + 2τ s) (1.80)

with θT
e =

[
Rn Ln ∆R

]
.

Let us consider in addition variations ofRn due to the temperature, that is to say
δR (T ).
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Test 1 2 3 4 5
R (Ω) 4 5 5 5 5

∆R (Ω) 1 0 0.2 1 −0.2

R̂ (Ω) 3.966 4.965 4.962 5.066 4.979

L̂ (H) 0.0990 0.0988 0.0989 0.0989 0.0989

∆R̂ (Ω) 1.066 0.047 0.172 0.886 −0.148

Table 1.1.Results of parameter estimation

For each considered situation, the same input as before is used, but the realization
of the white noise was different (however with the same signal to noise ratio). All the
results are presented in table 1.1.

Test1 corresponds to an increase ofN (corresponding to∆R = 1Ω) without
temperature variation: the increase ofR in the fault model is perfectly detected (taking
into account of the noise level).

Reciprocally, test2 corresponds to a temperature variation (increase ofR of the
common mode), without variation ofδR of the differential mode: only the resistance
of the common mode varied.

Tests3, 4 and5 correspond to simultaneous variations of the temperature and of
the number of turns (increase or decrease inδR): the results show the corresponding
changes of resistances of the common and differential modes, in close connection with
their cause (always taking into account of the noise level) and independently of their
amplitude.

In conclusion, the association of a fault model (with commonand differential
modes) and an algorithm of parameter estimation witha priori knowledge constitutes
a tool for the fault detection, making it possible moreover to effectively distinguish
them from the parameter variations of common mode.

1.6. Conclusion

This chapter was devoted to Output-Error identification andparticularly to the
estimation of physical parameters within the framework of electrical engineering. Two
approaches held our attention:

– the traditional approach is the extension of the least squares method to the non-
linear systems; despite its computational load, its essential interest lies in its natural
immunity against random disturbances thus guaranteeing anunbiased estimator;
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– the Bayesian approach makes it possible to includea priori knowledge available
on the system, mainly when the user has to deal with physical problems; however, this
initial knowledge must be completed by the variance information so as to avoid the
risk of biasing the estimator.

The Error-Equation approaches, afflicted with a bias inherent to the construction
of the regressor, should not be systematically rejected. They enable, despite this bias,
initialization of the research of the optimization algorithm (thus avoiding possible
secondary optima) and, if required, they can take part in thedevelopment of thea
priori information within the framework of the Bayesian approach.

The two Output-Error techniques of parameter estimation have been tested and
compared in the case of the induced machine. In addition, we have proposed a new
methodology of faults detection, based on the Bayesian approach (thea priori knowl-
edge corresponds to the expertise of the user on the safe functioning of its system)
and on the use of a fault model, true signature of this fault. This methodology, vali-
dated by a numerical simulation, will be taken again and generalized with the case of
the asynchronous machine in the next chapter which is devoted to the detection of its
stator and rotor faults.
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