
HAL Id: hal-00782799
https://hal.science/hal-00782799

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An insertion operator preserving infinite reduction
sequences

David Chemouil

To cite this version:
David Chemouil. An insertion operator preserving infinite reduction sequences. Mathematical Struc-
tures in Computer Science, 2008, 18 (4), pp.693-728. �10.1017/S0960129508006816�. �hal-00782799�

https://hal.science/hal-00782799
https://hal.archives-ouvertes.fr

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES

DAVID CHEMOUIL

Publisher version available in Mathematical Structures in Computer Science / Volume
18 / Special Issue 04 / August 2008, pp 693-728, DOI: 10.1017/S096012950800681610.1017/S0960129508006816.

ABSTRACT. A common way to show the termination of the union of two abstract reduction systems, pro-
vided both systems terminate, is to prove they enjoy a specific property (some sort of “commutation” for
instance). This specific property is actually used to show that, for the union not to terminate, one out of both
systems must itself be non-terminating, which leads to a contradiction. Unfortunately, the property may be
impossible to prove because some of the objects that are reduced do not enjoy an adequate form.

The purpose of this article is then threefold. It first introduces an operator enabling to insert a reduction
step on such an object, and therefore to change its shape, while still preserving the ability to use the property.
Of course, some new properties should be verified.

Secondly, as an instance of our technique, the operator is applied to relax a well-known lemma stating
the termination of the union of two termination abstract reduction systems.

Finally, this last lemma is applied in a peculiar and in a more general way to show the termination of some
lambda-calculi with inductive types augmented with specific reductions dealing with: (1) copies of inductive
types; and (2) with the representation of symmetric groups.

1. INTRODUCTION

1.1. Motivation. Given two reduction systems, one common way to prove the termination of the union
of both systems goes this way:

(1) if one or both systems are themselves terminating;
(2) and some other property (e.g. some sort of “commutation”) is verified;

then the application of an appropriate lemma concludes the expected result. This gives an instance of
so-called modular proofs in rewriting theory.

The lemma in question is itself often proved by first supposing that the union is not terminating and
then, using properties 11 and 22, by showing that it leads to a contradiction (typically: one can build a
reduction sequence beginning by an infinite fragment of one out of both reductions, while it is already
known to be terminating, by hypothesis).

The ability to build an infinite reduction sequence out of another one (also terminating) is crucial and is
usually ensured by property 22. Some examples of such a property may be found in [Bachmair and Dershowitz, 1986Bachmair and Dershowitz, 1986].
One nice feature of such a proof technique is that it often relies on simple diagram chasing.

Sometimes, however, these proofs will not work because there are some cases where the objects (what-
ever they may be: terms, trees, graphs, or so) are too complex for the diagrams to be closed. On the other
hand, there are situations s.t. if the object at the root of the diagram satisfied yet another condition, the
diagram in question could be closed. If this condition could itself be obtained for a reduct of the root
object, the method still works , using a slightly modified version of the original lemma with subsequent
conditions.

For this, we define an operator transforming an infinite reduction sequence into another one by in-
serting a given reduction step at the beginning of the sequence. Then we give an example of how it
may be used to derive the new lemma ensuring that the union of two reduction systems is terminat-
ing. Finally, we use this new lemma to redo and generalise some proofs carried out in different arti-
cles [Chemouil and Soloviev, 2003Chemouil and Soloviev, 2003, Soloviev and Chemouil, 2004Soloviev and Chemouil, 2004, Chemouil, 2005Chemouil, 2005].

1

http://dx.doi.org/10.1017/S0960129508006816

2 DAVID CHEMOUIL

1.2. Terminology and Notations. Most of our terminology and notations come from [Baader and Nipkow, 1998Baader and Nipkow, 1998]
and [Terese, 2003Terese, 2003] :

Definition 1.1 (Abstract Reduction System). An Abstract Reduction System (ARS for short) is a struc-
tureA := (A, {→R | R ∈ I}), whereA is a set of objects and {→R | R ∈ I} is a set of binary reduction
relations on A indexed by a set I .

One also writesR instead of→R. Usually, the word “rewrite” is reserved for concrete systems, such as
Term Rewrite Systems or Graph Rewrite Systems; hence we shall avoid to use it when dealing with ARS.

We will also use the following notations:

r →R s := (r, s) ∈ →R

←R := →R
−1 inversion

→R B→S := {(x, z) | ∃ y ∈ A · x→R y ∧ y →S z} composition
0→R := {(x, x) ∈ A2}
n+1→ R :=

n→R B→R
=→R := →R ∪

0→R reflexive closure
↔R := →R ∪←R symmetric closure
∗→R :=

⋃
n>0

n→R reflexive transitive closure
+→R :=

⋃
n>1

n→R transitive closure
∗↔R := (↔R)∗ convertibility
→RS := →R ∪→S

Dotted lines shall also be used in diagrams in order to represent existential statements in the corre-
sponding formulas.

If r →R s, one says that r reduces in one step to s and that the latter is a one-step reduct of the former.
If r +→R s, one simply says that r reduces to s and that the latter is a reduct of the former.

Given an object r, various different reductions are likely to be possible and, hence, many reduction
sequences.

An object is a normal form if it is not reducible. Furthermore, an object is terminating11 if every
reduction sequence going from this object leads to a normal form.

Definition 1.2 (Termination). Given a reduction relation R on A, the set SN of terminating objects is the
smallest set s.t.

∀ r · (∀ s · r →R s⇒ s ∈ SN)⇒ r ∈ SN .

Thus, an object is terminating if every one-step reduct is. If an object is in normal form, the left-hand
side of the implication is void and the implication is therefore verified.

As a matter of fact, a terminating object is sometimes defined by stipulating that there is no infinite
reduction sequence going from it. This last notion is rather considered as “non-non-termination” by some
authors but both notions can be proved equivalent using non-constructive reasoning22.

We will write R � ⇓ if every object in A is terminating for R.

Finally, in the following pages, we shall give names to some specific reduction sequences. For exam-
ple, we shall write u ∈ U∗, which means u is a (possibly empty) finite sequence of pairs (ti, ti+1) ∈
U (with i > 0). We shall also write u B v to express the fact that u and v are reduction sequences (u

1One also says “strongly normalising”.
2See [Matthes, 2000Matthes, 2000], pp. 28–29, and the thread “SN” from the mailing-list “proof theory” (list@prooftheory.org),

February 2004.

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 3

being finite) s.t. the second element of the last pair in u coincides with the first element of the first pair in v.

1.3. The Adjournment Lemma. Let us now give an example of a lemma deriving the termination of the
union of two ARS. This lemma has known a few variants and various names (see [Bachmair and Dershowitz, 1986Bachmair and Dershowitz, 1986,
Geser, 1990Geser, 1990, Doornbos and von Karger, 1998Doornbos and von Karger, 1998, Chemouil and Soloviev, 2003Chemouil and Soloviev, 2003]).

Definition 1.3 (Adjournment). Let R and S be two reduction relations. Then S is adjournable w.r.t. R if
S BR ⊆ RB (RS)∗.

SBR ⊆ RB(RS)∗ is the relational way to write the following statement:

∀ r∀ s∀ t · r →S s ∧ s→R t⇒ ∃u · r →R u ∧ u
∗→RS t .

The corresponding diagram is the following.

S

��

R

��

R ** RS

∗

tt

Lemma 1.1 (Adjournment). Let R and S be two reduction relations s.t.:

• R � ⇓;
• S � ⇓;
• S is adjournable w.r.t. R.

Then RS � ⇓.

Proof. Let R and S be two reduction relations s.t. R � ⇓, S � ⇓ and S is adjournable w.r.t. R. Sup-
pose RS is not terminating. Then, there exists an infinite sequence of RS-reductions, alternating finite
subsequences of R- and S-reductions, as R and S both terminate. Therefore, going from the beginning
of the sequence, one can “pull up” an R-reduction by adjourning the first S-reduction followed by an
R-reduction. Iterating this process yields an infinite R-reduction sequence. Contradiction. �

1.4. Example. Though useful, this lemma is not powerful enough to deal with some special reductions
which we added to a simply-typed λ-calculus with inductive types. This is why we devised the insertion
operator to be presented. But let us first give a quick glance at an example of a situation where usual
results do not apply well or at all (this situation is dealt with in full detail in Section 4.34.3).

Our example appears in a simply-typed λ-calculus with inductive types (that is, recursive types with
only strictly-positive occurrences of recursion type variables). Briefly (see Section 4.14.1 for full details),
the βµ-reduction rule for primitive recursion is given by:

L−→t M (ci
−→r)→βµ ti

−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1) ,

where L−→t M is the recursion operator, (ci
−→r) is a constructor of an inductive type together with its pa-

rameters, r0 is the result of recursive calls on a non-functional parameter, and r1 is the result of recursive
calls on a functional parameter.

Let us now write [n] for the set {i ∈ N | 1 6 i 6 n}. The set [n] is then represented by an inductive
type, denoted n := µα (cn1 : α, . . . , cnn : α) (there can be various representations, just by changing names
of constructors, of course). Then, to every function f : [n] → [m] corresponds a term f : n → m of the
form Lcmf(1), . . . , c

m
f(n)M

n,m, with m := µα (cm1 : α, . . . , cmm : α).
Now, suppose one wants to embed the notion of symmetric group σn into the reduction relation (see

Section 4.34.3 for full details). In such a setting, it is well-known that any permutation s 6= id can be
decomposed in a unique way (up to the ordering of factors) in a product of cycles with mutually disjoint
carriers. Composition of disjoint cycles is commutative but it remains possible to set up an ordering <,

4 DAVID CHEMOUIL

lexicographical for instance, on cycles in order to obtain a canonical decomposition. Hence, every map f :
[n]→ [n] (n > 2) is equal to a product of m mutually disjoint cycles (m > 2) f1, . . . , fm:

f = f1 ◦ · · · ◦ fm (with f1 < . . . < fm).

This obviously leads to defining a so-called θ′-reduction by

f r →θ′ f1 (. . . (fm r) . . .)

for every permutation f ∈ σn, for all n > 2, where f is decomposed into m > 2 mutually disjoint
cycles {f1, . . . , fm} ⊆ σn.

Then, to show termination of βηθ′-reduction (which includes βµθ′ reduction as well as other usual
reduction rules, such as β→-reduction and η→-expansion), there is a difficulty: if we try to adjourn θ′

w.r.t. βη, we get the following diagram for βµ-reduction:

C
[
f ci
]

θ′

vv

βµ

&&
C
[
f1 (. . . (fm ci) . . .)

]
βµ **

C
[
cf(i)

]

C
[
f1 (. . . (fm−1 cfm(i)) . . .)

]βµ

∗
==

which does not enable us to state much.

Now, let us call βn-reduction the fragment of βµ applying to terms f : n→ n; we then have:

f cni →βn c
n
f(i) for all f : n→ n.

One can then notice that adjournment would be usable provided terms were initially in βn-normal form,
first. There lies the idea of the operator devised in this paper which precisely enables to change the
shape of objects, while preserving infinite reduction sequences dealt with in proofs of lemmas such as the
Adjournment Lemma.

1.5. Outline of the Paper. In Section 22, we define the operator inserting a reduction step at the beginning
of a reduction sequence, yielding a new one which is proved to be infinite if the first one was. We also
give some simple sufficient conditions when the operator verifies a certain property.

Then, in Section 33, we define a specialised form of the Adjournment Lemma enabling to deal with
some complex situations.

Finally, in Section 44, we show how this new lemma was used on two situations regarding the addition
of some extensional rewrite rules in a simply-typed λ-calculus with inductive types. A first exposition of
these situations can be found in [Chemouil, 2005Chemouil, 2005] and [Soloviev and Chemouil, 2004Soloviev and Chemouil, 2004] without as much
abstraction and as many details as in the present article.

2. AN INSERTION OPERATOR

2.1. Intuition. Let us first give some intuition. Let U and T be ARS. We are going to define an in-
sertion operator, inserting a given T -reduction (t, t′) at the beginning of a possibly infinite sequence of
U -reductions (provided a few properties are verified, of course), thus yielding a new sequence. Using a
particular relation S on objects from both sequences, the operator will ensure that the sequence shall be
infinite if the initial sequence was.

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 5

Intuitively, the idea underlying our technique, for a finite sequence, is the fol-
lowing: given a sequence u ∈ U∗, we build a new sequence Θt,t′

S (u) ∈ U∗

in such a way that, to every reduction step in u, there corresponds some reduc-
tion(s) in Θt,t′

S (u) after which it is possible to “find again” the original sequence
u through S. Because of this idea of return to the initial sequence, we point
this relation from the new sequence back to the initial (this is expressed using
an oriented arrow in the accompanying diagram).

S

��

Θt,t
′

S (u) 00

u∈U∗ ..

Indeed, inserting a T -reduction at the beginning of u implies that many descendants of the object
reduced by T are likely to be in a shape, in Θt,t′

S (u), different than the shape of the descendants of the
same object not reduced initially, in u. The relation S enables to draw a correspondence between the
descendants in both sequences.

2.2. The Lemma.

Definition 2.1 (Prosimulation). Let U be an ARS and S be a binary relation on the domain of U . Then S
prosimulates U if S B→U ⊆

∗→UB S.

Notice that this definition is correct as the domain of ∗→U is the same as the one of U .
Choosing the letter S for this relation is not fortuitous: indeed, this is to recall the notion of simu-

lation from concurrency theory. In this discipline, a simulation is a relation between labelled transition
systems and provides a behavioural abstraction of such a system. In our context, S is a simulation
from U to U∗. Note that some similar questions related to simulation were also studied independently
in [Lengrand, 2005Lengrand, 2005].

Definition 2.2 (Insertion Operator). Let U , T be ARS, S a relation, u a finite sequence of U -reductions
beginning with an object t and (t, t′) a T -reduction, s.t.:

• S prosimulates U ;
• and (t′, t) ∈ S.

We define an insertion operator Θt,t′

S which, from the sequence u, yields a new sequence Θt,t′

S (u) begin-
ning with the T -reduction (t, t′), and ensuring that:

(I1) the diagram

t

Θt,t
′

S (u) 11

u∈U∗ --

can be closed by S, that is:

S

��

t

Θt,t
′

S (u) 11

u∈U∗ --

(I2) and Θt,t′

S (uB r) = Θt,t′

S (u)B r′ where r′ ∈ U∗.

The sequence Θt,t′

S (u) is defined by recursion on u:

• If u is empty, we insert the T -reduction: Θt,t′

S (u) := (t, t′) ∈ T . As (t′, t) ∈ S, we have:

t′

S

��

t

T
22

t

6 DAVID CHEMOUIL

• Otherwise, u = v B r with v ∈ U∗ and r ∈ U . Then, we have Θt,t′

S (u) := Θt,t′

S (v)B r′ with:

S

��

r′∈U∗ //

S

��

Θt,t
′

S (v) 00

v∈U∗ ..

(IH)

r∈U
//

Remark 2.1. As for the last case, note that we only use this definition for deterministic or finite and
bounded cases, hence the case when there exist arbitrarily many r′ such that Θt,t′

S (u) := Θt,t′

S (v) B r′

will not occur.

Notice that properties (I1) and (I2) are verified in both cases. In particular, the second property enables
us to extend the operator to infinite reduction sequences: indeed, appending a new reduction step to an
initial finite sequence keeps unchanged the reduction sequence corresponding to the initial fragment.

As will be made clearer later, the aim of this operator is just to constructively assess the existence of
an infinite sequence given another one.

Definition 2.3 (Echo). Let→ be a reduction relation and S a relation on objects. Then S echoes→ if

∀ a0 · ∀ a′ S a0 · ∃N ∈ N∗ · ∀ a0 → · · · → aN · ∃ k ∈ {1, . . . , N} · ∃ b′ S ak · a′
+→ b′ .

In other words, S echoes→ if, going from an object a0 and any object a′ s.t. a′ S a0, we can find a
bound N > 0 s.t., for every finite fragment of length N of any sequence of reductions (possibly infinite)
beginning by a0, there is an object ak in this fragment (with k > 1) with an object b′ s.t. b′ S ak which,
itself, derives from a′ in at least one step. This is informally expressed in the following diagram:

a′

S
��

+ // b′

S

�%

// . . .

a0
// . . . // ak // . . . // aN // . . .

Intuitively, one can see that if the initial sequence is infinite, the resulting one will also be infinite, as
echoing ensures that, for some finite fragments of sufficient length in the initial sequence, the resulting
sequence will also contain reduction steps.

Lemma 2.1 (Insertion). Let U , T be ARS and S a relation s.t. S prosimulates and echoes U . Then, for
any infinite sequence u of U -reductions, beginning by t, and every T -reduction (t, t′) s.t. (t′, t) ∈ S , the
sequence Θt,t′

S (u) is also infinite.

Proof. Let u be an infinite sequence of U -reductions beginning by an object t0. As S prosimulates U ,
we can build Θt0,t

′

S (u). This sequence cannot end as, because S echoes U , there necessarily exists a
bound to the length of initial fragments of u for which there is at least a reduction step in Θt0,t

′

S (u). This
process of stepping along u and finding corresponding steps in Θt0,t

′

S (u) can be iterated infinitely as u is
not terminating. �

2.3. Some Sufficient Conditions. We now discuss the case when U enjoys specific properties, then
when S is not only an arbitrary relation but a reduction relation itself.

2.3.1. Insertability and Echoing. Suppose we have T (U . The insertion operator is initially defined for
finite sequences, but so as to be extendible to non-terminating ones. As a consequence, as we want the
sequence Θt,t′

S (u) to be infinite provided the sequence u is, two cases are possible:

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 7

• In the case where a reduction in u comes from U \ T , it should be echoed by at least one U -
reduction.

• On the other hand, if it is a T -reduction, there could even be no corresponding U -reduction
because inserting a T -reduction at the very beginning of Θt,t′

S (u) implies that, perhaps, the T -
reduction which stood in u is not needed anymore at the same time in Θt,t′

S (u).
Furthermore, it is important to be ever able to “come back” to u through S. It is then necessary to

ensure that the following diagrams can be closed.

S

y�

U

+
!!

U\T))

(I+)

S
y�

S

z�

U

∗

T))

(I∗)

S
z�

Definition 2.4 (Insertability). Let U , T be ARS and S a binary relation on the domain of U . Then T can
be inserted in U w.r.t. S if:

• T (U ;
• (I+) S B→U\→T ⊆

+→UB S;
• (I∗) S B→T ⊆

∗→UB S .

Lemma 2.2. Let U , T be ARS and S a binary relation on the domain of U s.t.:
• T is finitely branching ;
• T can be inserted in U w.r.t. S;
• T � ⇓.

Then S prosimulates and echoes U .

Proof. First, T can be inserted in U w.r.t. S, therefore S obviously prosimulates U . Furthermore, by
König’s Lemma, the fact that T is finitely branching and terminating implies it is always possible to find,
for every initial term, the bound necessary to echoing. �

Corollary 2.1. Let U , T be ARS and S a binary relation on the domain of U s.t.:
• T can be inserted in U w.r.t. S;
• T � ⇓.

Then, for any infinite sequence u of U -reductions, beginning by t, and every T -reduction (t, t′) s.t.
(t′, t) ∈ S, the sequence Θt,t′

S (u) is also infinite.

2.3.2. Case where the Prosimulation is a Reduction. The situation can be even more particular. Indeed, S
may be a reduction sequence itself, from terms appearing in Θt,t′

S (u) to those in u. For instance, we shall
use the operator to insert an η→-expansion, in Section 4.24.2. The relation S could be defined as the inverse
of an η→-expansion. Unfortunately, it is not always obvious to define the inverse of such a reduction as it
is context sensitive. But we know that η−1

→ ⊆ η→ (where η→ is η→-contraction) and this is therefore the
relation we shall use for S. (Nevertheless, considering a reduction relation for S is not an obligation as
we shall see in Section 4.34.3.)

Generally, as we insert a T -reduction at the beginning of the sequence, it will be necessary to be able to
come back to the initial sequence by “anti-reducing” the descendants of the subterm which was T -reduced
initially. As these descendants may enjoy several occurrences, we shall therefore consider a relation T ′

8 DAVID CHEMOUIL

such that T−1 ⊆ T ′ (in other words: (t′, t) ∈ T ′) and we shall take T ′∗ for S. In this case, the Lemma 2.22.2
imposes to solve diagrams of the following shape:

T ′

∗
}}

U

+
!!

U\T))

(I+)

T ′

∗

uu

T ′

∗
~~

U

∗

T))

(I∗)

T ′

∗

uu

As such, the lemma is not easy to use because of the universal quantification on arbitrary-length sequences
of T ′-reductions. The following sufficient conditions are general enough and much simpler to prove.

Lemma 2.3.
T ′ B (U \ T) ⊆ U∗ B (U \ T)B U∗ B T ′∗ ∧ T ′ B T ⊆ U∗ B T ′∗ ⇒ (I+) ∧ (I∗).

Proof. We respectively write (I ′+) and (I ′∗) for the two members from the left-hand side of the implica-
tion.

T ′

��

U

∗
// U\T //

U
∗

��

U\T ,,

(I ′+)

T ′

∗

rr

T ′

~~

U

∗

T))

(I ′∗)

T ′

∗

uu

Notice first that

(I ′+) ⇒ T ′ B (U \ T) ⊆ U∗ B T ′∗ ,

hence

(I ′∗) ∧ (I ′+) ⇒ T ′ B U ⊆ U∗ B T ′∗ .

Writing (∗) for T ′∗ B U∗ ⊆ U∗ B T ′∗, we obviously have (by induction)

T ′ B U ⊆ U∗ B T ′∗ ⇒ (∗) .

then (I ′∗) ∧ (∗) ⇒ (I∗).
We now show that (I ′+) ∧ (∗)⇒ (I+) by induction on the length of T ′∗:

• if the length is null, we obviously have
U

+
��

U\T **

as
U\T

��

U\T **

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 9

• otherwise the sequence is of the form T ′∗ B T ′ and we have

T ′ ∗

��

U

∗
// U

+
//

T ′∗

��

U

∗
//

T ′∗

��

T ′∗

��

(∗) (IH) (∗)

T ′

��

U

∗
// U\T // U

∗
//

T ′∗

��

(I ′+)

U\T
//

�

Corollary 2.2. Let U , T and T ′ be ARS s.t.:
• T (U ;
• T � ⇓ ;
• T−1 ⊆ T ′ ;
• T ′ B (U \ T) ⊆ U∗ B (U \ T)B U∗ B T ′∗ ;
• T ′ B T ⊆ U∗.

Then, for any infinite sequence u of U -reductions, beginning by t, and every T -reduction (t, t′), the
sequence Θt,t′

S (u) is also infinite.

3. AN APPLICATION OF INSERTION IN REWRITING: PRE-ADJUSTED ADJOURNMENT

It is rather usual in rewriting theory and λ-calculus to fall upon theorems stating the termination of a
reduction relation by supposing first the existence of an infinite sequence of reductions and by showing
then that it leads to a contradiction. The proof of the Adjournment Lemma (Lemma 1.31.3) gives a perfect
example of such a situation.

In this kind of cases, if the premises for the definition of the insertion operator are met, it is possible
to insert a finite number of reductions ahead of the initial infinite sequence, still preserving the non-
termination and thus the possibility to find a contradiction. We shall see in section 4.24.2 that adjournment
alone does not suffice to prove the termination of the union of two particular relations because there is a
case where a term must be η→-expanded beforehand in a certain way. Our insertion operator enables us
precisely to insert these necessary η→-expansions. In this particular case, S is the η→-contraction which
enables to return to the initial sequence. We shall also use the operator in its full generality (i.e. without
S being a reduction relation) in section 4.34.3.

Definition 3.1 (Conditional Adjournment). Let R and S be ARS and P a predicate on objects. Then S is
adjournable w.r.t. R under condition P if

∀ a∀ b∀ c · P (a) ∧ a→S b ∧ b→R c⇒ ∃ d · a→R d
∗→RS c .

The necessity of conditional adjournment became clear to us during our study of non-standard re-
ductions in calculi with inductive types. We think that in case of non-standard reductions, for example,
representing mathematical content of the theories formulated in Logical Frameworks it will be rather a
rule that ordinary methods based on permutation or ordinary adjournment of conversions turn out to be
insufficient.

10 DAVID CHEMOUIL

Definition 3.2 (Realisation). Let T be an ARS, P a predicate on objects and a and object. Then T realises
P for a if ∃ b · a ∗→T b ∧ P (b). We shall also say that T realises P if T realises P for any object a.

Lemma 3.1 (Pre-Adjusted Adjournment). Let R, S, and T be ARS, S a relation and P a predicate on
objects s.t.:

• S is adjournable w.r.t. R under condition P ;
• T ⊆ R ;
• R � ⇓ ;
• S � ⇓ ;
• T realises33 P ;
• S prosimulates RS ;
• S echoes RS.

Then RS � ⇓.

Proof. By Lemma 2.12.1, there exists Θt,t′

S that preserves infinite sequences of R-reductions beginning by
t, for any T -reduction (t, t′) s.t. (t′, t) ∈ S.

Suppose nowRS is not terminating, i.e. there is (at least) one infinite sequence ofRS-reductions. Take
any sequence beginning by an object a0. As R and S are terminating, we can deduce that this sequence
is made up from an infinite alternation of finite fragments of R- and S-reductions.

Now, we apply the following process: we follow the sequence from the beginning until reaching
the first occurrence of an S-reduction immediately followed by an R-reduction, for an object a. In
other words, we have initially a finite fragment X of reductions, where X = R∗S∗ (that is X = R∗

or X = R∗S+), leading to a. The sequence is therefore of the following form

a0
X // a

S // R // RS

∞
// .

There are now two possibilities regarding a:
• Either P (a): it is then possible to adjourn the S-reduction following a, thus obtaining:

a0
X // a

S //

R ''

R // RS

∞
//

b
RS

∗

JJ

• Or ¬P (a): it is then possible to insert a T -reduction from a, keeping a infinite sequence of
RS-reductions:

a0
X // a

S //

T⊆R ''

R // RS

∞
//

b
RS

∞ //

Now, if X = R∗, the new infinite sequence begins with a fragment of R-reductions longer than in the
initial sequence (as T ⊆ R). It is therefore possible to iterate this process from b, and to keep lengthening
the initial fragment of R-reductions. If X = R∗S+, it is necessary to iterate this process once more from
a0 because the new sequence is of the form

a0
R

∗
// S

∗
// c

S // R // b
RS

∞
//

and a new conditional adjournment (possibly foregone by insertions to realise P for c) is therefore nec-
essary to extend the initial fragment of R-reductions.

3In fact, as the following proof shows, it would even be enough to state that: for any object b, if ¬P (b) then b is not T -normal.

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 11

In both cases, the initial fragment of S-reductions gets smaller and we build a fragment ofR-reductions
which is longer and longer, which is an infinite process as RS does not terminate. But R � ⇓. �

4. APPLICATIONS IN LAMBDA-CALCULUS

We now present two applications of our Pre-Adjusted Adjournment Lemma. They were first presented
in [Soloviev and Chemouil, 2004Soloviev and Chemouil, 2004, Chemouil, 2005Chemouil, 2005] but very briefly, due to lack of space. These studies
motivated the creation of the insertion operator. We will now enter into more details.

4.1. The Setting. Let us first recall the setting of our work, which is a simply-typed λ-calculus featuring
arrow, product and unit types, all together with computational and extensional rewrite rules, as well as
inductive types (i.e. some special case of more general recursive types) with computational rewrite rules
corresponding to structural recursion.

Definition 4.1 (Types). Define, by mutual induction:

• the set T of types

α ∈ TV

α ∈ T
(V)

1 ∈ T
(1)

ρ ∈ T σ ∈ T

(ρ× σ) ∈ T
(×)

ρ ∈ T σ ∈ T

(ρ→ σ) ∈ T
(→)

−→κ 6= ∅ −→c ⊆ C α ∈ TV −→κ ⊆ Sch(α)

µα (−→c : −→κ) ∈ T
(µ)

• the set Sch(α) of (constructor) schemas on a type variable α
−→ρ ⊆ T −→ρ ⊆ SPos(α)
−→ρ → α ∈ Sch(α)

(SCH)

• the set SPos(α) of strictly positive operators over a type variable α

ρ ∈ T α 6∈ FV(ρ)

ρ ∈ SPos(α)
(SPOSPAR)

−→ρ ⊆ T α 6∈ FV(−→ρ)
−→ρ → α ∈ SPos(α)

(SPOSREC)

• and the set of free type variables (defined the usual way).

One can remark that a schema κ on α is written ρ1 → . . .→ ρm → α (m > 0). If m = 0, the schema
is called empty. If it is non-empty, every ρj is either a strictly-positive operator where α is not free; or
a strictly-positive of the form σ1 → . . . → σp → α (with 1 6 j 6 m). In the first case, we speak of
a parametric operator and, in the second case, of a 0-recursive operator if −→σ = ∅ or of a 1-recursive
operator otherwise (by analogy with Gödel’s finite type recursive functionals).

Example 4.1. Essentially, the strictly-positive approach for inductive types enables to define infinitely
branching trees with finite depth. A typical example is given by the representation O of Brouwer’s ordinals
(where N is the inductive type of natural numbers):

O := µα (0 : α, S : α→ α,L : (N→ α)→ α) .

Here, α is an empty schema, α→ α is 0-recursive and (N→ α)→ α is 1-recursive.

Definition 4.2 (Preterms). The set of preterms is generated by the following grammar:

t ::= x | ? | 〈t, t〉ρ×σ | p1ρ×σt | p2ρ×σt | λxρt | (t t) | (c
−→
t) | L−→t Mµα (−→c :−→κ),ρ ,

with c ∈ C and x ∈ V.

12 DAVID CHEMOUIL

Preterms of the form L−→t Mµα (−→c :−→κ),ρ stand for recursors in the sense of Gödel’s System T. They
contain as many recursion terms as their domain contains constructors. On the other hand, preterms of
the form c

−→
t inhabit an inductive type. Finally, p1 and p2 are projections (we will sometimes write pi to

speak about any projection). We now introduce typing the usual way.

Definition 4.3 (Recursion Type). Given a constructor c ∈ µ̂ with schema −→ρ → α and any type σ, the
recursion type δµ̂,σc of c is defined by:

δµ̂,σc := −→ρ [α := µ̂]→
−→
‖ρ‖[α := σ]→ σ ,

where

‖ρ‖ :=

{
∅ if ρ is a parametric operator,
ρ if ρ is a recursive operator.

Example 4.2. Recursion types for Brouwer’s ordinals, to any type σ, are:

δO,σ0 = σ

δO,σS = O→ σ → σ

δO,σL = (N→ O)→ (N→ σ)→ σ .

Definition 4.4 (Typing). The typing relation Γ ` t : ρ is defined by induction on preterms:

(x, ρ) ∈ Γ

Γ ` x : ρ
(V)

Γ ` ? : 1
(1-I)

Γ ` r : ρ Γ ` s : σ

Γ ` 〈r, s〉ρ×σ : ρ× σ
(×-I)

Γ ` r : ρ× σ
Γ ` (p1

ρ×σr) : ρ
(×-E1)

Γ ` r : ρ× σ
Γ ` (p2

ρ×σr) : σ
(×-E2)

Γ, x : ρ ` r : σ

Γ ` (λxρr) : ρ→ σ
(→-I)

Γ ` r : ρ→ σ Γ ` s : ρ

Γ ` (rs) : σ
(→-E)

(c,−→ρ → α) ∈ µ̂ Γ ` −→r : −→ρ [α := µ̂]

Γ ` (c−→r) : µ̂
(µ-I)

Γ ` −→t :
−−→
δµ̂,σc

Γ ` L−→t Mµ̂,σ : µ̂→ σ
(µ-E)

Definition 4.5 (Terms). A term is a well-typed preterm.

We now introduce the reduction relation operating on the basic calculus. The computational aspect is
expressed by β-reduction while the extensional one is expressed by η-reduction. First of all, given two
terms g : σ → τ and f : −→ρ → σ, we write g ◦ f := λ−→x −→ρ · g (f−→x).

Definition 4.6 (β-reduction). We define β-reduction the following way:

(λxr)s →β→ r[x := s]

p1〈r, s〉 →β×1
r

p2〈r, s〉 →β×2
s

L−→t M (ci
−→r) →βµ ti

−→r
−→
∆r

where

∆r :=


L−→t M r if the operator corresponding to r is 0-recursive,
L−→t M ◦ r if the operator corresponding to r is 1-recursive,
∅ otherwise.

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 13

Example 4.3. Here are the rules for βµ-reduction on Brouwer’s ordinals:

Lt0, tS , tLM 0 →βµ t0

Lt0, tS , tLM (S p) →βµ tS p (Lt0, tS , tLM p)
Lt0, tS , tLM (L k) →βµ tL k (Lt0, tS , tLM ◦ k) .

To simplify matters, we shall order operators so that every canonical object c−→r inhabiting an inductive
type is of the form c

−→
rp
−→
r0
−→
r1 , where:

• operators corresponding to
−→
rp are parametric ;

• operators corresponding to
−→
r0 are 0-recursive ;

• operators corresponding to
−→
r1 are 1-recursive.

Hence βµ-reduction can be written:

L−→t M (ci
−→r)→βµ ti

−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1) .

Is is now common to define η-reduction as an expansive rule. Though it is then context depen-
dent, its metatheory is usually nicer than for η-contraction which does not behave well when com-
bined with a rule for the unit type (see [Di Cosmo, 1995Di Cosmo, 1995, Di Cosmo, 1996aDi Cosmo, 1996a, Di Cosmo and Kesner, 1993Di Cosmo and Kesner, 1993,
Di Cosmo and Kesner, 1996aDi Cosmo and Kesner, 1996a, Di Cosmo and Kesner, 1996bDi Cosmo and Kesner, 1996b, Di Cosmo, 1996bDi Cosmo, 1996b]).

Definition 4.7 (η-reduction). Define η-reduction by:

r →η→ λxρ · rx if


r : ρ→ σ,
x /∈ FV(r),

r is not an abstraction nor in applicative position.

r →η× 〈p1r, p2r〉 if

{
r is of product type,
r is not a pair nor projected.

r →η1 ? if

{
r : 1,

r 6= ?.

Theorem 4.1. βη � ⇓ ∧ βη � �.

Proof. β � ⇓ and β � � are proven using respectively the Tait-Girard method [Girard et al., 1988Girard et al., 1988] and the
Tait-Martin-Löf method [Barendregt, 1984Barendregt, 1984] and Newman’s Lemma. Then η-reductions are added using
standard abstract techniques such as Akama-Di Cosmo’s Lemma [Di Cosmo, 1996bDi Cosmo, 1996b]. �

(In [Soloviev and Chemouil, 2004Soloviev and Chemouil, 2004, Chemouil, 2005Chemouil, 2005], we also have a so-called ν-reduction which im-
plements extensionality on inductive representations of the product and unit types: adding this reduction
also yields a convergent system. However, this reduction is not important regarding the topic of the
present article, so we will not consider it here.)

4.2. Copies. We now rework the notion of copy of an inductive type introduced in [Chemouil, 2005Chemouil, 2005]
using the specialised Pre-Adjusted Adjournment Lemma.

14 DAVID CHEMOUIL

4.2.1. Isomorphisms of Types. We first define the notion of isomorphism of types: we need a typed λ-
calculus together with an equivalence relation ∼ on terms, an associative composition operator ◦ρ,σ,τ :
(σ → τ)→ (ρ→ σ) (simply written ◦) and a term idρ : ρ→ ρ neutral for ◦ (for all types ρ, σ, τ). Here,
◦ and idρ can be defined the obvious way, but not necessarily.

Definition 4.8 (Isomorphism of Types). Two types ρ and σ are isomorphic, written ρ ∼= σ, if there exist
two terms f : ρ→ σ and g : σ → ρ s.t. f ◦ g ∼ idσ and g ◦ f ∼ idρ.

It is important to notice that an isomorphism between types might be provable but not computable.
This is the reason why it is necessary to devise a rewriting relation implementing ∼ and prove its termi-
nation and confluence.

4.2.2. Taxonomy.

Definition 4.9 (Copy). Let there be two types π and π′ and two inductive types ϕ and ϕ′ s.t. if π appears
in ϕ, it is only as a parameter or as the full domain of the functional argument of a 1-recursive operator.
Let there also be two terms f : π → π′ and f ′ : π′ → π (to take into account co- and contravariant
arguments).

Then, ϕ′ is a copy of ϕ induced by f and f ′ if the first type only differs from the second one by
constructor names and by the fact that zero or several occurrences of π in ϕ are replaced by π′ in ϕ′.

If we have a computable isomorphism f : π ∼= π′ : f ′, µα (−→c : −→κ) and µα (
−→
c′ :
−→
κ′) are called

faithful copy of one another. If π does not appear in µα (−→c : −→κ) or if no occurrence of it is replaced (in
other words: ϕ and ϕ′ only differ by constructor names), we shall speak of carbon copy. We then have

carbon copy ⊆ faithful copy ⊆ copy.

In this article, we shall be at best interested in faithful copies.

Remark 4.1. Notice that we will not consider possible constructor reorderings, here. On the contrary,
we shall consider that every ci in µα (−→c : −→κ) corresponds precisely to c′i in µα (

−→
c′ :
−→
κ′).

Obviously, faithful copies form provable isomorphisms. We shall make them computably isomorphic
by adding an adequate reduction (χ).

4.2.3. Maximal Abstracted Form and Choice Representation. This section is here to introduce 2 technical
definitions which shall be useful later.

Definition 4.10 (Maximal Abstracted Form). Given a term r, we call maximal abstracted form of r the
term written dre s.t. dre begins by as many λ-abstractions as the arity of r.

Remark that r ∗→η→ dre. However, the maximal abstracted form of a term may differ from its η→-
normal form because the strict subterms of r may not be in normal form in the first case.

We aim at defining terms fc and fc′ realising the mapping from a type to another one, as long as the
latter is a faithful copy of the former, induced by terms f and f ′. To do so, we present here a notation
enabling to precise which occurrence of a parameter if modified. Implicitly, we imagine a user has
“selected” or “chosen” previously these occurrences.

Definition 4.11 (Choice). We shall write f r for fr if r : π corresponds to an occurrence to be replaced,
and for r otherwise.

Similarly, we shall write g ◦f for g ◦ f if g has domain π and must be replaced, and for g otherwise.

Remark 4.2. This notation will only be used in particular contexts, to obtain subterms f ′(f r) or g ◦f ◦f ′
all the time, for terms f and f ′ s.t. f : π ∼= π′ : f ′.

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 15

Notice that f ′(f r) = r and g ◦f ◦f ′ = g if no replacement is carried out. Else, as f and f ′ are
computable isomorphisms by the relation→R, we have f ′(f r) = f ′(fr)

∗→R r and g ◦f ◦f ′ = g ◦ f ◦
f ′
∗→R dge.

4.2.4. Realising Faithful Copies. We shall write fc : µα (−→c : −→κ)→ µα (
−→
c′ :
−→
κ′) and fc′ : µα (

−→
c′ :
−→
κ′)→

µα (−→c : −→κ) for terms generated from two faithful copies and terms f : π ∼= π′ : f . Informally, making
a difference between parametric, 0-recursive and 1-recursive arguments, we shall have:

fc (ci
−→
rp
−→
r0
−→
r1) = c′i

−−−−→
(f rp)

−−−−→
(fc r0)

−−−−−−−−→
(fc ◦ r1 ◦f ′) .

We can see that choices may only appear in parameters or 1-recursive arguments as π is necessarily
different from the recursion variable in inductive types.

Example 4.4. Suppose we have a type P isomorphic to N through f : N ∼= P : f ′ and the following
two inductive types:

ϕ := µα (c1 : α, c2 : ((N→ N)→ α)→ α, c3 : N→ α→ α, c4 : (N→ α)→ α)

ϕ′ := µα (c′1 : α, c′2 : ((N→ N)→ α)→ α, c′3 : P→ α→ α, c′4 : (P→ α)→ α) .

We decide to replace some occurrences of the parameter N by P. The definition of the isomorphism fc :
ϕ→ ϕ′ is then:

fc c1 := c′1
fc (c2 k) := c′2 k

fc (c3 h t) := c′3 (f h) (fc t)

fc (c4 k) := c′4 (fc ◦ k ◦ f ′) .

As we write in Definition 4.94.9, the replaced parameter for a 1-recursive operator must be the full
domain of the functional argument. For this reason, we could only make a replacement for c2 if we
considered N→ N as a parameter, and not N as it the case here. If one wishes to modify also this part,
it is necessary to make a copy in two steps, that is by defining a sequence of copies ϕ ϕ′ ϕ′′, with

ϕ′′ := µα (c1 : α, c2 : ((P→ P)→ α)→ α, c3 : P→ α→ α, c4 : (P→ α)→ α) .

Definition 4.12. Let ϕ := µα (−→c : −→κ) and ϕ′ := µα (
−→
c′ :
−→
κ′) be faithful copies induced by f : π ∼=

π′ : f ′. Benefiting from the ordering convention stated on p. 1313, every constructor ci has type κi[α :=

ϕ] = −→τ → −→ϕ →
−−−−−−→
(−→σ → ϕ) → ϕ, where −→τ corresponds to parameters, −→ϕ to 0-recursive operators

and
−−−−−−→
(−→σ → ϕ) to 1-recursive operators.

We define the term fc : ϕ→ ϕ′ (and similarly fc′) by

fc := L−→a Mϕ,ϕ
′

where every ai is the→βη-normal form of

λ−→p
−→τ λ−→z

−→ϕ λ−→u
−−−→−→σ→ϕλ−→r

−→
ϕ′λ−→s

−−−−→−→σ→ϕ′ · c′i
−−→
(f p) −→r

−−−−→
(s ◦f ′) .

Remark that fc and fc′ are closed terms, because f and f ′ are (being isomorphisms).

Lemma 4.1. ϕ and ϕ′ are provably isomorphic.

16 DAVID CHEMOUIL

Proof. For every canonical object ci
−→
rp
−→
r0
−→
r1 , we have indeed fc′ (fc x)

∗↔βη x:

fc′ (fc (ci
−→
rp
−→
r0
−→
r1))→βµ fc′ (ai

−→
rp
−→
r0
−→
r1
−−−−→
(fc r0))

−−−−−→
(fc ◦ r1))

∗→β→ fc′ (c′i
−−−→
(f rp)

−−−−→
(fc r0)

−−−−−−−−→
(fc ◦ r1 ◦f ′))

→βµ a
′
i

−−−→
(f rp)

−−−−→
(fc r0)

−−−−−−−−→
(fc ◦ r1 ◦f ′)

−−−−−−−→
(fc′ (fc r0))

−−−−−−−−−−−→
(fc′ ◦ fc ◦ r1 ◦f ′)

∗→β→ ci
−−−−−−−→
(f ′ (f rp))

−−−−−−−→
(fc′ (fc r0))

−−−−−−−−−−−−−→
(fc′ ◦ fc ◦ r1 ◦f ′ ◦f)

We now use the fact that f ′ (fx)
∗↔βη x :

∗↔βη ci
−→
rp
−−−−−−−→
(fc′ (fc r0))

−−−−−−−−→
(fc′ ◦ fc ◦ r1)

By (IH), we notice the particular shape of the last arguments (cf. subsection 4.2.54.2.5):

∗↔βη ci
−→
rp
−→
r0
−−→
dr1e

←η→ ci
−→
rp
−→
r0
−→
r1 .

�

As this isomorphism is provable but not computable, we propose to embed it into the calculus in the
following way.

Definition 4.13 (χ-reduction). Define χ-rewriting by:

(χ1) fc′ (fc r)→χ r

(χ2) fc (fc′ r)→χ r ,

and χ-reduction as its contextual closure.

Lemma 4.2 (Substitutivity and Compatibility).
• r →χ r

′ ⇒ r[x := s]→χ r
′[x := s] ;

• s→χ s
′ ⇒ r[x := s]

∗→χ r[x := s′].

Proof. Easy inductions. �

4.2.5. Convergence. We must now show the convergence of βηχ-reduction. Unfortunately, it does not
seem possible to use a simulation or Akama-Di Cosmo’s Lemma. Still, we wish to use abstract tech-
niques, like adjournment.

The Adjournment Lemma seems adequate to show the termination, but suppose we have a term

L−→t M (fc′ (fc (ci
−→
rp
−→
r0
−→
r1)))

and following reductions:

L−→t M (fc′ (fc (ci
−→
rp
−→
r0
−→
r1)))→χ L−→t M (ci

−→
rp
−→
r0
−→
r1)→βµ ti

−→
rp
−→
r0
−→
r1
−−−−−→
(L−→t Mr0)

−−−−−−−→
(L−→t M ◦ r1) .

Adjourning the χ-reduction w.r.t. the βη-reduction means looking for a term s s.t.

L−→t M (fc′ (fc (ci
−→
rp
−→
r0
−→
r1)))→βµ s

∗→βηχ ti
−→
rp
−→
r0
−→
r1
−−−−−→
(L−→t Mr0)

−−−−−−−→
(L−→t M ◦ r1) ,

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 17

because the only other possible reduction in that case is βµ. But the sequence we end up with is rather of
the following form:

L−→t M (fc′ (fc (ci
−→
rp
−→
r0
−→
r1)))→βµ

∗→βην L−→t M (ci
−→
rp
−→
r0
−−→
dr1e)

∗→βην ti
−→
rp
−→
r0
−−→
dr1e

−−−−−−→
(L−→t M r0)

−−−−−−−−→
(L−→t M ◦ dr1e)

∗→β→ ti
−→
rp
−→
r0
−−→
dr1e

−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1) .

As a consequence, if copies do not contain 1-recursive operator, the proof by adjournment is straight-
forward. Otherwise, one can see in the previous example that adjournment would have been possible
provided the 1-recursive arguments had been in maximal abstracted form. This is what we are going to
do using our Pre-Adjusted Adjournment Lemma.

Lemma 4.3. χ � ⇓ ∧ χ � �.

Proof. Obvious. �

We shall now use the insertion operator in the case where the relation S is a reduction relation con-
taining the inverse of η→:

Definition 4.14 (η→-reduction). We define η→-rewriting (or η→-contraction) by

λxρ · rx→η→ r if x /∈ FV(r),

and η→-reduction as its contextual closure.

Lemma 4.4. η→ can be inserted βηχ w.r.t. η→.

Proof. First of all, we obviously have η→ (βηχ. By Lemma 2.32.3, we now have to show

→η→ B→βη×,1χ ⊆
∗→βηχ B→βη×,1χ B

∗→βηχ B
∗→η→

and
→η→ B→η→ ⊆

∗→βηχ B
∗→η→ .

(see Appendix AA for relevant diagram chasing). �

Lemma 4.5. βηχ � ⇓.

Proof. We define a condition P on terms s.t. 1-recursive arguments be in maximal abstracted form. One
has:

• η→ (βη ;
• βη � ⇓ by Theorem 4.14.1;
• χ � ⇓ by Lemma 4.34.3;
• η→ realises P as 1-recursive arguments are not in applicative position;
• η→ can be inserted in βηχ w.r.t. η→ by Lemma 4.44.4 and η→ � ⇓. Hence, by Lemma 2.22.2, η→

prosimulates and echoes βηχ.
Moreover, as η−1

→ ⊆ η→, we know that for any pair (t, t′) ∈ η→, we have indeed (t′, t) ∈ η→. Using
the Pre-Adjusted Adjournment Lemma, we are left with proving that χ can be adjourned w.r.t. βη under
condition P (see Appendix BB for relevant diagram chasing). �

Lemma 4.6. βηχ � �.

Proof. By Lemma 4.54.5 and Newman’s Lemma, it is enough to show that βηχ � LC. As βη � � and χ � �,
there is only left to show that←βη B→χ ⊆

∗→βηχ B
∗←βηχ. We do not detail fully this easy proof as

confluence is not the focus of this article.
�

18 DAVID CHEMOUIL

4.3. The Symmetric Group. Our purpose in [Soloviev and Chemouil, 2004Soloviev and Chemouil, 2004] was to add some other ex-
tensional rewrite rules on inductive types corresponding to some extensional relations between inductive
types (see [Chemouil, 2005Chemouil, 2005] for a quite detailed explanation of the problem).

As a matter of fact, one purpose was to embed the notion of symmetric group into the reduction rela-
tion. This study began as part of the project ‘Type Theory and Formal Calculus’, sponsored by Liapunov
Institute. The idea, presented in [Flegontov and Soloviev, 2002Flegontov and Soloviev, 2002], consisted in formalising groups acting
on some differential equations into a proof assistant. Equations were represented as vectors of parameters
(seen as elements of an inductive type) and the group itself as symmetries acting on coefficients.

Let us first write [n] for the set {i ∈ N | 1 6 i 6 n}. The set [n] is then represented by an inductive
type, denoted n := µα (cn1 : α, . . . , cnn : α) (there can be various representations, just by changing names
of constructors, of course). Then, to every function f : [n] → [m] corresponds a term f : n → m of the
form Lcmf(1), . . . , c

m
f(n)M

n,m, with m := µα (cm1 : α, . . . , cmm : α).

Consider now the case of a map f : [n] → [n] and the associated term f : n → n. It is then possible
to study the representation of the symmetric group σn in type theory. Let us first recall some basics of
Group Theory.

Definition 4.15 (Group). A group (G, ∗, ·−1, 1) is a set G together with a binary map ∗, a unary map ·−1

and an element 1 ∈ G s.t.:
• ∗ is associative;
• 1 is neutral for ∗;
• every element x has a symmetric x−1 (i.e. s.t. ∀x ∈ G · x ∗ x−1 = x−1 ∗ x = 1).

Definition 4.16 (Permutation). A permutation is a bijection from a finite set to itself.

The carrier of a permutation on a set is made of those elements which aren’t invariant under the
permutation.

Lemma 4.7 (Symmetric Group). The set of permutations on [n], together with composition as the prod-
uct, is a group, called the symmetric group of order n and denoted σn.

Definition 4.17 (Cycle). A cycle on a set E is a permutation s s.t. there is {a1, . . . , an} ⊆ E s.t.

s(ai) = ai+1 for i < n;
s(an) = a1

s(b) = b for b /∈ {a1, . . . , an}.

Theorem 4.2. Every permutation s 6= id can be decomposed in a unique way (up to the ordering of
factors) in a product of cycles with mutually disjoint carriers.

Composition of disjoint cycles is commutative but it remains possible to set up an ordering <, lexi-
cographical for instance, on cycles in order to obtain a canonical decomposition. Hence, every map f :
[n]→ [n] (n > 2) is equal to a product of m mutually disjoint cycles (m > 2) f1, . . . , fm:

f = f1 ◦ · · · ◦ fm (with f1 < . . . < fm).

This obviously leads to the following:

Definition 4.18 (θ′-reduction). We define θ′-reduction by

f r →θ′ f1 (. . . (fm r) . . .)

for every permutation f ∈ σn, for all n > 2, where f is decomposed into m > 2 mutually disjoint
cycles {f1, . . . , fm} ⊆ σn.

Lemma 4.8 (Substitutivity and compatibility).

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 19

• r →θ′ r
′ ⇒ r[x := s]→θ′ r

′[x := s] ;
• s→θ′ s

′ ⇒ r[x := s]
∗→θ′ r[x := s′].

Proof. Easy inductions. �

Lemma 4.9. θ′ � ⇓ ∧ θ′ � �.

Proof. Obvious. �

Let us call βn-reduction the fragment of βµ applying to terms f : n→ n; we then have:

f cni →βn c
n
f(i) for all f : n→ n.

Then, to show termination of βηθ′-reduction, there is a difficulty: if we try to adjourn θ′ w.r.t. βη, we
get the following diagram for βµ-reduction:

C
[
f ci
]

θ′

vv

βµ

&&
C
[
f1 (. . . (fm ci) . . .)

]
βµ **

C
[
cf(i)

]

C
[
f1 (. . . (fm−1 cfm(i)) . . .)

]βµ

∗
==

This suggests to use pre-adjusted adjournment using as a condition the fact that terms must be in βn-
normal form. The lemma must be used in full generality (i.e. not w.r.t. a reduction). Notice that it would
be hard to consider a deterministic reduction relation β′n containing the inverse of βn. Indeed, the inverse
image of a constructor ci by the relation βn is generally of cardinality strictly greater than 1. Intuitively,
βn is not injective.

Nevertheless, after a first observation of the situation, we can see that the inverse image by βn is
finite and that βn-redices are closed terms: therefore, it remains possible to build systematically S by
choosing a term g s.t. g ci →βn cf(i). This shall only collapse, be duplicated or be reduced (even after
the decomposition of g itself) to cf(i).

It is this remark which motivated the definition of insertion as not necessarily depending on a reduction
relation.

Definition 4.19. Let f be a permutation in σn. We now define a binary relation Sf on terms the following
way. Given two terms a and a′, tag with different numbers every subterm of a′ of the form cf(i), for all i,
and denote by La′ the list of these labelled constructors.

Then a′ Sf a if there exists a substitution ζ, mapping a labelled constructor to a term, s.t.:
• a′ζ = a;
• and, for all c`f(i) ∈ La′ , one has c`f(i)ζ

∗→βn cf(i) (where ` is a label).

It is now important to notice that it is not enough to show that βn-reduction can be inserted in βηθ′

w.r.t. Sf . Indeed, a βn-redex happens to be also a θ′-redex. Write θ′ u βn for the set of θ′-reductions
whose left-hand sides are βn-redices, that is of the form f ci (obviously θ′ u βn ⊆ θ′).

Lemma 4.10. βn ∪ (θ′ u βn) � ⇓.

Proof. It is enough to show that βnθ′ � ⇓, which can be deduced from βn � ⇓, θ′ � ⇓ and the fact
that→βn ⊆ →θ′ B

+→βn . �

Lemma 4.11. (i) Sf prosimulates βηθ′ ;
(ii) Sf echoes βηθ′.

20 DAVID CHEMOUIL

Proof. (i) Obvious.
(ii) We must show that

∀ a0 · ∀ a′ Sf a0 · ∃N ∈ N∗ · ∀ a0 →βηθ′ · · · →βηθ′ aN ·

∃ k ∈ {1, . . . , N} · ∃ b′ Sf ak · a′
+→βηθ′ b

′ .

Let a0 and a′ be s.t. a′ Sf a0. In other words, there is a substitution ζ mapping a term to a labelled
constructor s.t. a′ζ = a0 and, for all c`f(i) ∈ La′ , we have c`f(i)ζ

∗→βn cf(i).
Now, consider all possible reduction sequences beginning by a0 and taken from βn ∪ (θ′ u βn).

As this latter relation terminates (by Lemma 4.104.10), there exists a bound — let us write it N0 — to
the length of these sequences. Define N := N0 + 1.

Let there be an arbitrary sequence of length N of the shape a0 →βηθ′ · · · →βηθ′ aN . We must
find a number k ∈ {1, . . . , N} s.t. there is a b′ s.t. b′ Sf a1 and a′ +→βηθ′ b

′. There are two
possibilities:
• Either we have a0 →βηθ′\βn a1: in this situation, it is enough to put k = 1 and to apply the

same reduction on a′ thus obtaining b′ s.t. b′ Sf a1. One should notice here that the value
of N is not important when such a reduction is applied to a0. This comes from the fact that
subterms of a0 in the image of ζ are βn-redices and therefore, here, can only collapse or be
duplicated (in the general case, they may also enjoy a βn-reduction). The echoing is therefore
obviously determined.

• Or, we have a0 →βn∪(θ′uβn) a1. In that case, we can glance through the sequence a0 →βn∪(θ′uβn)

· · · →βηθ′ aN until reaching the first occurrence of a reduction different from βn and θ′ u βn.
It necessarily exists as N > N0: its ordering number is the sought k and it is enough to echo it
the same way than in the previous case.

�

Lemma 4.12. βηθ′ � ⇓.

Proof. We define a condition P on terms s.t. these are in βn-normal form. We have:
• βnθ′ (βη ;
• βη � ⇓ by Theorem 4.14.1 ;
• θ′ � ⇓ by Lemma 4.94.9 ;
• βnθ′ obviously realises P (in fact, βn is enough) ;
• Sf prosimulates and echoes βηθ′ by Lemma 4.114.11.

By the Pre-Adjusted Adjournment Lemma (Lemma 3.13.1), we just need to show that θ′ is adjournable
w.r.t. βη under condition P (see Appendix CC for relevant diagram chasing). �

Lemma 4.13. βηθ′ � �.

Proof. As βηθ′ � ⇓ and βη � � and θ′ � � by Lemmas 4.124.12 and 4.94.9 and Theorem 4.14.1, it is enough to
show that βη and θ′ locally commute. We do not detail this easy proof here as confluence is not the focus
of this article. �

APPENDIX A. PROOF OF LEMMA 4.44.4

Lemma 4.44.4. η→ can be inserted βηχ w.r.t. η→.

Proof. First of all, we obviously have η→ (βηχ. By Lemma 2.32.3, we now have to show

→η→ B→βη×,1χ ⊆
∗→βηχ B→βη×,1χ B

∗→βηχ B
∗→η→

and
→η→ B→η→ ⊆

∗→βηχ B
∗→η→ .

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 21

We do so by considering the possible overlaps for a context C [], without detailing too much this demon-
stration which is quite simple:

• β→ :
C [λy · (λxr)sy]

η→

vv

β→

))
C [(λxr)s]

β→))

C [λy · r[x := s]y]

η→tt
C [r[x := s]]

C [(λxλy · ry)s]

η→

vv

β→

))
C [(λxr)s]

β→

$$

C [(λy · ry)[x := s]y]

C [λy · r[x := s]y]

η→ss
C [r[x := s]]

C [(λy · (λxr)y)s]

η→

vv
β→2

��

C [(λxr)s]

β→ **
C [r[x := s]]

C [(λxr)(λy · sy)]

η→

vv

β→

))
C [(λxr)s]

β→ **

C [r[x := λy · sy]]

η→

∗
ss

C [r[x := s]]

• β×1 (the same for β×2) :

C [λx · p1〈r, s〉x]

η→

vv

β×1

((
C [p1〈r, s〉]

β×1 ++

C [λx · rx]

η→ss
C [r]

22 DAVID CHEMOUIL

C [p1〈λx · rx, s〉]
η→

vv

β×1

((
C [p1〈r, s〉]

β×1 ++

C [λx · rx]

η→ss
C [r]

C [p1〈r, λx · sx〉]
η→

vv
β×1

��

C [p1〈r, s〉]

β×1 ++
C [r]

• βµ : for this reduction, one case is more complex.
– We may simply have:

C
[
λx · L−→t M (ci

−→r) x
]

η→

yy

βµ

((

C
[
L−→t M (ci

−→r)
]

βµ &&

C

[
λx · ti −→r

−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)x

]

η→uu

C

[
ti
−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)

]

– Or the rewriting step may happen on a recursion terms:
∗ If q the ith recursion term, we end up with:

C
[
L−→p , λx · qx,−→r , s,−→t M (ci

−→u)
]

η→

{{

βµ

&&

C
[
L−→p , q,−→r , s,−→t M (ci

−→u)
]

βµ $$

C

[
(λx · qx) −→u

−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]

η→/β→ww

C

[
q −→u
−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 23

∗ Otherwise C
[
L−→p , λx · qx,−→r , s,−→t M (ci

−→u)
]

η→

tt

βµ

��

C
[
L−→p , q,−→r , s,−→t M (ci

−→u)
]
βµ **

C

[
s −→u
−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]
– Finally, the rewriting step may concern one out of arguments, writing −→r = (−→p , q,−→s)

and −→u = (−→p , λx · qx,−→s), which is likely to be parametric or 1-recursive:

C
[
L−→t M (ci

−→u)
]

η→

yy

βµ

((

C
[
L−→t M (ci

−→r)
]

βµ &&

C

[
ti
−→u
−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]

η→
∗
vv

C

[
ti
−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)

]
• η×,1χ : in C [r], r cannot be contracted as it is not of functional type.
• η→ : C [λx · rx]

η→

yy
C [r]

η→ ''
C [λx · rx]

�

APPENDIX B. PROOF OF LEMMA 4.54.5

Lemma 4.54.5. βηχ � ⇓.

Proof. We define a condition P on terms s.t. 1-recursive arguments be in maximal abstracted form. One
has:

• η→ (βη ;
• βη � ⇓ by Theorem 4.14.1;
• χ � ⇓ by Lemma 4.34.3;
• η→ realises P as 1-recursive arguments are not in applicative position;
• η→ can be inserted in βηχ w.r.t. η→ by Lemma 4.44.4 and η→ � ⇓. Hence, by Lemma 2.22.2, η→

prosimulates and echoes βηχ.
Moreover, as η−1

→ ⊆ η→, we know that for any pair (t, t′) ∈ η→, we have indeed (t′, t) ∈ η→. Using
the Pre-Adjusted Adjournment Lemma, we are left with proving that χ can be adjourned w.r.t. βη under
condition P

24 DAVID CHEMOUIL

As χ-reduction is context insensitive and is compatible (Lemma 4.24.2), the contexts C [] we consider,
focussing on possible overlaps, have a simple form.

• β→ :

C
[
fc′ (fc ((λxr)s))

]
χ

vv

β→

))
C [(λxr)s]

β→ **

C
[
fc′ (fc r[x := s])

]
χss

C [r[x := s]]

C
[
(λx · fc′ (fc r))s

]
χ

vv

β→

))
C [(λxr)s]

β→

%%

C
[
fc′ (fc r)[x := s]

]

C
[
fc′ (fc r[x := s])

]
χss

C [r[x := s]]

C
[
(λxr) (fc′ (fc s))

]
χ

vv

β→

))
C [(λxr)s]

β→ **

C
[
r[x := fc′ (fc s)]

]
χ

∗

ss
C [r[x := s]]

• β×1
(the same for β×2

) :

C
[
fc′ (fc (p1〈r, s〉))

]
χ

vv

β×1

((
C [〈r, s〉]

β×1 ++

C
[
fc′ (fc r)

]
χ

ss
C [r]

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 25

C
[
p1〈fc′ (fc r), s〉

]
χ

vv

β×1

((
C [p1〈r, s〉]

β×1 ++

C
[
fc′ (fc r)

]
χ

ss
C [r]

C
[
p1〈r, fc′ (fc s)〉

]
χ

vv
β×1

��

C [p1〈r, s〉]

β×1 ++
C [r]

• βµ : for this reduction, one case is a little bit more complex.
– We may have:

C
[
fc′ (fc (L−→t M (ci

−→r)))
]

χ

yy

βµ

))

C
[
L−→t M (ci

−→r)
]

βµ &&

C

[
fc′ (fc (ti

−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)))

]
χuu

C

[
ti
−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)

]

– Recall that, because of the condition P , 1-recursive arguments are in maximal abstracted
form, hence the following diagram:

C
[
L−→t M (fc′ (fc (ci

−→
rp
−→
r0
−→
r1)))

]
χ

ww

βη

+ ''

C
[
L−→t M (ci

−→
rp
−→
r0
−→
r1)
]

C
[
L−→t M (ci

−→
rp
−→
r0
−→
r1)
]

– The χ-redex can be a recursion term:

26 DAVID CHEMOUIL

∗ If fc′ (fc q) is the ith term, then we necessarily have −→u = ∅ :

C
[
L−→p , fc′ (fc q),−→r , s,−→t M ci

]
χ

ww

βµ

$$
C
[
L−→p , q,−→r , s,−→t M ci

]
βµ ++

C
[
fc′ (fc q)

]
χ

uu
C [q]

∗ Otherwise, if it is s, for instance:

C
[
L−→p , fc′ (fc q),−→r , s,−→t M (ci

−→u)
]

χ

tt

βµ

��

C
[
L−→p , q,−→r , s,−→t M ci

]
βµ **

C

[
s −→u
−−−−−−−−−−−−−−→
(L−→p , q,−→r , s,−→t M uo)

−−−−−−−−−−−−−−−→
(L−→p , q,−→r , s,−→t M ◦ u1)

]
– Finally, the χ-redex can be an argument, in which case we have the following diagram,

writing −→r = (−→p , q,−→s) and −→u = (−→p , fc′ (fc q),−→s) :

C
[
L−→t M (ci

−→u)
]

χ

yy

βµ

((

C
[
L−→t M (ci

−→r)
]

βµ &&

C

[
ti
−→u
−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]
χ

∗

vv

C

[
ti
−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)

]
• For η-reduction, no interesting overlap is possible as r is necessarily of inductive type in fc′ (fc r)

and therefore cannot enjoy a η-reduction.
�

APPENDIX C. PROOF OF LEMMA 4.124.12

Lemma 4.124.12. βηθ′ � ⇓.

Proof. We define a condition P on terms s.t. these are in βn-normal form. We have:
• βnθ′ (βη ;
• βη � ⇓ by Theorem 4.14.1 ;
• θ′ � ⇓ by Lemma 4.94.9 ;
• βnθ′ obviously realises P (in fact, βn is enough) ;

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 27

• Sf prosimulates and echoes βηθ′ by Lemma 4.114.11.

By the Pre-Adjusted Adjournment Lemma (Lemma 3.13.1), we just need to show that θ′ is adjournable
w.r.t. βη under condition P .

As θ′-reduction is compatible and context insensitive (Lemma 4.84.8), the contexts C [] that we consider,
focussing on the possible overlaps, enjoy a simple form.

• β→ :

C
[
f ((λxr)s)

]
θ′

uu

β→

''
C
[
f1 (. . . (fm ((λxr)s)) . . .)

]
β→ **

C
[
f r[x := s]

]
θ′uu

C
[
f1 (. . . (fm r[x := s]) . . .)

]
C
[
(λx f r)s

]
θ′

tt

β→

((
C
[
(λx f1 (. . . (fm r) . . .))s

]
β→ ++

C
[
(f r)[x := s]

]

C
[
(f1 (. . . (fm r) . . .))[x := s]

]
C
[
f r[x := s]

]
θ′tt

C
[
f1 (. . . (fm r[x := s]) . . .)

]
C
[
(λxr) (f s)

]
θ′

uu

β→

''
C
[
(λxr) (f1 (. . . (fm s) . . .))

]
β→ **

C
[
r[x := f s]

]
θ′

∗

uu
C
[
r[x := f1 (. . . (fm s) . . .)]

]
• β×1 (the same for β×2) :

C
[
f (p1〈r, s〉)

]
θ′

tt

β×1

''
C
[
f1 (. . . (fm (p1〈r, s〉) . . .)

]
β×1 ++

C
[
f r
]

θ′uu
C
[
f1 (. . . (fm r) . . .)

]

28 DAVID CHEMOUIL

C
[
p1〈f r, s〉

]
θ′

tt

β×1

''
C
[
p1〈f1 (. . . (fm r) . . .), s〉

]
β×1 ++

C
[
f r
]

θ′uu
C
[
f1 (. . . (fm r) . . .)

]

C
[
p1〈r, f s〉

]
θ′

uu
β×1

��

C
[
p1〈r, f1 (. . . (fm s) . . .)〉

]
β×1 ,, C [r]

• βµ. For this reduction, the situation is a bit more complex:

– Notice first that it is not possible to have a context of the form C
[
L−→t M (f ci)

]
because it

would not be in βn-normal form. However, we may have:

C
[
f (L−→t M ci)

]
θ′

uu

βµ

''
C
[
f1 (. . . (fm (L−→t M ci)) . . .)

]
βµ ++

C
[
f ti
]

θ′uu
C
[
f1 (. . . (fm ti) . . .)

]
– Otherwise, the θ′-redex can appear as a recursion term.

∗ Either f q is the ith recursion term, in which case we have:

C
[
L−→p , f q,−→r , s,−→t M ci

]
θ′

uu

βµ

""
C
[
L−→p , f1 (. . . (fm q) . . .),

−→r , s,−→t M ci
]

βµ **

C
[
f q
]

θ′xx
C
[
f1 (. . . (fm q) . . .)

]

AN INSERTION OPERATOR PRESERVING INFINITE REDUCTION SEQUENCES 29

∗ Otherwise this term can be s :

C
[
L−→p , f q,−→r , s,−→t M (ci

−→u)
]

θ′

zz

βµ

%%

C
[
L−→p , f1 (. . . (fm q) . . .),

−→r , s,−→t M ci
]

βµ

##

C

[
s −→u

−−−−−−−−−−−−−−−−→
(L−→p , f q,−→r , s,−→t M u0)

−−−−−−−−−−−−−−−−−→
(L−→p , f q,−→r , s,−→t M ◦ u1)

]

θ′

∗

zz

C

[
s −→u

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(L−→p , f1 (. . . (fm q) . . .),

−→r , s,−→t M u0)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(L−→p , f1 (. . . (fm q) . . .),

−→r , s,−→t M ◦ u1)

]
– Finally the θ′-redex can appear as a parameter of a constructor. Write −→u = (−→p , f q,−→s)

and −→r = (−→p , f1 (. . . (fm q) . . .),
−→s):

C
[
L−→t M (ci

−→u)
]

θ′

xx

βµ

((

C
[
L−→t M (ci

−→r)
]
βµ ''

C

[
ti
−→u
−−−−−−→
(L−→t M u0)

−−−−−−−→
(L−→t M ◦ u1)

]

θ′uu

C

[
ti
−→r
−−−−−−→
(L−→t M r0)

−−−−−−−→
(L−→t M ◦ r1)

]
• For η, there is no interesting overlap because of typing issues.

�

ACKNOWLEDGEMENT

The author wishes to thank Sergei Soloviev for useful advice and Freiric Barral for interesting discus-
sions; as well as the anonymous referees for their detailed and fruitful comments.

REFERENCES

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cambridge University Press, New
York.

[Bachmair and Dershowitz, 1986] Bachmair, L. and Dershowitz, N. (1986). Commutation, transformation, and termination. In
Siekmann, J. H., editor, Proceedings of the Eighth International Conference on Automated Deduction (Oxford, England), volume
230 of Lecture Notes in Computer Science, pages 5–20, Berlin. Springer-Verlag.

[Barendregt, 1984] Barendregt, H. P. (1984). The Lambda Calculus - Its Syntax and Semantics. North-Holland, Amsterdam.
[Chemouil, 2005] Chemouil, D. (2005). Isomorphisms of simple inductive types through extensional rewriting. Mathematical
Structures in Computer Science, 15(5):875–915.

[Chemouil and Soloviev, 2003] Chemouil, D. and Soloviev, S. (2003). Remarks on isomorphisms of simple inductive types. In
Geuvers, H. and Kamareddine, F., editors, Electronic Notes in Theoretical Computer Science, volume 85. Elsevier.

[Di Cosmo, 1995] Di Cosmo, R. (1995). Isomorphisms of Types: From λ-Calculus to Information Retrieval and Language Design.
Progress in Theoretical Computer Science. Birkhäuser, Boston, MA.

30 DAVID CHEMOUIL

[Di Cosmo, 1996a] Di Cosmo, R. (1996a). A brief history of rewriting with extensionality. In Fairouz KAMAREDDINE, ed., Inter-
national Summer School on Type Theory and Rewriting. Slides.

[Di Cosmo, 1996b] Di Cosmo, R. (1996b). On the power of simple diagrams. In Ganzinger, H., editor, Proceedings of the 7th
International Conference on Rewriting Techniques and Applications (RTA-96), volume 1103 of LNCS, pages 200–214, New
Brunswick, NJ, USA. Springer-Verlag.

[Di Cosmo and Kesner, 1993] Di Cosmo, R. and Kesner, D. (1993). Simulating expansions without expansions. Technical Report
RR-1911, INRIA.

[Di Cosmo and Kesner, 1996a] Di Cosmo, R. and Kesner, D. (1996a). Combining algebraic rewriting, extensional lambda calculi,
and fixpoints. Theoretical Computer Science, 169(2):201–220.

[Di Cosmo and Kesner, 1996b] Di Cosmo, R. and Kesner, D. (1996b). Rewriting with extensional polymorphic lambda-calculus.
Lecture Notes in Computer Science, 1092.

[Doornbos and von Karger, 1998] Doornbos, H. and von Karger, B. (1998). On the union of well-founded relations. Logic Journal
of the IGPL, 6(2):195–201.

[Flegontov and Soloviev, 2002] Flegontov, A. and Soloviev, S. (2002). Type theory in differential equations. In VIII International
Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACA’02), Moscou.

[Geser, 1990] Geser, A. (1990). Relative Termination. PhD thesis, Universität Passau, Passau, Germany.
[Girard et al., 1988] Girard, J.-Y., Lafont, Y., and Taylor, P. (1988). Proofs and Types. Cambridge Tracts in Theoretical Computer

Science 7. Cambridge University Press.
[Lengrand, 2005] Lengrand, S. (2005). Induction principles as the foundation of the theory of normalisation: Concepts and tech-

niques. Technical report, PPS laboratory, Université Paris 7. available at http://hal.ccsd.cnrs.fr/ccsd-00004358.
[Matthes, 2000] Matthes, R. (2000). Lambda calculus : A case for inductive definitions. Lecture notes for ESSLLI’2000 (European

Summer School in Logic, Language and Information).
[Soloviev and Chemouil, 2004] Soloviev, S. and Chemouil, D. (2004). Some algebraic structures in lambda-calculus with inductive

types. In Berardi, S., Coppo, M., and Damiani, F., editors, Proc. TYPES’03, volume 3085 of Lecture Notes in Computer Science.
Springer.

[Terese, 2003] Terese (2003). Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press.

	1. Introduction
	1.1. Motivation
	1.2. Terminology and Notations
	1.3. The Adjournment Lemma
	1.4. Example
	1.5. Outline of the Paper

	2. An Insertion Operator
	2.1. Intuition
	2.2. The Lemma
	2.3. Some Sufficient Conditions

	3. An Application of Insertion in Rewriting: Pre-Adjusted Adjournment
	4. Applications in Lambda-Calculus
	4.1. The Setting
	4.2. Copies
	4.3. The Symmetric Group

	Appendix A. Proof of Lemma 4.4
	Appendix B. Proof of Lemma 4.5
	Appendix C. Proof of Lemma 4.12
	Acknowledgement
	References

