An insertion operator preserving infinite reduction sequences

Abstract : A common way to show the termination of the union of two abstract reduction systems, provided both systems terminate, is to prove that they enjoy a specific property (some sort of 'commutation' for instance). This specific property is actually used to show that, for the union not to terminate, one of the systems must itself be non-terminating, which leads to a contradiction. Unfortunately, the property may be impossible to prove because some of the objects that are reduced do not enjoy an adequate form. Hence the purpose of this paper is threefold: - First, it introduces an operator enabling us to insert a reduction step on such an object, and therefore to change its shape, while still preserving the ability to use the property. Of course, some new properties will need to be verified. - Second, as an instance of our technique, the operator is applied to relax a well-known lemma stating the termination of the union of two termination abstract reduction systems. - Finally, this lemma is applied in a peculiar and then in a more general way to show the termination of some lambda calculi with inductive types augmented with specific reductions dealing with: (i) copies of inductive types; (ii) the representation of symmetric groups.
Type de document :
Article dans une revue
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2008, 18 (4), pp.693-728. 〈10.1017/S0960129508006816〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00782799
Contributeur : David Chemouil <>
Soumis le : mercredi 30 janvier 2013 - 17:07:13
Dernière modification le : mercredi 12 septembre 2018 - 17:46:02
Document(s) archivé(s) le : samedi 1 avril 2017 - 12:54:14

Fichier

v-hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

David Chemouil. An insertion operator preserving infinite reduction sequences. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2008, 18 (4), pp.693-728. 〈10.1017/S0960129508006816〉. 〈hal-00782799〉

Partager

Métriques

Consultations de la notice

363

Téléchargements de fichiers

70