Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation

Abstract : In numerous industrial CFD applications, it is usual to use two (or more)different codes to solve a physical phenomenon: where the flow is a priori assumed to have a simple behavior, a code based on a coarse model is applied, while a code based on a fine model is used elsewhere. This leads to a complex coupling problem with fixed interfaces. The aim of the present work is to provide a numerical indicator to optimize to position of these coupling interfaces. In other words, thanks to this numerical indicator, one could verify if the use of the coarser model and of the resulting coupling does not introduce spurious effects. In order to validate this indicator, we use it in a dynamical multiscale method with moving coupling interfaces. The principle of this method is to use as much as possible a coarse model instead of the fine model in the computational domain, in order to obtain an accuracy which is comparable with the one provided by the fine model. We focus here on general hyperbolic systems with stiff relaxation source terms together with the corresponding hyperbolic equilibrium systems. Using a numerical Chapman-Enskog expansion and the distance to the equilibrium manifold, we construct the numerical indicator. Based on several works on the coupling of different hyperbolic models, an original numerical method of dynamic model adaptation is proposed. We prove that this multiscale method preserves invariant domains and that the entropy of the numerical solution decreases with respect to time. The reliability of the adaptation procedure is assessed on various 1D and 2D test cases coming from two-phase flow modeling.
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861
Liste complète des métadonnées

Littérature citée [62 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00782637
Contributeur : Nicolas Seguin <>
Soumis le : mercredi 8 octobre 2014 - 10:47:05
Dernière modification le : lundi 16 juillet 2018 - 11:58:02
Document(s) archivé(s) le : vendredi 14 avril 2017 - 13:01:29

Fichier

adaptation-last.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

  • HAL Id : hal-00782637, version 2

Collections

Citation

Hélène Mathis, Clément Cancès, Edwige Godlewski, Nicolas Seguin. Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation. Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. 〈hal-00782637v2〉

Partager

Métriques

Consultations de la notice

1540

Téléchargements de fichiers

280