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Abstract— This paper presents a modeling and identification
procedure for Radio Frequency Power Amplifier (PA) in con-
tinuous time representation. The proposed method is based
on a combined approach using time and frequency domain.
The microwave PA dynamics are described by the continuous
Hammerstein model. The distortion function coefficients were
estimated using Least Mean Squares (LMS) method that min-
imizes the squared error based on baseband output data. The
coefficients of dynamic block are extracted using an iterative
instrumental variable with measured PA frequency responses.
To demonstrate the feasibility of the identification method in
experimental results we used a standard mobile PA at 1.85GHz.

I. I NTRODUCTION

The microwave power amplifier (PA) represents one of the
major element of modern wireless communication systems.
The modeling and simulation of PA nonlinearities and memory
effects, in particular their impacts in a transmission digital
system, are a current topic of intensive research worldwide
[1][2]. Numerous approaches in PA identification area have
been developed to characterize the input to output complex
envelope relationship [3][4].

Block-structured models are used to model Radio Frequency
(RF) PA system that can be represented by interconnections
of linear dynamics and static nonlinear elements [1]. Ham-
merstein model is one of these cascaded models that com-
posed from static nonlinearity followed by a linear dynamic
system [5]. In literature, the existing identification methods of
Hammerstein model can be divided into time-domain iterative
methods, stochastic methods separable least squares methods
and frequency domain methods [6]. In the proposed method,
a mixed time and frequency domain identification approach
was considered to analyze baseband data from microwave
amplifier. The ultimate aim is the estimation of the PA
model parameters by minimizing the quadratic estimation error
based on improved time-delay data for nonlinear function and
frequency response for the memory effect of the Hammerstein
model.

For frequency-domain identification, gain and phase-shift
measurements are used commonly to construct a quadratic
criterion that is minimized by ordinary LMS algorithm [7].
The main problem in these techniques is assuring the optimal
convergence under noisy sampled data [7][8]. To guarantee

robustness and consistent estimates in presence of output
disturbances, we introduce the Instrumental Variables (IV) on
the identification procedure. This frequency-domain procedure
with IV estimator is the major contribution of this paper.

Two experimental setups dedicated to radio frequency with
baseband signal transmission were performed and used in
order to validate this technique. The results confirm the PA
characterization accuracy using mixed time/frequency repre-
sentation.

II. PA M ODEL DESCRIPTION

The PA behaviour is modeled by a continuous Hammerstein
model operating on baseband quadrature I/Q time-domain
waveforms. In this model, the complex low-pass equivalent
representation of the communication signal is used to avoidthe
high sampling rate required at the carrier frequency. As shown
in Fig. 1, this model consists of static nonlinearity followed
by a multivariable Linear Time Invariant (LTI) system.
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Fig. 1. Radio frequency power amplifier model

The nonlinear distortion of the amplifier usually results from
nonlinear distortion processes in the transistors that make up
the amplifier. In the model, the static distortion function gives
a complex envelopẽVP = IP + j.QP of the transmitted input
signalṼin = Iin+j.Qin according to the polynomial function
composed by even terms which produces harmonic distortions
inside the PA bandwidth. A delay is added for each order to
improve nonlinear memory modeling:

ṼPk
=

P∑

p=0

c̃2p+1 · |Ṽink
|2p.Ṽink−τ2p+1

(1)



wherec̃2p+1 are the complex coefficients of the power series,
τ2p+1 are the delays for each component;Ṽink

andṼPk
are the

sampled input and output complex envelopes of the nonlinear
static model.

The dynamical model including memory effects caused by
the PA can be expressed with a differential equation. As shown
in Fig. 1, the input̃VP to outputṼout = Iout+ j Qout relation
of this nth order filter can be written as:

H̃(jω) =
Iout

IP
=
Qout

QP
=

1 +
∑m

i=1
bi.(jω)i∑n

i=0
ai.(jω)i

(2)

where the coefficients{ak} and {bk} are real scalars that
define the model.

Our objective is to identify the model parameters according
to time domain and frequency response of the amplifier. Thus,
we define the transposed parameters vector:

θ = [ a0 · · · an−1 b1 · · · bm︸ ︷︷ ︸
θF

c̃1 · · · c̃2P+1︸ ︷︷ ︸
θP

]T (3)

Note that θ will be determined as a combination of two
subvectors;θP describing the memoryless function andθF
corresponding to the filter parameters. In the next sectionswe
present an identification procedure based on two steps:

• identification of θP using the two-tone test and Least
Mean Squares algorithm (LMS),

• identification of θF using a new procedure based on
frequency gain and phase responses and unbiased LMS
method with IV estimator.

A. Memoryless function identification

The identification principle of nonlinear parameterθP , using
complex envelope waveforms, is shown in Fig. 2.
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Fig. 2. PA identification scheme for static analysis

The PA characteristics are performed by a two-tone test
signal applied on baseband inputsIin andQin at fixed low
frequency and high input level. In these conditions, the PA
filtering effects are assumed negligible according to nonlinear
dynamics. To applied a LMS algorithm, it is necessary to
write the relation (1) as a linear regression according to the
parameters̃c2p+1 such as:

ṼPk
= ϕT

k
· θP (4)

with ϕ
k

= [Ṽink−τ1
|Ṽink

|2Ṽink−τ3
· · · |Ṽink

|2P Ṽink−τ2P +1
]T

is the regressor vector.
For a time-domain acquisition withK data of input complex

envelopeṼin and disturbed output noted̃V ∗

out, a solution for
the coefficients is obtained by minimizing the normalized
mean-squared error with LMS algorithm [7] such as:

θ̂P =

(
K∑

k=1

ϕ
k
.ϕH
k

)−1

·

K∑

k=1

ϕ
k
. Ṽ ∗

out (5)

where :

(.)H denotes transpose-conjugate transformation

Noted that vector estimatêθP is asymptotically unbiased
because the regressors vectorsϕ

k
are not correlated with the

measured output̃V ∗

out [9].

B. Filter identification using frequency response

Fig. 3 shows the principle of filter parametersθF identifi-
cation from PA frequency response data using LMS algorithm
with iterative IV estimator.
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Â

ψ̂

+
_

+
_

Iterative IV 
estimator

)( ωjH

A ψ

Fθ̂

A

ψ

Fig. 3. PA identification scheme for dynamic identification

Assume that we have measuredBodediagram of the trans-
mission system which correspond to gainAk and phase-shift
ψk for K values of frequencyωk. At any frequencyωk, we
can write:

1 +
∑m

i=1
bi.(jωk)

i

∑n

i=0
ai.(jωk)i

= G̃ωk
(6)

where G̃ωk
= Ak · e

j ψk

We can rewrite the above equation as:

n∑

i=0

ai.G̃ωk
.(jωk)

i −

m∑

i=1

bi.(jωk)
i = 1 (7)

or into linear regression version:

ϕT
k
· θF = 1 (8)

with ϕ
k

= [ G̃ωk
· · · G̃ωk

.(jωk)
n − (jωk) · · · − (jωk)

m ]T



The suggested method shown in Fig. 3 minimizes the
following quadratic criterion:

J =
K∑

k=1

∣∣∣∣∣

n∑

i=0

ai.G̃ωk
.(jωk)

i −
m∑

i=1

bi.(jωk)
i − 1

∣∣∣∣∣

2

(9)

Becauseai and bi are non-complex parameters, it is nec-
essary to construct a new regressors vectors with scalars
coefficients. Splittingϕ

k
into real and imaginary partsϕ

Rk

ansϕ
Ik

respectively, and then equating the real and imaginary
parts on both sides of the relation (8):

[
ϕT
Rk

ϕT
Ik

]
. θF =

[
1

0

]
(10)

For theK pulsationsωk, we obtainK sets of the above
relation and we can write a global system:

φ . θ̂F = Y (11)

whereY = [ 1 · · · 1 0 · · · 0 ]T andφ is a regression matrix
composed byϕ

Rk
andϕ

Ik
.

Then, the least-squares estimate notedθ̂FLS
is given by:

θ̂FLS
= (φT φ)−1 φT Y (12)

When the gain and phase-shift data are disturbed, which
is the case on experimental tests, the LMS algorithm in the
above relation gives biased and inconsistent estimates because
the regressors are correlated with the output measurements. A
common strategy for dealing with this bias problem is to use
Instrumental Variable (IV) estimator [7]. The principal idea of
the IV method is to premultiply the regression matrixφ in (11)
with a suitable matrixZ = [z1 z2 · · · zK ] whose elementszk
are uncorrelated with output disturbances. This gives a new
estimate parameters calledIV estimates such as:

θ̂FIV
= (ZT φ)−1 ZT Y (13)

The elements of the regression matrixZ are called the
instruments or ’instrumentals variables’. These elementsare
usually formed as delayed and filtered values of the inputs
and/or the outputs and have the same structure as the regressors
vectorsϕ

k
. An original choice is based on the use of the

estimated parameterŝθF for simulation of frequency response
Ĥ(jω) and generate estimates gain̂A and phase-shift̂ψ. With
these uncorrelated variables, we construct the matrixZ defined
by a new regressor vector :

zk = [ Ĝωk
· · · Ĝωk

.(jωk)
n − (jωk) · · · − (jωk)

m ]T (14)

whereĜωk
= Âk · e

j ψ̂k

Noted that each regressor vectorzk is associated with a
prospected frequencyωk. This method can be used iteratively
with a parallel model initialized with LMS estimateŝθFLS

.

III. E XPERIMENTAL RESULTS

In this section, the LMS and IV algorithms presented
previously are used to identify the nonlinearity function and
transfer function model of a standard amplifier for mobile
communication.

A. PA setups and characteristics

The power amplifier is a commercial APM1855 from AD-
VANCED SEMICONDUCTOR BUSINESS INC. The quadrature
modulator AD8349 and demodulator AD8347 are inserted at
the input and output of the PA. They are standard commercial
units from Analog Devices. The local oscillator frequency is
1.85GHz obtained from Digital Modulation Signal Generator
(Anritsu MG 3660A). Two measurement setups, shown in Fig.
4, are used:

(a) the left figure (4.a) illustrates time-domain data acquisi-
tion. The two-tone signal at low frequency equal to 5 kHz
are delivered by a Tektronix AFG3102 Arbitrary function
Generator connected to PC control. Input and output data
are obtained from YOKOGAWA Digital Oscilloscope with a
sampling period equal to 10ns.

(b) figure (4.b) shows the test bench used to obtain the fre-
quency response. A network analyzer generates the frequency
sweep signal and measures the frequency transfer function.
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Fig. 4. PA setups for (a) time-domain analysis (b) frequency-domain analysis.

Fig. 5 illustrates nonlinear characteristics appearing asampli-
tude to amplitude distortion (AM/AM) and amplitude to phase
distortion (AM/PM).
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Fig. 5. AM/AM and AM/PM characteristics of used PA

B. Identification results

All estimation results presented here were produced using
20 Monte-Carlo acquisitions and the informations on the
model parameters and figures are based on the mean of those
values.

For nonlinear function identification, a PA is driven in
saturation with a two-tone test at frequenciesf1,2 = 1850 ±



5kHz. Fig.6 shows a measuredI channel normalized output
waveform and its approximation with a 5th order (P = 2)
polynomial function:

ṼPk
= c̃1.Ṽink−τ1

+ c̃3.|Ṽink
|2Ṽink−τ3

+ c̃5.|Ṽink
|4Ṽink−τ5
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For the 20 realizations with normalized data, LMS algorithm
described in relation (5) gives:






c̃1 = 1, 2178− j 4, 052.10−2

c̃2 = −2, 144.10−1 + j 2, 453.10−2

c̃3 = −7, 678.10−2 − j 1, 631.10−2

with τ1 = 6, τ3 = 45 andτ5 = 120 samples delay.

The estimated filter is a 3th order transfer function with one
zero (n = 3 poles andm = 1 zero) corresponding to the
minimum value of the cost function defined by the quadratic
criterion (Eq. 9) after identification. Fig. 7 shows the gainand
phase-shift responses for400 equally distributed frequencies
on the logarithmic scale in the band [160Hz – 16MHz]. As it
can be seen, the model interpolates both sources of data with
a negligible error.
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Fig. 7. Comparison between measurement data and estimation

The IV algorithm gives the following filter parameters:




a0 = 1, 809.10−1

a1 = 1, 483.10−8

a2 = 5, 031.10−16

a3 = 3, 170.10−24

b1 = −1, 952.10−10

(15)

The achieved transfer function corresponds to a Low-pass
filter with a cut-off frequency in baseband format at 1,6 MHz.

IV. CONCLUSIONS

In this paper, the solution for time and frequency domain es-
timation of RF PA continuous model is presented. A proposed
identification method, even based on Hammerstein model and
mixed time and frequency analysis can easily put into practice,
especially for RF transmission system. The central result of
this paper was the implementation of a method using unbiased
LMS algorithm with IV estimator for the identification of LTI
systems.

Consistency and efficiency of IV estimator are important
properties to ensure the robustness of parameter convergence
in presence of noisy data. The experimental result shows the
application of these class of characterizations methods that
combines both frequency and time domain data.
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