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In this paper, we present a new method for characterization of radio frequency Power
Amplifier (PA) in the presence of nonlinear distortion which affect the modulated signal
in the Radiocommunication transmission system. The proposed procedure uses a grey
box model where PA dynamics are modelled with a MIMO continuous filter and the
nonlinear characteristics are described as general polynomial functions, approximated
by means of Taylor series. Using the baseband input and output data, model parame-
ters are obtained by an iterative identification algorithm based on Output Error method.
Initialization and excitation problems are resolved by an association of a new technique
using initial values extraction with a multi-level binary sequence input exciting all PA
dynamics. Finally, the proposed estimation method is tested and validated on experi-
mental data.

Keywords: RF Power amplifier; parameter estimation; Nonlinear distortions; modeling;
continuous time domain.

1. Introduction

There is increasing interest in high-level or behavioural modelling for simulation and

design of complex radiocommunication sub-systems and components1,2. Radio fre-

quency (RF) nonlinear power amplifiers (PA), used to transmit the modulated sig-

nal, are classically characterized by two types of distortion: amplitude-to-amplitude

(AM/AM) and amplitude-to-phase (AM/PM) characteristics. However, some un-

certainty remains regarding the limitations and drawbacks of these commonly used

approaches. These limitations are more evident in systems containing a significant

degree of dynamical or when it is attempted to use this type of characterization

with multiple carrier inputs and different modulation schemes.

The standard technique for PA modeling uses a nonlinear structure with fixed

delay taps and complex coefficients3,4. A Volterra series1,5,6, Wiener and Hammer-

stein model2,7 are largely employed in quantifying Radio frequency (RF) effects.

A number of algorithms exist performing the coefficient adaptations like the Least

1
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Mean Squares (LMS) technique which is the most commonly used algorithm8,9.

However, the parameters computation for a nonlinear system is often difficult and

time consuming for strongly nonlinear devices. The model considered in this paper

is described on continuous-time domain. This structure is similar to PA discrete-

time representation which is including nonlinear transfer function and continuous

filter3. The first branch is set to a memoryless amplitude (AM/AM) and phase

(AM/PM) conversion. Conventionally, the power series model is used to considered

these transfer functions. To describe a PA dynamics, an nth MIMO coupled filters

is inserted. This element operates on modulating input and represents a low-pass

equivalent in envelope signals10.

Model parameters are achieved using an iterative identification algorithm based

on Output Error method.

During last two decades, there has been a new interest in Output Error

techniques11,12,13,14. An overview of approaches is given in8,15,16. Output Error

(OE) methods are based on iterative minimization of an output error quadratic

criterion by a Non Linear Programming (NLP) algorithm. This technique requires

much more computation and do not converge to unique optimum. But, OE meth-

ods present very attractive features, because the simulation of the output model

is based only on the knowledge of the input, so the parameter estimates are

unbiased9,17. Moreover, OE methods can be used to identify non linear systems.

For these advantages, the OE methods are more appropriate in microwave systems

characterization10. For PA identification, the parameters initialization and input ex-

citation are very important to ensure global convergence. Then, we propose a new

procedure for initialization search based on estimation of the nonlinear (AM/AM)

and (AM/PM) functions decoupled from filter identification. A resulting value gives

a good approximation of model parameters. Associated with a multi-level input ex-

citation, this technique allows a fast convergence to the optimal values. Such an

identification procedure for continuous-time domain in PA modeling does not seem

to have been used previously.

The validation of this PA model is obtained for some digital modulation tech-

niques in simulation and experimental investigations. Measured and estimated out-

put signal are compared. Results show a good agreement and the possibility to PA

characterization using continuous-time representation.

2. PA Model description

The nonlinear amplifier model used in this paper is an extension of the discrete time-

model at continuous representation3,18,19. The major disadvantage of the discrete

representation is that the used parameters have no physical significance, contrary to

continuous one where parameters keep their real aspect12,20. This is very important

when advanced PA applications are considered such as linearization or real time

control.
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The nonlinear block presented here operates on baseband quadrature I/Q time-

domain waveforms. The complex low-pass equivalent (LPE) representation of the

communication signal is used to avoid the high sampling rate required at the carrier

frequency.
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Fig. 1. Radio frequency power amplifier model

As shown in fig. 1, the two-box MIMO model includes a memoryless nonlinearity

prior to an nth order Laplace filter. In this model, the first box is the AM/AM and

AM/PM conversions described PA nonlinearities. The second box is the frequency

response which operates on the two baseband inputs I/Q.

2.1. Nonlinear Static functions

To take into account simultaneous gain and phase characteristics, amplifiers are

traditionally modeled with a complex polynomial series2. Then, the complex enve-

lope of the non linear output signal is approximated with the following baseband

input/output relationship:

V NL = V in · G
(

|V in|
2
)

(1)

V in and V NL are respectively the complex input and output voltage translated in

baseband and expressed according the direct and quadrature I/Q signals as:

{

V in = Iin + j Qin

V NL = INL + j QNL

(2)

G
(

|V in|
2
)

is the complex gain of the amplifier, dependent of the magnitude of the

input V in. The complex gain is expressed with a polynomial function composed by

even term which produce harmonic distortions inside the PA bandpass:

G
(

|V in|
2
)

=

P
∑

k=0

c2k+1 · |V in|
2k (3)

where c2k+1 are the complex power series coefficients such as:

c2k+1 = α2k+1 + j β2k+1 (4)

The previous equations give the relationship between input and output baseband

signals :
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{

INL =
∑P

k=0
(α2k+1 Iin − β2k+1 Qin) · |V in|

2 k

Q
NL

=
∑P

k=0
(α2k+1 Qin + β2k+1 Iin) · |V in|

2 k
(5)

The output quadrature signals depend on the both input quadrature terms and

on the instantaneous input power.

2.2. Continuous filter

Such power amplifiers are more or less nonlinear which means that the output signal

will be an amplified but distorted version of the input signal. Furthermore, these

amplifiers have memory, i.e., the output signal does not only depend on the instan-

taneous value of the input signal. This results in a frequency-dependent transfer

function and coupling effect between I and Q voices. These dynamical effect caused

by the PA system behavior may be expressed with a MIMO differential model10.

As shown in figure (1), the input to output relationships of this nth order filter can

be written as:















dn

dtn Iout +
n−1
∑

k=0

ak
dk

dtk Iout =
m
∑

k=0

bk
dk

dtk INL −
m′

∑

k=0

b
′

k
dk

dtk QNL

dn

dtn Qout +
n−1
∑

k=0

ak
dk

dtk Qout =
m′

∑

k=0

b′k
dk

dtk INL +
m
∑

k=0

bk
dk

dtk QNL

where Iout(t) and Qout(t) are the filter outputs.

The coefficients ak, bk and b′k are real scalars that define the model. Note that

the filter structure is the same on the diagonal axes IQ and inverse on the other

component, which gives a coupled MIMO plant. Thus, the input-output relation

can be expressed in Laplace-domain with the two transfer-functions H(s) and G(s),

as so:






H(s) =
∑ m

k=0
bk·s

k

sn+
∑ n−1

k=0
ak sk

G(s) =
∑ m′

k=0
b
′

k·s
k

sn+
∑ n−1

k=0
ak sk

(6)

where s denotes the differential operator s = d
dt

.

3. Parameter identification of the PA model

Parameter identification is based on the definition of a model. For power ampli-

fier, we consider the previous mathematical model (Eqs. 1-6) and we define the

parameter vector:

θ =
[

a0 · · · an−1 b0 · · · bm b′0 · · · b′m′ c1 · · · c2P+1

]T
(7)

where [.]T denotes transposition operation.
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A general principle of parameters estimation using Output Error technique is

shown in Figure (2). Assume that we have measured K values of input vector

(Iin(t), Qin(t)) and output vector (I∗out(t), Q
∗

out(t)) with t = k · Te and 1/Te is the

sampling rate. The identification problem is then to estimate the values of the

parameters θ. Thus, we define the output prediction errors:
{

εIk
= I∗outk

− Îoutk
(θ̂, Iin, Qin)

εQk
= Q∗

outk
− Q̂outk

(θ̂, Iin, Qin)
(8)

where predicted outputs Îoutk
and Q̂outk

are obtained by numerical simulations of

the PA model and θ̂ is an estimation of true parameter vector θ.
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Fig. 2. PA identification scheme

As a general rule, parameter estimation with OE technique is based on mini-

mization of a quadratic multivariable criterion defined as :

J =

K
∑

k=1

(εI
2
k + εQ

2

k
) = εT

I εI + εT
Q εQ (9)

We obtain the optimal values of θ by Non Linear Programming techniques.

Practically, we use Marquardt’s algorithm21 for off-line estimation:

θ̂i+1 = θ̂i − {[J ′′

θθ + λ · I ]−1.J ′′

θ }θ̂=θi
(10)

J ′

θ and J ′′

θθ are respectively gradient and hessian such as:

J ′

θ = −2
∑K

k=1

(

εT
Ik

· σIk,θ
+ εT

Qk
· σQk,θ

)
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J ′′

θθ ≈ 2
∑K

k=1

(

σIk,θ
· σT

Ik,θ
+ σQk,θ

· σT
Qk,θ

)

λ is the monitoring parameter,

The sensitivity IQ functions σIk,θ
=

∂Îout

∂θ
and σQk,θ

=
∂Q̂

out

∂θ
are obtained, for each

parameter, by partial differentiation23 of global PA model (Eqs. 1-6).

3.1. Initialization problems

An inherent problem of iterative search routines is that only convergence to a lo-

cal minimum can be guaranteed. In order to converge to the global minimum, a

good initialization is important. Usually, for engineering process, users have a good

knowledge on physical parameters, necessary to initialize the iterative algorithm

(Eq. 10). In our case, PA users have not sufficient information on parameter vector

θ, especially on AM/AM and AM/PM parameters. It is then essential to define a

global strategy which makes it possible to obtain approximative values of parame-

ters. So we propose an optimal search method based on Equation Error techniques

to achieve initial values of non linear and filter parameters.

3.1.1. Non linear parameters initialization

The first step consists in searching approximation of the complex parameters

c2k+1 using the envelope magnitude and phase distortions (Eqs. 1-3). Thus, the

AM/AM and AM/PM characteristics are used to optimize a polynomial function

by Least Mean Square (LMS) algorithm9. A solution for the coefficients is obtained

by minimizing the mean-squared error between the measured (I∗out, Q
∗

out) and the

modeled output (Iout, Qout) under low frequency signal such as:

θ̂NL = (φH φ)−1 φH V ∗

out (11)

where :

(.)H denotes transpose-conjugate transformation

θ̂NL = [ c1 c3 · · · c2P+1 ]T is the vector of polynomial parameters,

V ∗

out is the measured output,

φ = [ ϕ
1

ϕ
2

· · · ϕ
K

] is the regression matrix,

ϕ
k

= [ Vink
Vink

|Vink
|2 · · · Vink

|Vink
|2P ]T is the regression vector,

and V ink
is a kth sampled input.

Noted that for these estimations, the regression vector ϕ
k

is not correlated with

the measured output V ∗

out .

In practice, the PA characteristics is performed by a sinusoidal excitation applied

on baseband inputs Iin and Qin at fixed low frequency and high input level. In
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these conditions, the PA filtering effects are assumed negligible according to non

linear dynamics. The input-output curves are obtained by measuring the output

gain and phase as a function of input level.

3.1.2. Filter parameters initialization

The second step is the determination of initial values for the filter coefficients.

They are obtained for an input signal with low input level and large frequency

bandwidth. The signal distorsion is then negligible, which makes it possible to take

into account only the linear filters H(s) and G(s) effects. Thus, we define the two

filters parameters vectors:

θf = [ a0 a1 · · · an−1 b0 b1 · · · bm ]
T

(12)

θ′f = [ a0 a1 · · · an−1 b′0 b′1 · · · b′m′ ]
T

(13)

Parameter estimation is performed by iterative Instrumental Variable based on

Reinitilized Partial Moments RPM method (see also10,13,23). Used for continuous

filter identification, this technique is included in the integral methods class. The

main idea of this class is to avoid the input-output time-derivatives calculation by

performing integrations. In this class, the particularities of the RPM methoda is the

use of a time-shifting window for the integration and to perform an output noise

filtering.

The main advantage of this estimation method to others is its relatively insensitivity

to the initial conditions and rough system a priori knowledge.

4. Simulation and experimental results

4.1. PA circuit and results

The described power amplifier is a single stage structure composed of a MESFET

device by Infineon (CLY 5). The nonlinear behaviour of the transistor is described

by a table based model of the nonlinear drain current source associated to a junction

model for the gate to source capacitance (Fig. 3).

The matching topology is designed to ensure optimum power and efficiency perfor-

mance at the 900MHz operating frequency. The output matching has a low pass T

structure composed of a capacitor to ground and two transmission lines.

Filter identification algorithm needs large frequency bandwidth excitation sig-

nal to provide appropriate estimation. Indeed, modulated signals are required to

aContsid Matlab toolbox including the RPM estimation method can be downloaded from
http://www.cran.uhp-nancy.fr/contsid/. The ivrpm function allows to obtain model estimation
by iterative Instrumental Variable.
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Fig. 3. PA circuit implemented on ADS software

excite both steady-state (low frequency) and process dynamics (medium to high

frequency). This excitation is performed with a Pseudo Random Binary Sequence

(P.R.B.S) baseband pulse as the input modulation to the transmitter. The identifi-

cation procedure is performed in three steps : Initialization of nonlinear parameters,

initialization of filter parameter and global identification of the PA’s model.

Step 1 Nonlinear parameters θNL are extracted from the input/output trans-

fer function. The AM/AM and AM/PM measured characteristics are obtained by

sweeping the power level of an input signal at a frequency located at the center of

the PA bandwidth.
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Fig. 4. (a) Comparison of time-domain measurement and estimation. (b) Estimation error

In our case, we used the 3th order complex polynomial:

V NL =
(

c1 + c3 · |V in|
2 + c5 · |V in|

4
)

· V in
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Thus, we define the estimated parameter complex vector:

θNL = [ c1 c3 c5 ]
T

(14)

After running a LMS algorithm (Eq. 11), we obtained :






ĉ1 = 6.9795− j 1.5681

ĉ3 = −2.5643 + j 7.7424.10−1

ĉ5 = 4.9403.10−1 − j 1.1504.10−1

Figure (4) allows a comparison between measured I output waveforms and its

estimation. As can be seen, even if the amplifier is driven near saturation, the LMS

algorithm converge to the optimum values with a maximum output estimation error

less than 0.4 V.

Step 2 The initial values ai, bi and b′i of the linear filters H(s) and G(s) are ob-

tained by applying a Pseudo Random Binary Sequence (PRBS) signal with small

amplitude level. To evaluate the efficiency of parameters estimator, we compared

simulated output with real data of channel I at the end of the identification pro-

cedure (Fig. 5). We can show that the estimation error (or residuals) is negligible

and dont exceed 24mV.
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Fig. 5. Comparison between real and estimation data

The filter form is achieved using the RPM method for different plants. A quadratic

error comparison allows to obtain an appropriate order. Then, for a 1st order filters,

the RPM algorithm gives the parameters values:

Ĥ(s) =
4.75.108

s + 4.75.108
(15)

Ĝ(s) =
2.51

s + 4.75.108
(16)
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The dynamic behavioral of the PA system can be described by a MIMO coupled

filter. The real filter H(s) and the obtained filter Ĥ(s) characteristics are repre-

sented in figure (6) by the gain and phase curves. The cut off frequency of the filter

is around 76 MHz.
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Step 3 The model parameters obtained in the previous steps will be used to ini-

tialize the nonlinear identification algorithm.
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The unknown system in this case is the global PA model. The measurements are

performed by an input signal obtained from the adding of some P.R.B.Sequences

at different levels. The aim is to drive the amplifier in its overall level range (linear

and non linear area). After 8 iterations, we obtain the following parameters:

θ̂ =



































ĉ1 = 6.8745− j 1.5642

ĉ3 = −2.3634 + j 7.8912.10−1

ĉ5 = 4.4974.10−1 − j 1.1540.10−1

â0 = 4.7493.108

b̂0 = 4.7493.108

b̂′0 = 2.44

Model simulation with the achieved parameters exhibit good approximation of mea-

sured data (Fig. 7).

4.2. PA setup

The measurement setup is shown in Fig. 8. The power amplifier is a commercial

ZHL-42 from Mini Circuits manufacturer. Input and output data are obtained

from YOKOGAWA Digital Oscilloscope with a sampling period equal to 10

ns.
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DATA  Acquisition
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Modulation De -modulation

PA

Arbitrary Waveform 
Generator

Phase 
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Fig. 8. PA setup

All data processing are carried using Matlab MathWorks then are down-
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loading to a Baseband Generator. The quadrature modulator AD8349 and

demodulator AD8347 are inserted at the input and output of the PA. They are

standard commercial units from Analog Devices.

Modulation signals I and Q are delivered by a TTi 40 MHz Arbitrary Waveform

Generator connected to PC control. The local oscillator frequency is 900 MHz

obtained from Digital Modulation Signal Generator (Anritsu MG 3660A).

AM/AM and AM/PM characteristics are given in figure (9). Thus, we can

clearly see that the non linear behavioral of the amplifier is successfully described

by a traditional third polynomial series.
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Fig. 9. Comparison between the measured and estimated AM/AM and AM/PM functions

For small power, figure (10) shows that the PA dynamic can be modeled as a 2nd

order resonant system. The RPM method gives the filters defined in the Laplace

domain as:
{

H(s) = b1 s+b0
s2+a1 s+a0

G(s) =
b′
0

s2+a1 s+a0

(17)

where










â0 = 1.38.1012 â1 = 5.40.105

b̂0 = 1.38.1012 b̂1 = 2.42.105

b̂′0 = 12.53

Figures (11.a) and (11.b) compare the simulated model output (dotted line)

with the measured output for an excitation signal different of the one previously

used for identification. As a test signal, we use a QPSK digitally modulated signal
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at rate of 5 Mbits/s and shaped with a raised cosine filter with a Rolloff factor of

α = 0.25. It can be seen that the simulated output follows the measured one.
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0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (µs)

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (µs)

Magnitude (V)

Magnitude (V)

Fig. a

Fig. b

Estimation

Estimation

Measured data

Measured data
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5. Conclusion

A model based on continuous-time representation is described which offers a simple

way to modeling PA dynamics. This model is able of accounting the magnitude and

phase amplifier nonlinearities such as the saturation effects.

Test results in simulation and experimentation illustrate the efficiency of this tech-

nique for use in off-line identification. The continuous approach was found to be
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accurate in predicting the dynamical response of the commercial amplifier. Estima-

tion results show that the described amplifier acts like a resonant system coupled

with a polynomial series.

The proposed technique is based on continuous time domain model. The model

achieved can be used to develop a continuous baseband method for the compensa-

tion of nonlinearity of the RF front-end in a wireless transmitter.
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