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Transitions to chaos in the wake of an axisymmetric bluff body

Yannick Bury, Thierry Jardin

Université de Toulouse, ISAE, 10, avenue Edouard Belin, 31055 Toulouse, France

Abstract

This letter aims at understanding the dynamical process that leads to the onset of chaos in the flow past a blunt-based
axisymmetric bluff body. On the basis of direct numerical simulations, conducted for Reynolds numbers ranging from
100 to 900, we show that the flow undergoes multiple transitions, successively giving rise to the SS, RSP,, RSP;, RSP,
and RSB wake states. In particular, the RSP, state, revealed in this work via long-term computations, is characterized
by intermittent vortex stretching denoting the onset of chaos before the symmetry breaking and the occurence of the

RSB state.
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1. Introduction

The thorough analysis of bluff body wakes is essentially
twofold. First, it advances the knowledge of fundamental
mechanisms driving the destabilization of massively sep-
arated flows, i.e. the transition between dominant flow
instabilities. Second, as an ultimate goal, it serves the def-
inition of optimal flow control strategies through the ma-
nipulation of such flow instabilities. As such, it has been
proven, for low Reynolds number flows, that forcing the
flow at specific forcing frequencies/wavelengths can dras-
tically modify the wake topology and the drag experienced
by the bluff body [1, 2, 3]. Moreover it is reasonable to as-
sume that instabilities observed at low Reynolds numbers
still persist at much higher Reynolds numbers. An evi-
dent but still fascinating example is the clear occurence of
the von Karmén vortex shedding in the wake of geological
obstacles, for Reynolds numbers O(10%). Therefore one
can expect a flow control strategy, primarily optimized at
low Reynolds number, to be efficient at higher Reynolds
number. In this sense the effort to enhance knowledge of
the flow destabilization towards chaotic states is a prereq-
uisite for the potential definition of optimal flow control
strategies at higher Reynolds numbers. In this letter, the
wake instabilities behind a blunt-based axisymmetric bluff
body at various Reynolds numbers, ranging from 100 to
900, are analysed. Wakes of axisymmetric bluff bodies
at low Reynolds number have gained interest due to the
variety of instabilities that develop as the Reynolds num-
ber is increased, eventually leading to chaotic state. Nu-
merous studies focused on spheres, revealing transitions of
the wake structure from 1) an axisymmetric steady state
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(corresponding to the base flow) to 2) a reflectional sym-
metry steady state (SS), 3) a reflectional symmetry pre-
serving (RSP) oscillatory state, and 4) a reflectional sym-
metry breaking (RSB) oscillatory state [4, 5]. Such tran-
sitions and resulting wake structures exhibit similarities
with wakes that develop downstream blunt-based axisym-
metric bluff bodies [6, 7]. However this geometry is still
poorly documented despite its practical interest and a lack
of comprehension subsists regarding the scenario that leads
to a chaotic state.

In order to decipher this scenario, we have conducted
3D direct numerical simulations of the flow past a blunt-
based axisymmetric bluff body of length-to-diameter ratio
L/D = 7 for Reynolds numbers 100 < Re < 900, spanning
the transitions up to chaos.

2. Numerical methods

The three-dimensional time-dependent incompressible
Navier-Stokes equations around a blunt-based axisymmet-
ric bluff body of diameter D and length L are directly

solved using an Eulerian finite volume method. The Reynolds

number Re, based on D and on the free stream velocity
U, is varied from 100 to 900. Assuming incompressible
viscous flow, the equations read:

V=0 (1)
oW = 1o 2~
T (U.V)T = f;Vp + vV (2)

Here ¥ is the velocity, p the pressure, p and v the fluid
density and kinematic viscosity respectively.

The geometry consists of a 4:1 semi-elliptic nose and
a cylindrical aft section. It is enclosed in a cylindrical
computational domain of diameter 20D and length 55D
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Figure 1: Computational domain (a) and illustration of the surfacic polyhedral mesh (b).

aligned with the free stream direction & (figure 1(a)). The
coordinates’ origin is located at the nose tip of the body,
corresponding to the stagnation point. The inlet bound-
ary is located at /D = —8 and is subjected to a velocity
Dirichlet condition. A similar condition is imposed on the
tubular surface of the computational domain. A zero dif-
fusion flux condition is prescribed at the outlet boundary
located at /D = 47. The surface of the blunt-based ax-
isymmetric bluff body is modelled as non-slip surface. The
domain is composed of 2.3 x 10 polyhedral cells (figure
1(b)).

The spatial and temporal discretizations are achieved
using second-order upwind schemes and second-order im-
plicit time-stepping method respectively. The pressure-
velocity coupling is obtained using a SIMPLE algorithm.
Time step is fixed in order to satisfy the CFL condition
(Courant Number close to unity) for each Reynolds num-
ber.

3. Results

Figure 2 illustrates a sequence of the flow topology ob-
tained for Re numbers ranging from 100 to 450, in terms of
iso-surfaces of normalized \j [8] (normalization is based
on the minimum value of Ay for each Reynolds number
considered).

At Re = 100, figure 2 depicts an opened torus of rev-
olution at the base of the body. The associated recircu-
lation region is axisymmetric. Between Re = 100 and
Re = 400 the torus radially expands towards the exter-
nal flow and progressively stretches along the streamwise
direction. This scenario results from the concomitant in-
fluence of strong shear and suction effects on the torus.
While the low-pressure region maintains the opened torus
close to the bluff body base, the external flow tends to
stretch the periphery of the opened torus.

As the Reynolds number is increased up to Re = 450
the torus progressively shifts away from the bluff body
axis of revolution. Hence, the upper part of the torus is
subjected to stronger shear than the lower part, such that
it distorts into a pelvis-like structure. This is associated
with the loss of axisymmetry of the torus, corresponding
to the destabilization of the wake towards the reflectional
symmetry steady state (SS). At this stage only a single
streamwise planar symmetry is retained whose azimuthal
position fixes randomly.

The streamwise vorticity fields provide additional in-
formation on the topology of the flow where the asymme-
try is reflected as a ‘double-threaded’ wake composed of
two primary vorticity lobes distributed on both sides of
the reflectional symmetry plane (figure 3). Secondary and
ternary vorticity lobes of alternate vorticity signs are also
observed in the near wake and on the body aft surface re-
spectively. As the Reynolds number is further increased,
the tails of the primary vorticity lobes elongate and shift
away from the axis of revolution of the bluff body (see
also [7]), in accordance with the pelvis-like structure dis-
placement and distortion under free stream-induced shear
stresses. At this stage the pelvis-like structure is subjected
to increasing shear stresses in conjunction with its dis-
placement towards the external flow.

Eventually as the Reynolds number reaches values close
to 590, the structure can no more sustain such stresses
and is partially torn. This leads to the formation of un-
steady hairpin structures periodically shed in the wake
of the blunt-based axisymmetric bluff body (figure 4(a:
right)). The reflectional symmetry is still preserved, de-
noting the transition from the SS state to the RSP os-
cillatory state. Figure 4(a: left) depicts iso-surfaces of
streamwise vorticity wt at Re = 600. It displays regu-
larly spaced vorticity lobes shed at a non-dimensional fre-
quency St, = foD/Us =~ 0.12. At this stage the flow
exhibits a unique dominant frequency, revealed in figure
5(a) by a single fundamental peak (and its first harmonic)
on the FFT of the drag coefficient history. The funda-
mental peak amplitude increases as Re is varied from 590
to 680. Hereafter this single frequency RSP state will be
denoted RSP,,.

Beyond Re = 690 a second fundamental peak (and its
first harmonic) arises at St, ~ 0.02 (figure 5(b)), denot-
ing the occurence of low frequency vorticity bursts that
promote the transient waving of the primary lobes and of
the associated hairpin structures in the reflectional sym-
metry plane (figure 4(b)). The occurence of this second
fundamental peak is accompanied with beating frequen-
cies St, — St and St, + Stp that result from its coupling
with the first fundamental peak. This double frequency
RSP state will be denoted RSP;,. Note that the second to
first fundamental peaks ratio increases with Re, which in-
dicates that drag fluctuations, initially driven by the shed-
ding of hairpin vortices at St, are progressively dominated
by the vorticity bursts and the associated transient waving
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Figure 2: Iso-surfaces of )\; = —0.02 obtained for Re numbers ranging from 100 to 450. Solid line depicts the base of the bluff body. (a), (b)
and (c) correspond to rear, lower and side views respectively.

(a) ternary secondary primary lobe

Figure 3: Normalized streamwise vorticity wt = wD/Us obtained for Re numbers 450 (a) and 550 (b). Left: lower and side views of
iso-surfaces wt = £0.05. Right: rear view of isolines |w™| € [0.05;0.15] obtained at /D = 14 (dark: positive, light: negative).
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Figure 4: Lower and side views of the flow structure obtained for Re numbers 600 (a), 700 (b) and 800 (c). Left: iso-surfaces w® = 40.05
(dark: positive, light: negative). Right: iso-surfaces )\; < 0.
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Figure 5: FFT of the drag coefficient history obtained for Re numbers 600 (dotted line), 660 (dashed line), 680 (plain line) (a), 700 (b), 750

(c) and 800 (inset picture depicts the drag coefficient history) (d).

of the wake at St;.

Beyond Re = 750 a broadband noise appears on the
FFT spectrum of the drag coefficient history (figure 5(c,
d)), revealing the transition to chaos potentially induced
by the occurence of a third fundamental frequency, follow-
ing the Ruelle-Takens-Newhouse scenario [9]. At this stage
the analysis of this chaotic state deserves a deeper atten-
tion. To this avail a 12000 time units computation has
been conducted at Re = 800, which roughly corresponds
to the upper bound of the RSP, state. Here the time unit
is defined as t* = tU,,/D. This long term computation
allows both a better resolution of the broadband noise and
the capture of very low frequency instabilities. The promi-
nent feature of the RSP, state is the transient stretching
of the hairpin vortices in the streamwise direction (figure
4(c)), whose associated vorticity lobes remind the ‘double-
threaded” wake observed for the SS state. This could sug-
gest a transient restabilization of the wake. It results in
the damping of the drag oscillations, clearly observed on
the drag coefficient history illustrated on the inset picture
of figure 5(d). It is remarkable that this damping occurs
intermittently. In that sense, this phenomenon is a marker
of the chaotic state of the flow associated with the poten-
tial emergence of a third instability.

The further increase of the Reynolds number finally
breaks the reflectional symmetry and triggers the RSB
state. For Re = 900, phases of ‘apparent’ reflectional sym-
metry (figure 6(a)) whose flow topology ressembles that
of the RSP, state are randomly interrupted by dramatic
changes of the symmetry plane azimuthal position (figure
6(c)). Such changes, also characterized by strong inter-
mittent oscillations of the lateral loads (figure 7(b)), oc-
cur immediately after a transient phase of wake twisting

(figure 6(b)). In addition the long-term, 9000 time units
computation achieved for Re = 900 reveals the persistence
of the intermittent damping of the drag coefficient (figure
7(a)) and of the associated vorticity lobes stretching (fig-
ure 6(d)), previously observed at Re = 800.

4. Conclusion

The transition to chaos of the flow past a blunt-based
axisymmetric bluff body can thus be deciphered as a suc-
cession of bifurcations associated with distinct wake pat-
terns. In particular the dynamics of the recirculation re-
gion from an axisymmetric torus (base flow) to a pelvis-like
structure (SS state) subsequently leads to the oscillatory
RSP state. This RSP state can be subdivided into three
substates, whether the flow unsteadiness is characterized
by a single fundamental frequency (RSP,), two distinct
fundamental frequencies (RSP;,) or a chaotic dynamics
(RSP.). The latter exhibits flow intermittencies associated
with the transient stretching of the hairpin structures and
the damping of the drag oscillations. The scenario revealed
in this work shows strong similarities with the Ruelle-
Takens-Newhouse scenario, although the precise identifi-
cation of the ‘chaos triggering’ frequency is still unclear
and requires deeper investigation. In addition these inter-
mittencies still persist beyond the bifurcation towards the
RSB state whose wake topology consists in a succession of
phases of ‘apparent’ reflectional symmetry, wake twisting
and dramatic reorientation of the ‘apparent’ reflectional
Syminetry.
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Figure 6: Iso-surfaces w™ = 40.05 (dark: positive, light: negative) of the flow obtained for Re = 900 at different phases of the RSB state.
‘Apparent’ reflectional symmetry (a), wake twisting (b), reorientation of the ‘apparent’ reflectional symmetry (c), vorticity lobes stretching
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Figure 7: FFT of the drag coefficient history obtained for Re = 900 (inset picture depicts the drag coefficient history) (a) and lateral force
coefficient history (b).
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