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Abstract

In this paper, we develop a new axisymmetric analytic model of surface uplift upon sills

and laccoliths, based on the formulation of a thin bending plate lying on an elastic foun-

dation. In contrast to most former models also based on thin bending plate formulation,

our model accounts for (i) axi-symmetrical uplift, (ii) both upon and outside the intru-

sion. The model accounts for shallow intrusions, i.e. the ratio a/h > 5 where a and h

are the radius and depth of the intrusion, respectively. The main parameter of the model

is the elastic length l, which is a function of the elastic properties of the bending plate

and of the elastic foundation. The model exhibits two regimes depending on the ratio

a/l. When a/l < 5, the uplift spreads over a substantial domain compared to that of the

intrusion. In contrast, when a/l > 5, the uplift is mostly restricted upon the intrusion.

When the elastic foundation is very stiff, our model converges towards that of a clamped

plate. We provide, as supplementary material, a Matlab function that calculates the

surface uplift from the set of system and control parameters. We discuss three possible

applications of our model: (i) The model can be used to describe sill propagation by

introducing a propagation criterion. For realistic values, our model reproduces well the

behavior of horizontal intrusions simulated in experiments; (ii) The model can also be

used to compute the critical size of saucer-shaped sills. It shows, for instance, that a

soft elastic foundation favors the horizontal spreading of sills before they form inclined

sheets; (iii) We show that the classical Mogi point source model cannot be used to con-
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strain sill properties from the surface uplift. We thus propose that our model can be used

as a valuable alternative to both simple analytical models like Mogi’s and more complex

numerical models used to analyze ground deformation resulting from sill intrusions in

active volcanoes.

Keywords: Sills, Laccoliths, Analytical model, Axi-symmetric, Ground deformation,
Mogi

1. Introduction

Surface deformation in active volcanic systems is generally assumed to reflect the

dynamics of magma intrusion and transport at depth. Modern monitoring techniques

allow good measurements of the deformation of volcanic edifices before, during and after

an eruption [14, 26, 27, 29, 31]. A good example is the Eyjafjallajökull Volcano, Iceland,

which has been monitored for more than a decade using InSAR and GPS data (Fig. 1a).

This data allowed to detect the onset of its unrest [66], and overall the premises of the

2010 eruption that caused massive disruptions in the air traffic in Europe [77].

The mechanical analysis of surface deformation patterns is commonly used to con-

strain the geometry and dynamics of the magma plumbing systems a posteriori [14, 28,

53]. One of the first attempts in analyzing surface deformation on active volcanoes has

been performed by Mogi [58], who developed an analytical solution of surface deforma-

tion induced by a small spherical over-pressured magma reservoir. The solution of Mogi

is valid when the size of the magma reservoir is very small compared to its depth, i.e.

when am/hm << 1, where am and hm are the radius and the depth of the center of the

reservoir, respectively.

Although the so-called ”Mogi point source” solution provides good fits with data

monitored on some active volcanoes, recent studies show that (1) many magma reservoirs

do not consist of spherical chambers but exhibit a flat-lying shape [e.g. 3, 22, 24, 15, 77, 88,

66, 77], and (2) the roof of the reservoir can be very shallow (<3 km) [55, 9, 37, 8, 10, 21],
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such that the assumption am/hm << 1 is not satisfied. The Mogi point source solution is

thus not applicable in these conditions, and a more relevant analytical solution is needed

to interpret surface deformation data.

Surface deformation has not only been observed in active volcanoes as a passive conse-

quence of shallow magma emplacement, but it can exert an active mechanical feedback on

the emplacement of laccoliths and saucer-shaped sills [e.g. 34, 46, 45, 52, 70, 33, 30]. On

seismic images and in the field, it can be observed that saucer-shaped sills, for instance,

are closely associated with uplift and bending of their overlying strata, the inclined sheets

being located under the edges of the uplifted area [Fig. 1b; 38, 59]. This relationship

has been interpreted as a result of the mechanical interaction between the bending of the

overlying strata and the spreading of the sills: the differential uplift at the edges of the

domes generates stresses that interact with the leading edges of the sills, which in turn

are deflected towards the surface [52, 35, 33]. This mechanism producing inclined sheets

substantially contributes to magma ascent through sedimentary basins [13, 59]

In order to (1) better predict surface deformation due to the emplacement of shallow

flat-lying intrusions and (2) better quantify how the bending of strata affects the emplace-

ment of laccoliths and saucer-shaped sills, one needs to better constrain the mechanics

of surface deformation. In this paper, we develop a new analytical model of surface de-

formation above shallow axially symmetric flat-lying intrusions. Our model is based on

the theory of a thin bending plate lying on a deformable elastic foundation. After the

theoretical development, we discuss the limitations and the effects of the parameters on

the model. Subsequently, we discuss some geological applications, notably for sill propa-

gation and for saucer-shaped sills. We also briefly discuss the potential application of our

model to the analysis of ground deformation due to sill intrusion in active volcanoes. We

provide the code of our model as a Matlab function available as supplementary material.
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2. Existing solutions

Several models have been developed to calculate the deformation field associated

with flat-lying intrusions. Because sills are sheet intrusions, they can be considered

as horizontal fluid-filled cracks within an elastic medium. The strains in the elastic

medium are considered to be small everywhere except close to the tip of the sill, and the

formulation of the problem can be achieved using the theory of linear elasticity.

A first approach attempted to develop models tending toward a complete description

of cracks in an elastic half-space. [79] described the deformation of a free surface above a

fluid-pressurized crack by developing a 3D approximate solution of the vertical and hori-

zontal displacements above a circular crack. To do that, he superimposed (i) the solution

for the displacements due to a crack in an infinite elastic medium and (ii) an auxiliary

stress function that satisfies the zero traction boundary conditions at the free surface.

However, such superposition generates significant errors when the crack’s radius-to-depth

ratio a/h becomes greater than 1 [24]. [68] developed the 2D equations that account for

the surface deformation and the stress intensity factor at the tip of an arbitrarily oriented

crack contained in an elastic half-space. More recently, [23] derived the axi-symmetrical

solutions for the stress and displacements associated with a horizontal circular crack in

an elastic half-space. Although these approaches are powerful tools, obtaining the so-

lutions requires numerical integrations, which can be tricky to implement, like for most

analyses of elastic layers under stress [see e.g. 74].

A second, classical approach for describing surface uplift due to a sill or a laccolith is

based on thin elastic plate theory [85]. This theory can easily be adapted to investigate

the deflection of sedimentary strata above a magma-filled horizontal sill or laccolith

[69, 73, 35, 57]. This theory accounts only for shallow sills, i.e. the radius of the crack a

is large with respect to its depth h (typically a/h > 5), which is the case for many sills.

This approach, developed both in 2D and 3D, has been extensively used and generally

accepted, such that it is presented as a classical model in textbooks [86] and is used in

the mechanics community [62, 61, 60, 63, 11, 12].
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The application of thin plate theory alone to sills and laccoliths takes into account

the weight of the overburden (q0), heterogeneous magma pressure distributions in the

intrusion (P (x)), and the mechanical layering of the overburden [69]. Very recently,

the thin plate formulation has been coupled with the equations for viscous fluid flow to

model the emplacement of viscous magma into sills and laccoliths [12, 57]. In addition,

it has been extended to derive a simple criterion for the upward propagation of saucer-

shaped sills [35]. Nevertheless, the formulations developed in these papers assume that

the bending plate is clamped to a rigid foundation at the tips of the intrusions [69]. In

other words, the bending of the overburden is restricted upon the intrusion only, which is

not realistic in geological systems: for instance Figure 1a shows that the uplift measured

at the Eyjafjallajökull volcano, resulting from the emplacement of a sill, is significant in

a larger area than that of the sill [Fig.1a; 77]. Similarly, Figure 1b shows a seismic profile

that images a sill and the associated doming of its overburden in the Rockall Basin,

offshore Scotland [39]: the doming of the overburden is larger than the associated sill.

A more realistic formulation of surface deformation above laccoliths has been proposed

by [51], based on the theory of a thin bending plate lying on an elastic foundation [85]

(p. 259-269). This 2D model considers the continuous bending of a plate across two

domains, one above the intrusion and one around the intrusion. Above the intrusion,

the formulation of the bending plate is the same as that with no elastic foundation. In

contrast, outside the intrusion the plate is attached to a deformable elastic foundation,

and the plate can also deform. Thus, the bending of the plate is not only restricted above

the intrusion, and displacement of the plate at the tip of the intrusion is allowed.

In this paper, we improve the 2D solution of [51] in several ways: we derive an

axi-symmetrical analytical solution of surface uplift above a sill or laccolith and we use

a generic set of boundary conditions. Note that we consider possible heterogeneous

distributions of internal pressure into the sill, as [51], but we do not restrict our analysis

to vanishing internal pressure at the sill periphery. Like [69] and [35], the magmatic

pressure P0 and the radius a of the intrusion are known a priori and serve as control
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parameters. This general formulation allows to characterize, for any values of the input

parameters, the instantaneous state of an intrusion in the mechanical equilibrium, i.e.

without considering propagation. A propagating intrusion corresponds instead to a quasi-

static mechanical system, which requires the definition of a propagation criterion. This

will be developed as an application of our model in section 5.1.

3. Theoretical development

3.1. The model

We consider the system sketched in Figure 2: an axisymmetric flat intrusion of radius

a lying under a linear elastic strata of thickness h, Young modulus E, Poisson ratio ν

and mass density ρ (see Table 1 for definitions of the model parameters). We assume

that the intrusion is shallow (a/h > 5), so that the strata can be considered as a thin

plate with a bending stiffness D = Eh3

12(1−ν2) . Above the intrusion (radial distance r < a),

the plate is submitted to a radial pressure profile of the form P = P0 − (P0 −Pa)(r/a)n,

in which P0 and Pa are the pressure values at the center (r=0) and periphery (r=a) of

the intrusion, respectively (Fig. 2d). We consider a heterogeneous pressure to account

for the viscous drag due to the flow of viscous magma into the intrusion. Note that

a homogeneous pressure is obtained for n = ∞ and/or Pa=P0. Outside the intrusion

(r > a), the plate is attached to an elastic foundation of elastic modulus k. Such an elastic

foundation can accommodate substantial elastic deformation, allowing for displacement

outside the intrusion without propagation of the intrusion tip. At all points of the

model, the strata is also submitted to the lithostatic stress q0 = ρgh. Note that below

the intrusion and the elastic foundation, the basement is considered to be infinitely rigid,

like in the analyses of [69], [51], [35] and [12]. This assumption is validated by geological

observations [34, 45, 48], geophysical observations [39, 70] and modelling results [52],

which show that deformation associated with shallow flat-lying intrusions mostly affect

the overburden, but not the substratum.
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From thin plate theory, we can write the equilibrium equations of the system as:

D∆2w = q0 − P0 + (P0 − Pa)(r/a)n, 0 < r < a, (1)

D∆2w + kw = q0, r > a, (2)

where w is the vertical displacement of the plate and ∆2 is the bilaplacian operator.

In the following sections, we will refer to w1 and w2 for the displacements upon

(0 < r < a) and outside (a < r) the sill, respectively. Equation (1), when taken in

axisymmetric form with abscissa r, has a general solution of the form [see 85, page 54,

equation 60]:

w1 =
(q0 − P0)r4

64D
+
C1r

2

4
+ C2 + C5log

( r
a

)
+

(P0 − Pa)rn+4

Dan(n+ 2)2(n+ 4)2
(3)

We set C5 = 0 because the logarithm would lead to a displacement singularity at r = 0.

We are left with only two unknown constants C1 and C2.

The general solution of Equation (2) when the right member is 0, and when taken in

axisymmetric form, writes [see 85, p266, equation h]:

w2 = C3kei0(x) + C4ker0(x) + C6ber0(x) + C7bei0(x) (4)

with x = r
l , l = 4

√
D
k , and berν , beiν , kerν , keiν are Kelvin functions [85].

We can set C6 and C7 to 0 because limr→∞ber0(r) = ∞ and limr→∞bei0(r) = ∞,

which would yield unphysical infinite displacements far from the sill. Equation (2) also

has a constant solution, w0 = q0/k, which must be added to Equation (4) to obtain the

complete solution. Note that adding this term provides similar boundary condition at

r →∞ as that of [51], i.e. the displacement w0 = limr→∞w2 is not zero and corresponds

to the effect of the weight of the plate on the elastic foundation.

We are left with the following two equations, with C1, C2, C3 and C4 being four
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unknown constants:

w1 =
(q0 − P0)r4

64D
+
C1r

2

4
+ C2 +

(P0 − Pa)rn+4

Dan(n+ 2)2(n+ 4)2
0 < r < a (5)

w2 = C3kei0

(r
l

)
+ C4ker0

(r
l

)
+
q0

k
r > a (6)

We therefore need four boundary conditions to solve the mathematical problem. Con-

tinuity of the displacement w and its three first derivatives with respect to r at r = a

yield these four boundary conditions, which write:

w1(a) = w2(a), (7)

w′1(a) = w′2(a), (8)

w′′1 (a) = w′′2 (a), (9)

w′′′1 (a) = w′′′2 (a), (10)

with prime standing for derivation with respect to r. This system of four equations allows

for the determination of the four constants.

Equation (7) writes:

(q0 − P0)a4

64D
+
C1a

2

4
+ C2 +

(P0 − Pa)a4

D(n+ 2)2(n+ 4)2
=

C3kei0

(a
l

)
+ C4ker0

(a
l

)
+
q0

k
(11)

Equation (8) writes:

(q0 − P0)a3

16D
+
C1a

2
+

(P0 − Pa)a3

D(n+ 2)2(n+ 4)
=

C3√
2l

[
kei1

(a
l

)
− ker1

(a
l

)]
+

C4√
2l

[
kei1

(a
l

)
+ ker1

(a
l

)]
(12)
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Equation (9) writes:

3(q0 − P0)a2

16D
+
C1

2
+

(P0 − Pa)a2(n+ 3)

D(n+ 2)2(n+ 4)
=

C3

2l2

[
ker0

(a
l

)
− ker2

(a
l

)]
+
C4

2l2

[
kei2

(a
l

)
− kei0

(a
l

)]
(13)

Equation (10) writes:

3(q0 − P0)a

8D
+

(P0 − Pa)a(n+ 3)

D(n+ 2)(n+ 4)
=

C3

4
√

2l3

[
3ker1

(a
l

)
− ker3

(a
l

)
+ 3kei1

(a
l

)
− kei3

(a
l

)]
+

C4

4
√

2l3

[
3ker1

(a
l

)
− ker3

(a
l

)
− 3kei1

(a
l

)
+ kei3

(a
l

)]
(14)

These equations constitute a system of four coupled linear equations, which can be

written matricially as :

A.C = B, (15)

withA =



a2

4 1 kei0(al ) ker0(al )

a
2 0

kei1( al )−ker1( al )√
2l

kei1( al )+ker1( al )√
2l

1
2 0

ker0( al )−ker2( al )

2l2
kei2( al )−kei0( al )

2l2

0 0
3ker1( al )−ker3( al )+3kei1( al )−kei3( al )

4
√

2l3
3ker1( al )−ker3( al )−3kei1( al )+kei3( al )

4
√

2l3


,

B =



q0
k −

(q0−P0)a4

64D − (P0−Pa)a4

D(n+2)2(n+4)2

− (q0−P0)a3

16D − (P0−Pa)a3

D(n+2)2(n+4)

− 3(q0−P0)a2

16D − (P0−Pa)a2(n+3)
D(n+2)2(n+4)

− 3(q0−P0)a
8D − (P0−Pa)a(n+3)

D(n+2)(n+4)


and C =



C1

C2

C3

C4


The solution matrix C has an analytic solution which is given in the Appendix A. It

allows us to obtain, for any set of system parameters (h, E, ν, ρ, k, Pa and n) and

for any couple of control parameters (a and P0), the analytical expression of the radial

profile of the vertical displacement w(r).
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It is important to note that there are two length scales in the model: h and l. The

thickness h of the elastic strata is a parameter related to the geometry of the intrusion.

Our model is based on Equations 1 and 2, which are only valid when a/h >> 1. In the

following, we will therefore only consider values of a such that a/h >5, with 5 being an

arbitrarily chosen limit for the validity of the thin plate formulation, already used by

e.g. [69] and [12]. The elastic length l = 4

√
D
k is an intrinsic length scale of the model,

which represents the lateral distance, beyond the sill periphery, over which significant

displacements are found. In the following, we will see that the model exhibits two regimes,

the transition between which is controlled only by a/l, and not by a/h. Note however

that h is involved in the value of l, via D.

One can also notice that positive displacements w are defined downward, meaning that

upward displacement of the plate would be negative. Notice also that before the intrusion

forms, the weight of the plate already pushes down on the elastic foundation, so that

there is already a homogeneous displacement w0 = q0
k . We will consider this equilibrium

state as the initial condition when the intrusion starts forming. Consequently, in order

to calculate the displacement due to the intrusion, one needs to calculate the differential

displacement wi = w − w0 = w − w(r → ∞). For practical reason, in the figures of the

next sections, we plot the uplift induced by the emplacement of the intrusion, i.e. −wi.

3.2. Validation of the model

In order to test our model, we first compare it to the existing model of [69], for the

same parameters (Fig. 3). The only difference is that we consider an elastic foundation

of stiffness k, whereas [69] considered a perfectly rigid foundation, i.e. k=∞. This latter

condition imposes no displacement outside the intrusion. In contrast, the additional

elasticity introduced in our model with the elastic foundation implies that wi and its

derivatives are significantly different from 0 at the intrusion periphery (Fig. 3a).

Our model is expected to converge towards that of [69] when k becomes very large.

Figure 3, which shows the evolution of our model when the stiffness k of the elastic

foundation is varied (the overpressure ∆P0 = P0 − q0 is kept constant), demonstrates
10



that this is indeed the case. In order to quantify how our solution converges towards that

of [69], we define the relative difference χGSPJ = (
∑
wi−

∑
wiPJ)/

∑
wiPJ between our

model (GS) and that of [69] (PJ). In the range shown in Fig. 3b, this relative difference

is observed to decrease roughly as a power law of exponent -1/4.

Numerically, our analytic solution is not practically computable for any set of system

and control parameters. The reason is that the Kelvin functions of decay exponentially

with the value of the argument a/l and can become smaller than the numerical accuracy

that Matlab can achieve. The effect of this limitation is shown in Figure 4a, in which

we plot the relative uplift difference χGSPJ between our model and the one of [69] as a

function of a. For each given h, the analytic solution becomes unstable for high values

of a, as evidenced from the peaks on the right of the curves. The main reason is that the

denominator D1 derived from the matrix inversion of Equation (15) (see the complete

formulation in Appendix A) becomes so small that the ratio becomes unstable. The

collapse of the curves displayed in Figure 4b shows that the boundary of the stability

domain of our model corresponds to a critical value of the ratio a/l. This critical value

of a/l is '450. In practice, therefore, we can compute the analytical solution only for

a/l <450.

It is however possible to overcome this numerical limitation by using the asymptotic

forms of the Kelvin functions. For large x, all Kelvin functions scale as
√

π
2xe
−x/
√

2f(x),

where f is a sine or cosine function and x is the argument of the Kelvin function (see

Appendix A). By cancelling out all exponentials in the inversion of the matrix of Equation

(15), a solution is found in which no exponential is involved, and thus in which the

numerical accuracy is practically never reached (see Appendix A). The relative uplift

difference between this asymptotic model and that of [69] is shown as the black dashed

curve in Figure 4b. The asymptotic solution never becomes unstable and prolongates very

nicely the analytic solution for large a/l (a/l >450). In the following, we will therefore

use the analytic solution for a/l <450 and the asymptotic solution for a/l ≥450.

Figure 5 shows the relative uplift difference χAnAsym = (
∑
wiAn−

∑
wiAsym)/

∑
wiAsym
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between the analytic and the asymptotic solutions. As was already visible in Figure 4b,

the asymptotic solution is a very good approximation of the analytic solution even for rel-

atively small values of a/l. The relative uplift difference is smaller than 1% for a/l >3.7;

it is smaller than 0.1% for a/l >9.1.

Both the analytic (used when a/l <450) and the asymptotic (used when a/l ≥450)

solutions have been implemented in a Matlab code, which is provided as supplementary

material online.

One limitation of our model is that it is valid only when a/h > 5. In active volcanoes

or volcanic systems, this is not always the case [3, 24, 66, 15, 77, 88]. Volcanic edifices,

nevertheless, mostly consist of piles of strong lava flows intercalated between weak scoria

layers. Each flow exhibits a typical thickness of a few meters. [69] and [51] noticed

that slip occurred between the layers of the overburden, indicating that the overburden

behaved like a stack of thin plates of thicknesses hi for which a/hi >> 1. Therefore,

one can calculate an equivalent elastic stiffness of the overburden De =
∑n
i=1Dih

3
i /12,

which can replace D in Equation (15). In these conditions, strata can slide over one

another, and our model might become valid to analyze ground deformation due to sill

emplacement in given active volcanoes even when a/h < 5 [69, 73].

3.3. Behaviour of the model

In this section we illustrate the behavior of the model against changes in control and

system parameters.

3.3.1. Effect of the control parameters a and P0

In Figure 6a we show the evolution of the maximum uplift −wimax = w(r → ∞) −

w(r = 0) as a function of the overpressure ∆P = P0 − q0, for different values of the

intrusion radius a. For all a, −wimax increases linearly with ∆P . The slopes −wimax/∆P

of the curves thus represent the effective elastic compliance of the strata. In Figure 6b,

the values of this elastic compliance are plotted as a function of a for various values of

E, i.e. of the bending stiffness D.
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Figure 6 can be made completely non-dimensional by rescaling both axis (Fig. 7):

−wimax is divided by (q0−P0)a4

64D as a function of a/l. Doing so, the rescaled displacement

is constant for large a/l, meaning that, in this regime, the first term in Equation 5

dominates, i.e. −wimax ∼ a4. For small a/l, the dominating term is the second one in

Equation 5, which corresponds to −wimax ∼ a2 and yields a slope of -2 (Fig. 7). A clear

cross-over is observed, for a/l '5, between the two regimes with power laws of exponent

-2 and 0 for small and large a/l respectively. Physically, the regime where −wimax ∼ a2

corresponds to a very soft elastic foundation compared to the bending plate; it means

that uplift can occur over a large area outside the intrusion. In contrast, the regime

where −wimax ∼ a4 corresponds to a relatively stiff elastic foundation compared to the

bending plate; this means that uplift mainly occurs upon the intrusion, with a small

uplifted zone outside the intrusion. Interestingly, plotting geological values (Table 2) in

Figure 7 shows that natural systems lie around the transition between these two regimes

(black curve).

3.3.2. Effect of the heterogeneity of the pressure within the intrusion

Up to now, we have only considered situations in which the pressure is homogeneous

within the intrusion (Pa = P0). The radial pressure distribution P (r) = P0 − (P0 −

Pa)(r/a)n can be tuned by varying the values of P0, Pa and n (see Fig. 2d). The

pressure at the center (respectively periphery) of the intrusion is P0 (respectively Pa).

n=0 corresponds to a homogeneous pressure Pa. A higher value of n yields a sharper

decrease in the pressure when r approaches a (Fig. 2d). n=∞ would correspond to a

homogeneous pressure P = P0. Outside the intrusion, the pressure is set to zero.

To test the effect of those parameters, we compare uplift profiles for distinct values

of P0, Pa and n (Figure 8). For a consistent comparison, we impose that the force F
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applied to the bending plate is the same for all curves. We have:

F =

2π∫
0

a∫
0

[∆P0 − (∆P0 −∆Pa)(r/a)n] r dr dθ = π∆P0a
2

[
1− 2

n+ 2

(
1− ∆Pa

∆P0

)]
.

(16)

where ∆Pa = Pa − q0. This force F will be taken equal to that yielded by a constant

overpressure ∆Ph=3 MPa, i.e. πa2∆Ph.

Figure 8a shows uplift profiles for varying ratios ∆Pa/∆P0 between 0 and 1, and for

constant n = 1 (see pressure distributions in Fig. 8b). Note that cases in which ∆Pa <

∆P0 will be discussed in section 4.3. Although the total force applied to the bending

plate is the same, the maximum uplift −wimax increases when ∆Pa/∆P0 decreases. This

suggests that large pressures applied to the centre of the sill is more proficient to lift up

the overburden of the sill.

Figure 8c shows uplift profiles for varying n between 0.5 and 20, and for constant

∆Pa = 0 (see pressure distributions in Fig. 8d). The maximum uplift −wimax increases

when n decreases. This also shows that larger pressures applied at the centre of the sill

enhance the uplift of the sill overburden, although the total force is the same.

4. Discussion

4.1. Comparison with former models

Various models of sill and laccolith emplacement have been formerly designed. Most

of them are based on the formulation of a clamped thin plate [69, 12, 57], although

our model shows that uplift outside the sill can be substantial. Thus, uplift outside

the sill needs to be taken into consideration. [12] and [57] solved the hydrodynamics

of magma flow within the intrusion, taking into account the viscosity of, and the body

forces within the magma. The pressure distribution within the intrusion is thus predicted

by the calculation, and not prescribed. Nevertheless, such approaches require numerical

implementation, whereas our purpose it to propose a purely analytical model. Section 4.3,

14



however, shows how the numerical results of [12] and [57] can be considered to constrain

the pressure distribution within the intrusion.

[51] developed a 2D analytical model of laccolith emplacement based on thin bending

plate laying upon an elastic foundation. Our model expands their formulation to axi-

symmetrical form, allowing the calculation of the volume of the intrusions. In contrast to

our model, that of [51] did not prescribe a priori the length a of the sill. This difference

arises from a different boundary condition for the displacement w(r = a) at the tip of

the intrusion. In our model, the only constraint on the displacement is the continuity

between the two domains upon and outside the intrusion (Eq. 7). In contrast, [51] also

imposed the value of the displacement w(r = a) = 0, i.e. −wi(r = a) = q0/k. This

boundary condition is equivalent to an implicit propagation criterion of the intrusion

based on a critical displacement at the tip of the sill. Such a criterion does not take

into account the mechanical properties of the system, and other propagation criteria

cannot be used. In this respect, our model is more general as it can be combined to any

mechanical propagation criterion separately. Such a propagation criterion establishes

a relationship between the radius a of the intrusion and the other parameters like the

volume of the intrusion V . Doing so, one can reduce the number of control parameters

in our model from two (a, ∆P ) to only one (V ), as in e.g.[]Kerr1998. An example is

developed in section 5.1.

Note that in our model, flat-lying intrusions are emplaced along a rheological bound-

ary. This strong assumption is in agreement with geological and geophysical observations

[e.g., 41, 48, 83, 43], which show that sills were mostly emplaced along weak layers such

as coal, shale or unconsolidated tuff. This assumption is also in good agreement with

results from laboratory experiments [e.g., 50, 56, 33, 31], which show that layering is

required to turn a vertical dyke to horizontal sill. Compressional stresses can also con-

trol the formation of horizontal magma conduits [42, 76], and that buoyancy can play

a role on the emplacement of flat-lying intrusions [e.g., 7, 25, 81]. Recently, laboratory

experiments suggested that the high pore fluid pressures contained in sedimentary rocks
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can also control the formation of sills [36]. These latter mechanisms, however, can be

important for the initiation of flat-lying conduits, whereas our model accounts for the

evolution of an already initiated intrusion. Therefore, these parameters are not critical

in our model.

4.2. Physical meaning of k

Sills and laccoliths are often emplaced in layered rocks, and notably along weak

layers [e.g. 41, 19, 18, 71, 50, 33]. In the model presented in this paper, we propose

that the elastic foundation represents a weak sedimentary layer, such as clay, tuff, or

unconsolidated sediments. We thus expect this layer to deform elastically more than the

overlying strata at the vicinity of an intruding sill.

An expression of k can be derived by assuming that the deformation of the elastic

foundation corresponds to uniaxial strain in the case of an infinite plate, such that εx =

εy = 0 and σx = σy = νwl
1−νwlσz. Hooke’s law thus writes [86]:

−εz =
w

hwl
=

(1 + νwl)(1− 2νwl)

Ewl(1− νwl)
σz, (17)

where hwl and Ewl and νwl are the thickness, Young’s modulus and Poisson’s ratio of

the weak layer, respectively.

By definition, the displacement w corresponds to the response of the elastic foun-

dation under any vertical stress σz, such that w = σz/k. Replacing this relation into

Equation (17) leads to the expression of k:

k =
Ewl(1− νwl)

(1 + νwl)(1− 2νwl)hwl
. (18)

k is a linear function of the Young’s modulus Ewl and is an inverse function of hwl,

meaning that the effective stiffness of the elastic foundation becomes smaller if the weak

layer is thicker.

From Equation 18, values of k can be estimated. The Young’s modulus Ewl can range

from 105 Pa for unconsolidated tuff or sediments, or a paleosoil [e.g. 63, 4, 2] to 109 Pa for
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consolidated tuff of more competent rocks. Considering realistic thickness hwl between

1 to 10 meters for the weak layer, and considering ν = 0.35, this leads to a geological

range for k between 104 and 109 Pa m−1. These values have been used in Figure 7 when

defining the geologically relevant model parameters. This range is consistent with the

value of k = 2–5×107 Pa m−1 given by [51].

One can notice that for low values of k, the displacement at the tip of the sills

−wi(r = a) can be substantial (Fig. 3). This has two implications: (1) the tips of sills

are not sharp-like fracture tips, and (2) strain values in the elastic foundation can be

substantial (larger than 1). In this case, it is unlikely that the rock deforms elastically,

but it is expected to deform plastically. Recent geological observations corroborate this

assumption, by showing that ductile deformation at the vicinity of sills can accommodate

substantial amount of strain locally [75]. Consequently, sill tips exhibit massive bulged

tips, which can be several meters thick.

Recent studies highlighted that non-elastic processes occur at the vicinity of dykes,

either due to plastic deformation of the country rock or cooling effects [49, 17, 1]. These

inelastic phenomena are accounted neither in our model nor in Linear Elastic Fracture

Mechanics (LEFM) theory [e.g., 67]. To date, however, there is no model that account

for these inelastic processes associated with the emplacement of dykes and sills.

4.3. Tabular shape of sills and laccoliths

[12] highlight that the classical bell shapes predicted by the models of [69] and [51]

are not fitting with the shapes of natural sills and laccoliths, which are tabular. In the

models of [69] and [51], the pressure distribution in the sills were prescribed a priori.

Thus, the only pressure distributions considered were either homogeneous or decreasing

from the centre to the tips (Fig. 2d). In contrast, [12] implemented numerically the

viscous flow and the body forces of the magma through the Navier-Stokes equations and

calculated a pressure profile at the base of the deforming plate. Counterintuitively, the

over-pressure at the centre of the sill ∆P0 is negative and smaller than the over-pressure

at the tip of the sill ∆Pa, which is positive [Fig. 7 of 12]. In addition, the shape of their
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pressure profile resembles that of a function of the form of P = P0 − (P0 − Pa)(r/a)n,

where P0 < Pa and n < 1.

In Figure 9, we compare two uplift profiles calculated with our model for (1) a homo-

geneous pressure distribution, and (2) a pressure distribution similar to that of [12]. For

comparison purpose, the forces applied at the bottom of the deforming plate are the same

(see Section 3.3.2). The homogeneous pressure gives the typical bell-shape as calculated

by [69] and [51]. In contrast, the other pressure distribution indeed produces tabular

morphology, which is compatible with those observed for sills and laccoliths. Therefore,

the general formulation of our model allows to take into account a physically realistic

pressure distribution to calculate geologically relevant intrusion shapes. Nevertheless,

in order to predict the correct pressure distribution within the sill, one would need to

combine our model to the hydrodynamic equations, in a similar way as that presented

by [12], and solve the problem numerically. Note that although the force applied to

the deforming plate are the same in both cases of Figure 9, the maximum uplift are

substantially different.

5. Applications

5.1. Propagation of sills

The dynamics of sill emplacement have been studied extensively during the last decade

using experimental methods [11, 50, 33]. These experimental studies have shown that (1)

the fluid pressure decreases hyperbolically during emplacement at constant volumetric

flow rate [63, 32, 33], and (2) the propagation velocity of the sill front increases during

emplacement at constant fluid overpressure [50]. These results have been confirmed

numerically [52] and theoretically [69, 68, 12]. They indicate that the propagation of

sills, or of horizontal fluid-filled fractures in general, results from a complex interplay

between the pressure in the fluid, the size of the sill and the mechanical properties of the

surrounding material.
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Experiments of fluid injection at constant flow rate Q have shown that the fluid

pressure P0 ∝ V β , where V = Qt is the injected volume of fluid and is known at any

time t. Simple scaling analysis shows that β is a function of the fracture propagation

criterion [62, 63, 32]. A fracture propagation criterion is in general a relationship between

∆P , the geometry of the system and the mechanical properties of the fracturing medium;

it expresses how the solid responds to the loading due to an over-pressurized fluid within

a crack.

Detailed analysis of pressure data during experiments of fluid injection in solids have

thus been performed to derive the dynamics of fracture formation [62, 63, 32]. The goal

is to fit the pressure and uplift evolution curves with the results of a mechanical model to

calculate the intrinsic physical parameters of the fracturing process. [62, 63], for example,

used the model of a clamped plate of [69] to study the development of shallow flat-lying

cracks in soils. In his analyses, [62, 63] defined a fracture propagation criterion based

on the mode I stress intensity factor KI derived for a thin clamped plate attached on a

rigid foundation, which writes:

KI = ∆Pa2

(
3

32h3

)1/2

. (19)

When KI exceeds a critical value KIC (also called the fracture toughness, which is a

material property), the fracture tip becomes unstable and propagates.

Here we propose to develop a similar approach to those of [62, 63] but using our

analytical model. In our model, the propagation of an intrusion occurs when the elas-

tic foundation fails, i.e. when it reaches a given mechanical threshold, e.g. a critical

stretching. We made the assumption that the failure of the elastic foundation can be

expressed by a critical value of the stress intensity factor. Equation 19, however, is valid

only for the clamped model of [69] and [63], but not for our model. Nevertheless, the

derivation of an analytic formula of the stress intensity factor for our model proved to

be very challenging, and we propose to calculate it numerically (see Appendix B). Such

a procedure produces the relationship ∆P ∝ 1/a2 (Fig. 10), which is similar to that of
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Equation 19.

In order to compare our model with the analyses of [62, 63] and [32], we need to

derive the volume V of the intrusion, which writes in cylindrical coordinate system:

V = −
2π∫
0

a∫
0

rwi(r) dr dθ = −2π

∫ a

0

rwi(r)dr. (20)

Combining Equations (5) and (20) and integrating, the expression of the volume of

the sill at any time t writes:

V (t) = −2π

(
(q0 − P0)a6

384D
+
C1a

4

16
+
C2a

2

2
− q0a

2

2k

)
. (21)

For simplicity, we consider here the case of homogeneous pressure within the sill

(Pa = P0). According to Equations (32) and (33) given in the Appendix A, C1 and C2

are complicated functions of a and ∆P . Combining the relationship between ∆P and

a (Fig. 10) with Equation (21) implies that the volume V of the sill can be calculated

numerically as a function of a or ∆P only, such that a and ∆P can be plotted as functions

of V (Fig. 11). Considering a constant injection flow rate Q, V = Qt can directly be

converted into time t.

Figures 11a, b, and c show the evolution of ∆P , a and −wimax with V , respectively.

Qualitatively, the curves of Figures 11a, b, and c match well the experimental results of

shallow horizontal intrusions of [60, 63] and [31]. In log-log representations (Fig. 11), the

data produce linear trends, thus showing that ∆P , a and −wimax are all proportional

to V α. The slopes in Figure 11 are −1/2, 1/4 and 1/2, respectively, showing that

∆P ∝ 1/
√
V , a ∝ 4

√
V and −wimax ∝

√
V . The very same relationships have been

obtained experimentally by [63], suggesting that our model is relevant for describing the

emplacement of shallow flat-lying intrusions.

Notice that the domain of validity of the thin plate approximation is for a/h > 5.

Some authors, however, used this formulation for small values of a/h [e.g., 69, 73]. We

recall that, for the sake of rigor, we chose to use our model only for a/h >5, and to
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represent only such data points in all figures. If one would be interested in the case

where a/h < 5, e.g. for small sills, further tests and comparisons with elastic half-space

models [e.g., 79, 22] would be required.

[51] also derived an analytical solution of the surface uplift as a function of V . In

their approach, nevertheless, the mathematical problem was over-determined, such that

a crack propagation criterion was implicitly introduced in their boundary conditions: the

fixed displacement imposed at the tip of the sill yielded a relationship between a and

P [Eq. (23) of 51], playing a role analogous to our relationship between a and ∆P in

Figure 10. We emphasize that our approach is different and more general: we solved

the mathematical problem in the most generic manner for any values of the system and

control parameters, and we subsequently used an additional physical definition of a crack

propagation criterion (Fig. 10) that links the pressure and the radius of the intrusion.

With this criterion, the radius a of the intrusion is not an independent control parameter

anymore (like in the analysis of [51]), and the surface uplift can be calculated as a function

of e.g. the volume V only. Because the application of a crack propagation criterion is

separated from the main analysis, any crack propagation criterion can be used with our

model, in contrast to the model of [51].

5.2. Critical size of saucer-shaped sills

Saucer-shaped sills result from the mechanical interactions between a growing hori-

zontal sill and the deforming overburden [52, 70, 33]. The magma overpressure within

the sill lifts up the overburden to form a gentle dome, at the rim of which stresses interact

with the leading edge of the sill [52]. When these stresses reach a critical value, the sill

tip is deviated from the horizontal, and it propagates upward to form inclined sheets.

Such a phenomenon is fundamental in sedimentary basins as it controls the formation of

(1) numerous magmatic sills in the Karoo Basin [e.g., 16, 70, 35, 30], offshore UK and

Norway [e.g., 39, 83], and (2) many sand intrusions [e.g., 20, 44, 80].

The analysis developed in this paper can be used to predict under which condition

the sill-to-inclined sheet transition occurs [69, 35]. The bending of the overriding plate
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generates a strain distribution along the plate due to outer arc and inner arc deformation

(Fig. 12). In the formulation of a thin bending plate, the vertical normal strain εz =

∂w/∂z within the plate and upon the sill is zero, because w is a function of r only.

In contrast, εr = ∂u/∂r is not zero because the radial displacement u is a function of

r. Notably, the tip of the sill (r = a) is submitted to tensile strains εra (Fig. 12a). We

assume that the overriding plate fails at the tip of the intrusion when εra reaches a critical

value εc (radial tensile strain at failure), leading to the formation of an inclined sheet

due to mode I fracture (Fig. 12b). This reasoning is in good agreement with experiments

[Fig. 12b; 69] and geological observations [59], which show that upward open fractures,

i.e. inclined sheets, form at the tips of sills. Nevertheless, we cannot rule out that shear

deformation also affects the overriding plate.

The above analysis has been applied by [35] using the formulation of [69], i.e. that

of a clamped plate. They found the expression of the critical size ac at which sills turn

to inclined sheets ac = 2h
√

Eεc
3(1−ν2)∆P . Here we apply a similar analysis using our more

general solution. To this end, one needs to calculate the strain at the tip of the sill, i.e.

εra. The expression of the radial strain εr at any point of the bending plate is given by:

εr =
∂u

∂r
= −z ∂

2w

∂r2
, (22)

where u is the radial displacement and z is the distance from the neutral surface. Com-

bining Equations (5) and (22) yields an expression of εr:

εr = −z
(

3(q0 − P0)r2

16D
+
C1(a, P0)

2
+

(n+ 3)(P0 − Pa)rn+2

Dan(n+ 2)2(n+ 4)

)
, r < a. (23)

The points at the contact between the sill and the plate are at z = h/2. The transition

from a horizontal sill to an inclined sheet is assumed to occur when the bending plate

above the tip of the sill fails, i.e. when εra = εc at z = h/2. The strain at the tip of the

sill can be calculated from Equation (23),
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εra = −h
2

(
3(q0 − P0)a2

16D
+
C1(a, P0)

2
+

(n+ 3)(P0 − Pa)a2

D(n+ 2)2(n+ 4)

)
. (24)

Here, we will consider the case of homogeneous pressure within the sill, i.e. P0 = Pa.

Equation (24) thus becomes:

εra = −h
2

(
3(q0 − P0)a2

16D
+
C1(a, P0)

2

)
, (25)

with the constant C1 given by Equation (32). We can calculate the strain εr at the tip

of the sill for any values of P0 and a. Here we consider that E = 1010 Pa and ν = 0.35.

Figure 13 illustrates how εra evolves versus a, for given overpressures ∆P . The transition

from horizontal sill to inclined sheet occurs when εra reaches the critical value εc. [52]

have suggested that εc may lie in the range 2 × 10−3 to 2 × 10−2. Thus, the size ac of

the sill at which the transition occurs is the solution of:

εc = −h
2

(
3(q0 − P0)a2

c

16D
+
C1(ac, P0)

2

)
. (26)

In the case of a clamped plate, C1 is a simple function of a and P0 (C1 = P0a
2/16D),

such that ac can easily be found analytically. Here, Equation (26) is not directly solvable

because C1 is a complicated function of both a and P (see Eq. 32). Nevertheless,

Equation (26) can be solved numerically, as shown on Figure 13. Figure 14 shows a map

of the calculated values of ac versus ∆P and h. For clarity, we plot profiles of this map

(white lines), which are shown on Figures 15 and 16.

The values of ac calculated with our model, by using typical geological parameters,

are typically tens of kilometers for sill depths of a few kilometers. This result is in good

agreement with sills observed in the field [e.g., 54, 52, 70, 33, 30] and on seismic profiles

[e.g., 82, 84, 38, 83, 40]. This suggests that our model is a reasonable approximation of

reality.

Figure 15 shows the difference between the clamped solution of [35] and the results
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of our model for three different values of k, with a constant h = 2000 m. The clamped

solution of [35] follows a hyperbolic function of ∆P of the form 1/
√

∆P . When k = 1010

Pa m−1, the elastic foundation is very rigid, almost all the deformation is accommodated

by the bending plate and consequently, our solution provides results very similar to the

clamped solution. In contrast, when k decreases the elastic foundation is softer and it

accommodates part of the deformation. As a consequence, the bending of the plate at

the tip of the sill is less pronounced. Therefore, although ac follows a hyperbolic trend

similar to that of the clamped solution, the calculated values are higher (Fig. 15).

This has the important physical meaning that an elastic foundation favors the horizontal

spreading of sills. In addition, for soft elastic foundations, the linear behavior in the

log-log plot of Figure 15b is lost, showing that ac cannot be described by a hyperbolic

function of ∆P anymore.

Figure 16 shows the relationship between ac and h for different values of k. According

to [35], ac is a linear function of h in the case of a clamped plate. This is consistent

with geological and geophysical observations [70]. Similarly to Figure 15 and for the

same reasons, the values of ac calculated from our solution deviates from the clamped

solution. In addition, we can notice for the case k = 105 Pa m−1 that the relationship

between ac and h in a log-log plot is not perfectly linear anymore, but the curve slightly

bends downward. This latter behavior has been observed in numerical simulations [52]

and in experiments [33]. This result once again suggests that the solution presented in

this paper is more realistic than the simple clamped solution.

5.3. Comparison with the model of [58]

In active volcanoes, the shape and dynamics of intrusions can be inferred from geo-

physical [9, 10] and geodetic data [3, 22, 6, 66, 15, 87, 29, 77, 88]. In order to estimate

their geometrical and dynamic characteristics, a standard procedure consists of (1) mak-

ing an assumption on the shape of the intrusion responsible for the monitored ground

deformation, and (2) fitting ground deformation data monitored from geodetic survey

(GPS, InSAR) with an analytical solution or a numerical model relevant to the assumed
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intrusion shape. The parameters of the model that provide the best fit are considered to

characterize the shape of the intrusion.

Analytical solutions are convenient to use as they often do not require heavy com-

putational skills. A classical analytical model used for analyzing ground deformation in

volcanic systems is that of [58]. The ”Mogi point source” model has been used exten-

sively to invert ground deformation data measured on active volcanoes when the shape of

the magma source was not known a priori [e.g. 53, 5, 47, 64]. This model accounts for

the vertical (wM ) and horizontal (uM ) displacements due to an over-pressured spherical

magma body of radius am at a depth hm >> am:

uM =
3a3
m∆Pm
4µ

r

(h2
m + r2)3/2

, (27)

wM =
3a3
m∆Pm
4µ

hm
(h2
m + r2)3/2

, (28)

where r is the radial distance on the surface, and µ = Eν/(1 + ν)(1− 2ν).

In general, the horizontal displacements produced by models based on thin bending

plates are not considered [e.g., 69, 63, 12]. One reason is that u = 0 at the neutral line

at the centre of the plate, i.e. at z = 0, because the radial strain εr = 0 (Fig. 12a).

Nevertheless, above and below the neutral line, εr 6= 0 as outer-arc stretching and inner-

arc shortening occurs (Fig. 12a). Combining Equation 22 with Equations 5 and 6 lead

to the expressions of u at the surface of the model, i.e. at z = −h/2:

u(r < a) =
h

2

[
(q0 − P0)r3

16D
+
C1

2
r +

(P0 − Pa)rn+3

Dan(n+ 2)2(n+ 4)

]
, (29)

u(r > a) =
h

2

[
C3√

2l

[
kei1

(r
l

)
− ker1

(r
l

)]
+

C4√
2l

[
kei1

(r
l

)
+ ker1

(r
l

)]]
. (30)

We compare the vertical (−wi) and horizontal (u) displacements computed from our

analytical model with standard values (h = 2000 m, a = 10000 m) with the Mogi point
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source model [58] by fitting this latter to our model (Fig. 17). When the fitting is applied

to the domain 0 < r < 2a, the shapes of the curves exhibit some differences (Fig. 17a),

but the overall shapes are similar. Interestingly, the result of the fit gives an estimate of

the depth of the Mogi point pressure source hm = 7550 m, i.e. the Mogi point source

model greatly over-estimates the depth of the magma source (by more than a factor of

3.5). One can notice that the ratio −wimax/umax is larger in our model than in the model

of [58], i.e. the horizontal displacements u calculated from our model are proportionally

smaller than uM .

Notice that the failure of the Mogi model is mainly due to the geometry of the

intrusion, rather than to the details of the sill model. As an illustration, in Figure 17b,

we fitted the Mogi point source model to the clamped model of [69]. The result also

shows that the Mogi model over-estimates the depth of the magma source (hm = 6681

m versus h = 2000 m), but to a lower extent than with our model.

Because ground deformation data are often produced from InSAR measurements [e.g.

3, 66, 53, 77], only the vertical displacement w can be calculated. We thus fitted the

vertical displacements −wi calculated from our model with the vertical component wM

of the Mogi model (Fig. 17c) on the domain 0 < r < 2a. The fit appears much better

than in Figure 17a, but the calculated depth of the pressure source is hm = 7439 m, i.e.

the same depth as that calculated from fitting both −wi and u (Fig. 17a). Applying the

Mogi model to analyze ground deformation induced by the emplacement of a sill, and

monitored with InSAR also leads to large over-estimates of the depth of the pressure

source (by a factor of 3.5).

All these tests show that the systematic use of the Mogi point source model [e.g., 78]

would lead to substantial misunderstanding of the structure and dynamics of volcanic

systems if the magma reservoir is shallow and flat-lying, such as in many volcanoes [e.g.,

3, 24, 77, 88]. This large error can have important implications for, e.g. interpreting

petrological data for inferring the depth of magma reservoirs. Constraining properly the

depth of magma reservoir would also avoid surprises such as at Krafla Volcano, Iceland,
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where drilling unexpectedly ended up directly in the magma chamber at about 2 km

depth [e.g., 21].

Our analysis suggests that inversion of ground deformation data based on analytical

models may not consider the Mogi point source model only, but should systematically

complement this latter with another simple analytical model that takes into account a

flat-lying shape, like our model. In this respect, a systematic test of the suitability of

our analytical model for ground deformation inversion, and especially a comparison with

the solutions of [65] and [22] would be very interesting to perform.

6. Conclusions

In this paper, we developed a new axi-symmetrical model of surface uplift due to

flat-lying magma intrusions. The model is based on the formulation of a thin bending

plate lying on a deformable elastic foundation. In contrast to former models of sills and

laccoliths considering the thin bending plate formulation [69, 35, 73], our model allows

uplift both upon and outside the intrusion. The model proposed here is an improved

version of that proposed by [51], as we extend it to axi-symmetrical and we set generic

boundary conditions. The pressure distribution within the intrusion is P = P0 − (P0 −

Pa)(r/a)n, where P0 and Pa are the pressure at the center (r=0) and periphery (r=a)

of the intrusion, respectively.

We propose a fully analytical solution of the model. Numerically, however, the solu-

tion become unstable for a/l > 450, with a the radius of the sill and l the elastic length

emerging from the model. In these cases, we propose an asymptotic solution which pro-

longates the analytic solution for large values of a/l. Both the analytic and asymptotic

solutions are provided in a Matlab file as supplementary material.

The uplift calculated from our model depends on both the elastic properties of the

bending plate and of the elastic foundation. We show that when the elastic foundation

is very stiff, i.e. when k → ∞, our model converges towards that of [69] for a clamped

plate, as expected.
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The model exhibits two regimes depending on the ratio a/l. When a/l < 5, the

maximum uplift at the center of the intrusion −wimax evolves as a2 (Fig. 7). In this

regime, the elastic foundation is soft compared to the bending plate, the calculated uplift

spreads over a large domain compared to the intrusion area. In contrast, when a/l > 5,

the maximum uplift at the center of the intrusion evolves as a4. In this latter regime,

the bending plate is soft compared to the elastic foundation, the uplift extends mostly

upon the sill. Interestingly, geological systems are expected to be found on both sides of

the transition between the two regimes.

By introducing a relevant fracture propagation criterion, we show that the model can

be used to describe sill propagation. For realistic values of the model parameters, our

solution reproduces well the temporal evolution of shallow horizontal intrusions simulated

in experiments [62, 63, 31].

The model can also be used to predict the critical size ac at the transition from inner

sill to inclined sheet in saucer-shaped sills as a function of h and ∆P . ac approaches

linear functions of h and 1/
√

∆P , as observed in the field [70], in experiments [33] and

in numerical simulations [52]. We also show that soft elastic foundations favours the

horizontal spreading of sills before they form inclined sheets.

We compared the vertical and horizontal displacements calculated from our model

with the Mogi point source model [58], and we show that this latter can strongly over-

estimate the depth of a flat-lying intrusion by more than a factor of 5. We thus propose

that our model can be useful to analyze ground deformation resulting from sill intrusions

in active volcanoes and offers a simple alternative to numerical models.
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Appendix A

The elements Ci of the solution matrix of Eq. 15 are such that:

C1
Di

2a
= 4b

[
6(himi − gini) + 3(giqi − hipi)a+ (nipi −miqi)a

2
]

+ (31)

s
[
(himi − gini)(24 + 26n+ 9n2 + n3) + (giqi − hipi)(12 + 7n+ n2)a+ (nipi −miqi)(4 + n)a2

]{
C2 −

q0

k
−
[
5b− s

(
1− (n+ 4)(n+ 3)

2

)]
a4

}
Di

a
= (32)[

cihi − figi + a (fimi − cini)−
a2

2
(himi − gini)

]
(24b+ s(2 + n)(3 + n)(4 + n)) +

a2

[
ciqi − fipi −

a2

2
(miqi − nipi)

]
(8b+ s(4 + n)(2 + n))

C3
Di

a
= 8b

[
3(nia− hi)− qia2

]
+ s

[
(24 + 26n+ 9n2 + n3)(nia− hi)− (8 + 6n+ n2)qia

2
]

(33)

C4
Di

a
= (gi −mia) [24b+ s(2 + n)(3 + n)(4 + n)] + pi [8b+ s(4 + n)(2 + n)] a2 (34)

with b = q0−P0

64D , s = P0−Pa
D(n+2)2(n+4)2 , Di = hipi − giqi + (miqi − nipi)a and the following

definition of the coefficients for the analytic (i = 1) or the asymptotic (i = 2) solutions:

c1 = −kei0(
a

l
) (35)

f1 = −ker0(
a

l
) (36)

g1 = −
kei1(al )− ker1(al )√

2l
(37)

h1 = −
kei1(al ) + ker1(al )√

2l
(38)

m1 = −
ker0(al )− ker2(al )

2l2
(39)

n1 = −
kei2(al )− kei0(al )

2l2
(40)

p1 = −
3ker1(al )− ker3(al ) + 3kei1(al )− kei3(al )

4
√

2l3
(41)

q1 = −
3ker1(al )− ker3(al )− 3kei1(al ) + kei3(al )

4
√

2l3
(42)

and
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c2 =
√

πl
2asinσ (43)

f2 = −
√

πl
2acosσ (44)

g2 =
√
π

4l2( al )
3
2

[
2acosσ − (

√
2l + 2a)sinσ

]
(45)

h2 =
√
π

4l2( al )
3
2

[
2asinσ + (

√
2l + 2a)cosσ

]
(46)

m2 =
√
π( al )

3
2

8a4

[
l(3
√

2l + 4a)sinσ − 4a(l +
√

2a)cosσ
]

(47)

n2 = −
√
π( al )

3
2

8a4

[
l(3
√

2l + 4a)cosσ + 4a(l +
√

2a)sinσ
]

(48)

p2 =

√
πa
l3

16a4

[
2a(4a2 + 6

√
2la+ 9l2)cosσ + (8a3 − 18l2a− 15

√
2l3)sinσ

]
(49)

q2 =

√
πa
l3

16a4

[
2a(4a2 + 6

√
2la+ 9l2)sinσ − (8a3 − 18l2a− 15

√
2l3)cosσ

]
(50)

with σ = a
l
√

2
+ π

8 .

Appendix B

The derivation of the expression of the stress intensity factor is based on the me-

chanical energy U of the system due to the intrusion. It is equal to the work of the

overpressure on the roof of the sill as it is inflated:

U = −
∫ V

0

∆P dV ′. (51)

The expression of the volume of the intrusion for any pressure distribution is given

by:

V (t) = −2π

(
(q0 − P0)a6

384D
+
C1a

4

16
+
(
C2 −

q0

k

) a2

2
+

P0 − Pa
Dan(n+ 2)2(n+ 4)2

an+6

n+ 6

)
.

(52)

When Pa = P0, this Eq. 52 leads to Eq. 21. In addition, Eqs. 32 and 33 show that

when Pa = P0, C1 ∝ ∆P and C2− q0/k ∝ ∆P . Therefore, Eq. 21 shows that V = α∆P ,
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with α a constant independent of ∆P . Combining this simple relationship with Eq. 51

leads to:

U = −
∫ V

0

V ′ dV ′

α
=
V 2

2α
=

1

2
∆PV. (53)

Combining Eqs. 53 and 21 leads to:

U = π∆P

[(q0

k
− C2

) a2

2
− C1

16
a4 − q0 − P0

384D
a6

]
. (54)

The stress intensity factor is given by the following expression:

KI =
√
GE′, (55)

where G = −dU/dA, E′ = E/(1−ν2), and A is the area of the intrusion. G is a function

of a and P , and can be rewritten as:

G(a, P ) = −dU

da

1

2πa
. (56)

U being a very complex function of a through C1 and C2, G cannot be derived

analytically. However, for a given pressure, G can be calculated numerically as:

G(a, P ) = −U(a+ da)− U(a)

da

1

2πa
. (57)

Combining Equations 55, 57 and 54, and giving KI a critical value KIC , i.e. the

fracture toughness, leads to a relationship between P and a, which can be calculated

numerically (Fig. 10). Combining this numerical relationship with Equation 21 allows

one to calculate the evolution of a, P and −wimax as a function of V (Fig 11).

In order to test the relevance of this approach, we compare it with the clamped plate
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problem with homogeneous pressure, in which:

C1

4
=

2∆Pa2

64D
, (58)(

q0

k
− C2

)
=

∆Pa4

64D
. (59)

Combining Eqs. 58 and 59 with Eq. 54 leads to an expression of the input energy:

U =
π∆P 2a6

384D
. (60)

Using Eq. 60 in the definition of G (Eq. 56) leads to an expression of G:

G =
3∆P 2a4

32E′h3
. (61)

Finally, the stress intensity factor can be derived from Eq uation 55:

KI = ∆Pa2

√
3

32h3
. (62)

This expression is identical to that derived by [62] and [63] (see also Eq. 19), thus

validating our calculation.
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Figure 1: Geological examples of uplift due to sill emplacement. a. Satellite image of

Eyjafjallajökull Volcano, Iceland, showing InSAR and seismic data during the Spring

2010 eruption [after 77]. The data were monitored between 25 September 2009 and 20

March 2010. They were related to pre-eruptive period, which corresponded to the em-

placement of a ≈10-km large sill at a few kilometers depth [transparent white surface;

Figure 3e of 77]. Black arrows show the satellite flight path (downward arrow) and look

directions (leftward arrow). Black dots show earthquake epicenters during this period.

The red stars locate the eruption localities. The yellow triangles locate GPS stations

that monitored continuously flank deformation. The colored fringes represent ground

displacement calculated from TerraSAR-X interferograms from descending satellite or-

bits. Each fringe corresponds to line-of-sight, i.e. distance from the satellite, change of

15.5 mm. The total displacement can thus be several tens of centimeters. Background

is shaded topography. The rounded patterned line on the right of the image locates the

caldera of Katla Volcano. Note that the uplifted area is at least twice wider than the

underlying sill. b. Seismic profile illustrating the relationships between a saucer-shaped

sill and the structure in its overburden, Rockall Basin, offshore Scotland [modified after

39]. Vertical scale is the time for seismic wave travel (in seconds). The profile shows that

sill overburden is bent, forming a dome structure (uplift). This profile shows that the

dome is about 1.3 times wider than the sill.

40



r
z

r

z

a

P(r)

q0

q0

q0

w0 w0

q0

q0

k

h

h

q0

q0

q0 q0

q0

b

r

z

k

h

a

c

d

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

P(
r) 

/ P

r/a

n=0

n=1

Increasing n

0

P /P0a

Figure 2: Schematic diagram of the model developed in this paper [modified after 51].

a. Unloaded system. A plate of thickness h is located above an elastic foundation of

stiffness k. Positive vertical axis is downward. The lithostatic stress of the plate, q0, is

not yet applied on the elastic foundation. b. Gravity loading only. Application of the

weight of the plate yields a homogeneous vertical displacement w0 = q0/k. c. System

after a sill intrusion. A (possibly heterogeneous) pressure distribution P (r) is applied

within an axisymmetric sill of radius a. The displacement w is calculated with respect to

state a (dashed line). In contrast, the uplift wi due to the sill is calculated with respect

to state b, i.e. wi = w − w0. d. Plot of the radial distribution of the pressure P (r) in

the intrusion, normalized by P0, as a function of r/a, for various values of n (n increases

from 0 to 10 by steps of 1). The pressure at the intrusion periphery was chosen, for this

illustration, such that Pa = P0/4.
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Figure 3: a. Plots of the radial profile of the surface topography −wi for a=5000 m,

∆P0 = P0 − q0=1 MPa, h=1000 m, E=10 GPa, ν=0.35, ρ=2500 kg m−3 and Pa=P0.

Dashed black line: model of [69]. Solid grey lines: this model for the same parameters,

and with k=105, 106, 108, 1010 Pa m−1. Horizontal arrow with r = a locates the sill.

b. Log-log plot of the relative uplift difference between this model and the model of

[69] χGSPJ = (
∑
wi −

∑
wiPJ)/

∑
wiPJ , where GS refers to this model (Galland and

Scheibert) and PJ refers to [69]. The dashed line has a slope of -1/4.
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Figure 4: a. Plot of the relative uplift difference χGSPJ between this model and that of

[69] as a function of intrusion radius a, for various strata thickness h (h is varied from 25m

to 5000m). The lower bound of h is geologically unrealistic in purpose. See definition

of χGSPJ in caption of Fig. 3. ∆P0=2 MPa, E=1011 Pa, ν=0.35, ρ=2500 kg m−3, k=1

MPa m−1 and Pa=P0. Note that for each curve, the data becomes numerically unstable

above a critical value of a. b. The same data is plotted in solid grey line as a function of

a/l. All curves collapse on a single curve. The dashed line shows the asymptotic form of

our model. Notice that collapse of the dashed lines make them appear as a solid black

line. Note that only points corresponding to a/h >5 have been considered. A lower thin

dashed line illustrates the slope of -1. Note that the analytical values of χGSPJ become

numerically unstable for the same critical value of a/l ' 450
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Figure 5: Plot of the relative uplift difference χAnAsym between the analytic solution

and the asymptotic solution as a function of a/l. Curve obtained for ∆P0= 2 MPa, h

ranging between 25 m and 5000 m, E=1011 Pa, ν=0.35, ρ=2500 kg m−3, k=1 MPa m−1

and Pa=P0, but any other set of parameters would have produced the same curve (cf.

collapse in Fig. 4b). The slope of the line being -3 shows that the asymptotic solution

converges quickly towards the analytical solution.
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Figure 6: a. Plot of the maximum uplift −wimax as a function of ∆P for various a (a

varies from 5000m to 10000m by steps of 500 m). h=1000 m, k=1 MPa m−1, E=100

GPa, ν=0.35, ρ=2500 kg m−3 and Pa=P0. b. Plot of the effective elastic compliance

of the strata −wimax/∆P as a function of a, for various E (E=10i Pa with i increasing

from 9 to 12 by steps of 0.5). h=1000 m, k=1 MPa m−1, ν=0.35, ρ=2500 kg m−3 and

Pa=P0. Note that the pressure is constant, so that ∆P=∆P0.
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Figure 7: Plot of −64Dwimax/∆Pa
4 as a function of a/l, for various E (E=10i Pa with

i an integer from 7 to 16), h varying between 10 and 10000 m, a varying between 100 and

108 m, k varying between 103 and 1011 Pa m−1, ν=0.35, ρ=2500 kg m−3, ∆P varying

between 106 and 107 Pa, and Pa=P0. We chose in purpose range values that are not

relevant for geological systems in order to test the generic behavior of the model (grey

curve). All the data scale on one master curve, which exhibits two regimes. Geologically

relevant values of the model parameters are indicated with the black curve, and fall right

at the transition between the two regimes. Geological values are ∆P between 106 and

107 Pa, h between 1000 and 5000 m, a between 1000 and 105.5 m, E between 109and

1011 Pa, and k between 104 and 109 Pa m−1 (see Section 4.2). These values gives values

of a/l ranging between 0.0539 m and 3203 m. Only points corresponding to a/h >5 have

been considered. Note that the pressure is constant, so that ∆P=∆P0.
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Figure 8: Plots of −wi (left column) and corresponding pressure P (right column) as

a function of r for different pressure distributions. The black curves correspond to an

homogeneous overpressure ∆Ph=3 MPa. Other curves correspond to heterogeneous pres-

sures, given by P = P0 − (P0 − Pa)(r/a)n. Grey: upon intrusion. Red: outside intru-

sion. Note that the force applied on the plate is kept constant for all curves, equal

to πa2∆Ph. h=1000 m, a=5000 m, k=1 MPa m−1, ν=0.35, ρ=2500 kg m−3, ∆P0=

3 MPa for the homogeneous pressure case, E=1011 Pa. Top line: n=1 and varying

P0 and Pa such that ∆Pa
∆P0

varies from 0 to 1 with a step of 0.1. Bottom line: varying

n = [0.5, 0.7, 1, 2, 50, 10, 20]. P0 is calculated so that the force on the plate is the same

constant as in the top line. Note that we consider Pa = q0, such that ∆Pa = 0 Pa.
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Figure 9: a. Plot of the uplift profile −wi for two pressure distributions within the sill.

Solid grey line: for ∆P = P0 − (P0 − Pa)(r/a)n − q0, where ∆P0 = −0.5 MPa, ∆Pa = 5

MPa, n=5, a=5000 m, h=1000 m, ρ=2500 kg m−3, E=10 GPa, ν=0.35, and k=5 MPa

m−1. Note that ∆P0 <0, as calculated by [12]. Black dashed line: for homogeneous

pressure ∆Ph. Note that the value of ∆Ph = P0− 2(P0−Pa)/(n+ 2)− q0, where P0 and

Pa are the values from the heterogeneous case of a, ensuring that the total force applied

to the bending plate is the same in both cases. b. Plots of over-pressure distributions

for both cases presented in a).

48



0 0.5 1 1.5 2 2.5
x 105

0

0.5

1

1.5

2

2.5 x 105

a (m)

Δ
P 

(P
a)

103 104 105 106101

102

103

104

105

106

a (m)

Δ
P 

(P
a)

h=500 m
h=2000 m
h=5000 m

a

b

Slope=-2

Figure 10: a. Plots of the overpressure ∆P as a function of a for h = 500 m (solid

line), h = 2000 m (dashed line), and h = 5000 m (dashed-dotted line). Here we chose

KIC = 1010 Pa m1/2, E = 1010 Pa and ν = 0.35, ρ = 2000 kg m−3, k=0.5 MPa m−1. b.

Same data in a log-log plot: the slope is -2, showing that ∆P ∝ 1/a2. This is similar to

the relation between ∆P and a in Equation 19 for the clamped model.
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Figure 11: Log-log plot of (a) the overpressure ∆P , (b) the radius a and (c) the maximum

uplift −wimax, as a function of the volume V of the sill, from Eq. 21, for h = 500 m

(solid line), h = 2000 m (dashed line), and h = 5000 m (dashed-dotted line). The

fracture propagation criterion was based on the fracture toughness KIC . Here, we chose

KIC = 1010 Pa m1/2, E = 1010 Pa and ν = 0.35, ρ = 2000 kg m−3, k=0.5 MPa m−1.

50



Inclined sheet

inner sill

Neutral plane εr=0

Inflection point εr=0
εr>0

εr>0

εr<0εr<0

Magma

εr(a)

εr(a)=εc

a

b

Figure 12: a. Schematic diagram representing the radial strain εr along a plate bending

above a sill. Along the neutral plane and at the inflection point, εr = 0. Inner arc

deformation (white areas) corresponds to compression (εr < 0), whereas outer arc defor-

mation (gray areas) corresponds to stretching (εr > 0). The radial strain at the tip of

the sill (εr(a)) can be calculated from Eq. 25. b. Schematic drawing of a saucer-shaped

sill, after [33]. This figure illustrates how inclined sheets form from a flat inner sill.
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Figure 13: Plot of the radial strain εra at the tip of the sill (r = a), at the base of

the bending plate, as a function of a. The thickness of the plate is constant h = 1000

m. The three curves correspond to ∆P1 = 0.5 MPa (continuous line), ∆P2 = 1 MPa

(dashed line), and ∆P3 = 1.5 MPa (dashed-dotted line). Here, E = 10 GPa, ν = 0.35,

k = 5 MPa m−1, ρ = 2000 kg m−3. The considered critical tensile strain at failure is

εc = 4× 10−3 (horizontal solid line). The open diamonds locate the calculated sill sizes

aci, at which εra = εc. The values of aci give the critical size of a sill at the sill-to-inclined

sheet transition. Notice that we consider only points for which a/h > 5.
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Figure 14: Diagram representing the calculated critical size ac of a sill as a function

of ∆P and h, for εc = 2 × 10−3. The color scale is in meters. The critical size ac of

sills is calculated numerically, as illustrated in Fig. 13. The calculations are done with a

constant k = 5 MPa m−1. Horizontal and vertical white lines locate the cuts shown in

Figs. 15 and 16, respectively. E = 100 GPa, ν = 0.35 and ρ = 2000 kg m−3.
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Figure 15: Plot of the calculated critical size ac of a sill as a function of ∆P for k = 105

Pa m−1 (solid line), k = 5 × 106 Pa m−1 (dashed line), and k = 1010 Pa m−1 (dashed-

dotted line). εc = 2 × 10−3. The curve with k = 5 × 106 Pa m−1 corresponds to the

horizontal cut of Fig. 14. The bold black curve represents the analytical solution of [35],

which would correspond to k = ∞. h = 2000 m, E = 100 GPa, ν = 0.35, ρ = 2000 kg

m−3. a. Graph with linear scale. b. Graph with log-log scale. In both graphs, the curve

with k = 1010 Pa m−1 is almost superimposed with the solution of [35].54
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Figure 16: Plot of the calculated critical size ac of a sill as a function of h for k = 105 Pa

m−1 (solid line), k = 5×106 Pa m−1 (dashed line), and k = 1010 Pa m−1 (dashed-dotted

line). The curve with k = 5 × 106 Pa m−1 corresponds to the vertical cut of Fig. 14.

The bold black curve represents the analytical solution of [35], which would correspond

to k =∞. ∆P = 5× 106 Pa, E = 1011 Pa, ν = 0.35, ρ = 2000 kg m−3, εc = 2× 10−3.
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Figure 17: a. Plots comparing vertical (circles) and horizontal (squares) displacements

from our solution to the vertical (solid line) and horizontal (dashed-pointed line) dis-

placements from the [58] model on the domain 0 < r < 2a. Our solution is separated

between the domain upon the sill (light grey) and outside the sill (black). The param-

eters are: a = 10000 m, h = 2000 m, E = 10 GPa, ν = 0.35, k = 5 × 105 Pa m−1,

ρ = 2000 kg m−3, ∆P0 = ∆Pa = 5× 105 Pa. The Mogi model was fitted to our model,

and the depth calculated was hm = 7550 m (versus 2000 m). b. Plot comparing the

vertical (grey circles) and horizontal (grey squares) displacements calculated from the

classical clamped model of [69] and the Mogi solution on the domain 0 < r < a. The

result of the fit provides a depth hm = 6681 m (versus 2000 m). c. Plot comparing our

vertical displacements −wi only with the vertical displacements wM of the Mogi model.

The result of the fit gives a depth hm = 7439 m (versus 2000 m). The elastic parameters

are the same in all cases.
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Table 1: Units and symbols.

Parameter Definition and dimension
a Radius of the sill, m
ac Radius of the sill at sill-to-inclined sheet transition, m
am Radius of spherical magma reservoir in the model of [58], m
Ci Integration constants, variable
D Bending stiffness of the plate, Pa m3

De Equivalent bending stiffness of a stack of thin plates, Pa m3

Di Bending stiffness of a thin plate i, Pa m3

E Young Modulus, Pa
Ewl Young Modulus of the weak layer, Pa
F Force applied at the base of bending plate, N
Fh Force applied at the base of bending plate for homogeneous pressure, N
h Depth of sill, i.e. thickness of the elastic plate, m
hi Thickness of a plate i, m
hm Depth of spherical magma reservoir in the model of [58], m
hwl Thickness of weak layer, m
g Acceleration due to gravity, m s−2

k Stiffness of elastic foundation, Pa m−1

l Characteristic length of the system, m
n Parameter of magma pressure distribution
P Magma pressure distribution in the sill, Pa
P0 Magma pressure at centre of the sill, Pa
Pa Magma pressure at tip of the sill, Pa
Pm Overpressure in magma reservoir in the model of [58], Pa
Q Injection volumetric flow rate, m3 s−1

q0 Weight of the plate per unit surface, Pa
r Lateral coordinate, m
t Time, s
u Horizontal displacement, m
uM Horizontal displacement calculated from the model of [58], m
w Vertical displacement, m
w0 Vertical displacement before intrusion forms, m
w1 Vertical displacement above the intrusion, m
w2 vertical displacement outside the intrusion, m
wi Uplift due to the intrusion, m
wimax Uplift at r = 0, m
wM Vertical displacement calculated from the model of [58], m
wPJ Uplift calculated from the solution of [69], m
V Volume of sill, m3

z Distance from the neutral plane of the plate, m
α Coefficient of proportionality between V and ∆P in Appendix B, m3 Pa−1

β Exponent of the power law relationship between P0 and V
∆P Magma overpressure, Pa
∆P0 Magma overpressure at centre of the sill, Pa
∆Pa Magma overpressure at tip of the sill, Pa
εr Radial strain
εra Radial strain at the tip of the intrusion (r = a, z = h/2
εc Radial tensile strain at failure
εz Vertical strain
ν Poisson ratio
ρ Density of overburden, kg m−3
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Table 2: Range of geological values.

Parameter Range of geological values References
a 103 − 105.5 m e.g. [70]
E 109 − 1011 Pa e.g. [86]
Ewl 105 − 109 Pa e.g. [63, 2]
h 1000− 5000 m e.g. [70]
hwl 1− 10 m e.g. [43]
k 104 − 109 Pa m−1 This study (see Section 4.2)
∆P 106 − 107 Pa e.g. [72]
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