Canonical Polyadic decomposition with a Columnwise Orthonormal Factor Matrix

Abstract : Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of the optimal low-rank approximation of a tensor in the case that a factor matrix is column-wise orthonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix diagonalization and alternating least squares are presented. Numerical experiments are reported.
Type de document :
Article dans une revue
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2012, 33 (4), pp.1190-1213. <10.1137/110830034>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00781143
Contributeur : Pierre Comon <>
Soumis le : vendredi 25 janvier 2013 - 14:18:07
Dernière modification le : mercredi 17 juin 2015 - 01:14:51
Document(s) archivé(s) le : vendredi 26 avril 2013 - 03:56:52

Fichier

SoreDCID2012simax_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mikael Sorensen, Lieven De Lathauwer, Pierre Comon, Sylvie Icart, Luc Deneire. Canonical Polyadic decomposition with a Columnwise Orthonormal Factor Matrix. SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2012, 33 (4), pp.1190-1213. <10.1137/110830034>. <hal-00781143>

Partager

Métriques

Consultations de
la notice

271

Téléchargements du document

232