On the numerical solution of the heat equation I: Fast solvers in free space

Jing-Rebecca Li 1, 2 Leslie Greengard 2
1 DeFI - Shape reconstruction and identification
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We describe a fast solver for the inhomogeneous heat equation in free space, following the time evolution of the solution in the Fourier domain. It relies on a recently developed spectral approximation of the free-space heat kernel coupled with the non-uniform fast Fourier transform. Unlike finite difference and finite element techniques, there is no need for artificial boundary conditions on a finite computational domain. The method is explicit, unconditionally stable, and requires an amount of work of the order O(NMlogN), where N is the number of discretization points in physical space and M is the number of time steps. We refer to the approach as the fast recursive marching (FRM) method.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2007, 226 (2), pp.1891--1901. 〈10.1016/j.jcp.2007.06.021〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00781132
Contributeur : Jing-Rebecca Li <>
Soumis le : vendredi 25 janvier 2013 - 14:04:32
Dernière modification le : jeudi 9 février 2017 - 15:17:08

Identifiants

Citation

Jing-Rebecca Li, Leslie Greengard. On the numerical solution of the heat equation I: Fast solvers in free space. Journal of Computational Physics, Elsevier, 2007, 226 (2), pp.1891--1901. 〈10.1016/j.jcp.2007.06.021〉. 〈hal-00781132〉

Partager

Métriques

Consultations de la notice

237