High order marching schemes for the wave equation in complex geometry

Jing-Rebecca Li 1 Leslie Greengard
1 DeFI - Shape reconstruction and identification
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : We present a new class of explicit marching schemes for the wave equation in complex geometry. They rely on a simple embedding of the domain in a uniform Cartesian grid, which allows for efficient and automatic implementation but creates irregular cells near the boundary. While existing explicit finite difference schemes are generally restricted in the size of the time step that can be taken by the dimensions of the smallest cell, the schemes described here are capable of taking time steps dictated by the uniform grid spacing. This should be of significant benefit in a wide variety of simulation efforts.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2004, 198 (1), pp.295--309
Liste complète des métadonnées

https://hal.inria.fr/hal-00781131
Contributeur : Jing-Rebecca Li <>
Soumis le : vendredi 25 janvier 2013 - 14:03:04
Dernière modification le : jeudi 9 février 2017 - 15:17:08

Identifiants

  • HAL Id : hal-00781131, version 1

Collections

Citation

Jing-Rebecca Li, Leslie Greengard. High order marching schemes for the wave equation in complex geometry. Journal of Computational Physics, Elsevier, 2004, 198 (1), pp.295--309. 〈hal-00781131〉

Partager

Métriques

Consultations de la notice

146