Stability of critical shapes for the drag minimization problem in Stokes flow
Fabien Caubet, Marc Dambrine

To cite this version:

HAL Id: hal-00780730
https://hal.archives-ouvertes.fr/hal-00780730
Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Stability of critical shapes for the drag minimization problem in Stokes flow

Fabien Caubet*, Marc Dambrine*

November 29, 2012

Abstract

We study the stability of some critical (or equilibrium) shapes in the minimization problem of the energy dissipated by a fluid (i.e. the drag minimization problem) governed by the Stokes equations. We first compute the shape derivative up to the second order, then provide a sufficient condition for the shape Hessian of the energy functional to be coercive at a critical shape. Under this condition, the existence of such a local strict minimum is then proved using a precise upper bound for the variations of the second order shape derivative of the functional with respect to the coercivity and differentiability norms. Finally, for smooth domains, a lower bound of the variations of the drag is obtained in terms of the measure of the symmetric difference of domains.

Keywords: stability of critical shape, drag minimization, optimal profiles, shape calculus, shape Hessian, Stokes equations.

AMS Classification: 49Q10, 49K40, 35Q93, (76D55).

1 Introduction

In fluid mechanics, the study of the minimization of the drag of a body in a fluid (i.e. the computation of optimal profiles) is a very popular problem. A typical application is the study of the geometry of blunt bodies in flow at low Reynolds numbers (see [17]). In this work, the parameter is the shape of the body immersed in the fluid and we are interested in studying the stability of this shape optimization problem.

In an optimization problem, the study of the stability consists to know if a critical shape of a functional is a local strict minimizer. This point is particularly crucial in order to make numerical simulations: if the problem is unstable, regularization is required in the numerical minimization of the functional (see for example [2, 3]). The question of stability is addressed with the second order derivative of the functional at a critical point. The notion of derivative used in this work is the now classic shape calculus (Hadamard’s approach) presented for example in [15, 18, 19, 21].

The strategy we follow is the following: a first step is to prove the existence of second order shape derivatives. It is classically obtained through an implicit function theorem: this is due to Simon [20] for Stokes equations and to Bello et al. [5, 6] for the Navier-Stokes equations. In a second step, we obtain the Euler-Lagrange equation, then we compute the shape Hessian. These shape derivatives of the drag (at least at the first order) was computed by some authors (see for example [20] for the Stokes equations and [6, 4] for the Navier-Stokes equations). However, in this work, we need a different expression of the

*LMAP, UMR 5142, Université de Pau et des Pays de l’Adour, CNRS, F-64013 Pau, France
shape Hessian (in \([20]\)). Then, we use the Euler-Lagrange equations and some computations to derive a sufficient condition of positivity of the shape Hessian computed at a critical shape.

In a third step, we prove the stability of the minimization. In finite dimension, the knowledge of the sign of the Hessian permits to fully answer the question of stability using Taylor-Young expansion. However, in shape optimization or in infinite dimension, the two norms discrepancy problem can occur: the coercivity norm is often weaker than the differentiability norm. Let us refer to the paper \([11]\) by Descloux for a concrete example of such a situation known as the magnetic shaping problem: on this example, the coercivity at a critical point holds in the \(H^{1/2}\) norm while the differentiability holds in \(C^2\) topology. Since the quantity \(o(\|\cdot\|_{C^2})\) is not smaller than \(C \|\cdot\|^{2}_{H^{1/2}}\), the classical argument using the Taylor-Young formula does not insure that this critical point is a local strict minimum. A method to overcome this problem is given by Dambrine et al. in \([10, 9]\). The key is a precise estimate of the variations of the second order shape derivative of the functional with respect to the coercivity and differentiability norms around a critical shape. In \([10, 9]\), the authors study Poisson’s equation or the case of a strictly and uniformly elliptic operator. Here, we adapt these methods to the drag minimization problem for a Stokes flow. Finally, in a fourth and last step, we derive a precise version of the minimality inequality: we provide a lower bound of the variations of the drag in term of a geometrical quantity following new ideas introduced by Fusco et al. \([13, 1]\).

The paper is organized as follows. We first define the studied problem: we define the shape functional under consideration and the used domain perturbations. In particular, we recall some geometrical constructions from \([10, 9]\). In Section 3 following Hadamard’s approach, we use shape calculus to prove the coercivity of the shape Hessian of the considered functional at an equilibrium shape in the \(H^{1/2}\) norm. Then, in Section 4 we state the main result of this work which is a stability result for the drag minimization problem. It claims that a critical shape can be a local strict minimum if a given criterion is satisfied. In Section 5 we translate our result in a more explicit estimation in purely geometrical quantities. Finally, we conclude the paper in Section 6 mentioning some possible extensions and prospects concerning the problem we study here.

2 The problem setting

2.1 General notations

Let us introduce the notations that we adopt in this paper. For an open set \(\Omega \subset \mathbb{R}^d\) \((d = 2 \text{ or } 3)\), we denote by \(L^p(\Omega), W^{m, p}(\Omega)\) and \(H^s(\Omega)\) the usual Lebesgue and Sobolev spaces. We note in bold the vectorial functions and spaces: \(L^p(\Omega), W^{m, p}(\Omega), H^s(\Omega)\), etc. Moreover, for \(k \in \mathbb{N}\) and \(\alpha \in (0, 1)\), the space \(C^k(\Omega)\) is defined as the set of functions having continuous derivatives up to order \(k\) in \(\Omega\) and \(C^{k, \alpha}(\Omega)\) denotes the usual Hölder space. We denote by \(|\Omega|\) the measure of \(\Omega\). Moreover, \(\mathbf{n}\) represents the external unit normal to \(\partial \Omega\), and for a smooth enough function \(u\), we note \(\partial_{\mathbf{n}} u\) the normal derivative of \(u\). Finally, we define the space

\[L^2_0(\Omega) := \left\{ p \in L^2(\Omega), \int_{\Omega} p = 0 \right\}. \]
2.2 Tubular coordinates and normal representation of a perturbed domain

Let us recall some basic facts from differential geometry and fix the notations. We follow in this paragraph the constructions and proof of [10]. Let Ω be a smooth bounded open set and let \(n \) denote the outer unit normal field to \(\partial \Omega \). There is a non negative real \(\rho(\Omega) \), such that the application \(T_{\partial \Omega} \) defined by

\[
T_{\partial \Omega} : \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}^d \quad (M, h) \mapsto M + h n(M)
\]

is a local diffeomorphism from \(\partial \Omega \times (-\rho(\Omega), \rho(\Omega)) \) on an open tubular neighborhood of \(\partial \Omega \) we will denote \(T_{\partial \Omega} \). This property expresses the fact that any point \(x \) in \(T_{\partial \Omega} \) has a unique orthogonal projection \(p_{\partial \Omega}(x) \) on \(\partial \Omega \) and that the relation

\[
x = p_{\partial \Omega}(x) + h(x) n(p_{\partial \Omega}(x)) \quad \text{where} \quad |h(x)| = \|x - p_{\partial \Omega}(x)\|
\]

holds. Notice that \(h \) is uniquely defined.

Let us recall the definition of the Micheletti’s distance on the set \(S \) of \(C^{2,\alpha} \) bounded domains of \(\mathbb{R}^d \) that are diffeomorphic to \(\Omega \). The idea is to use the Banach imbedding of diffeomorphisms \(C^{2,\alpha}(\mathbb{R}^d, \mathbb{R}^d) \). For \(\Omega_1 \) and \(\Omega_2 \) in \(S \), set

\[
d_{2,\alpha}(\Omega_1, \Omega_2) := \inf (\|\Theta - I\|_{2,\alpha} + \|\Theta^{-1} - I\|_{2,\alpha})
\]

where the infimum is taken over all the diffeomorphisms \(\Theta \in C^{2,\alpha}(\mathbb{R}^d) \) mapping \(\Omega_1 \) onto \(\Omega_2 \). In particular, if \(\Theta \) is a perturbation of the identity such that

\[
\|\Theta - I\|_{2,\alpha} + \|\Theta^{-1} - I\|_{2,\alpha} < \rho(\Omega),
\]

any point of the boundary \(\partial \Omega_{\text{per}} \) of the perturbed domain \(\Omega_{\text{per}} := \Theta(\Omega) \) lays in the tubular neighborhood \(T_{\partial \Omega} \) of \(\partial \Omega \) so that it can be described in terms of normal deformations: for all \(x \in \partial \Omega \)

\[
\Theta(x) = R_\Theta(x) + d_{\partial \Omega}(\Theta(x)) n(R_\Theta(x)),
\]

where \(R_\Theta \) is a diffeomorphism from \(\partial \Omega \) into itself and \(d_{\partial \Omega} \) is the signed distance to \(\partial \Omega \). Note that \(\tilde{n} := \nabla d_{\partial \Omega} \) is a unitary extension of the normal field that coincides with \(n \circ p_{\partial \Omega} \) in the tubular neighborhood \(T_{\partial \Omega} \).

As a consequence, the flow \(\Phi_t \) of the vector field \(X_\Theta \) defined in \(T_{\partial \Omega} \) by

\[
X_\Theta(x) = h(x) n(p_{\partial \Omega}(x)) \quad (2.1)
\]

defines a path \(t \in [0, 1] \mapsto \Omega_t \) within domains connecting \(\Omega_0 = \Omega \) to \(\Omega_1 = \Omega_{\text{per}} \). However, this flow does not in general preserve the volume of the domain even if the original and perturbed domains share the same volume. Therefore, an alternative field \(Y_\Theta \) defined in tubular coordinates \((M, h) \) by

\[
Y_\Theta(M, h) = - \int_0^{d_{\partial \Omega}(\Theta \circ R_\Theta^{-1}(M))} \frac{\det DT_{\partial \Omega}(M, s)}{\det DT_{\partial \Omega}(M, h)} n(M) \quad (2.2)
\]

was build in [9 Subsection 2.1] in order to deal with volume constraint. Indeed, the divergence of \(Y_\Theta \) cancels in the tubular neighborhood \(T_{\partial \Omega} \) and the flow of \(Y_\Theta \) preserves the measure of \(\Omega \) for \(t \) in \([0, 1] \).
Let us remark that the field X_Θ involves the normal field n to $\partial \Omega$ and that Y_Θ involves first order derivatives of n. Hence their flow is a $C^{2,\alpha}$-diffeomorphism that is to say let stable the admissible class of domain under additional regularity assumptions. Let us assume from now on that the initial shape is in fact $C^{4,\alpha}$. For time $t \in [0,1]$, the flow Φ_t of both fields X_Θ and Y_Θ remains a perturbation of the identity: there is a constant C such that, for all $t \in [0,1]$:

$$\|\Phi_t - I\|_{2,\alpha} \leq C\|\Theta - I\|_{2,\alpha}. \quad (2.3)$$

Noting that the outer normal field n_t to Ω_t can be written as

$$n_t(y) = \frac{\nabla(d\partial_t \circ \Phi_t^{-1})}{\|\nabla(d\partial_t \circ \Phi_t^{-1})\|}(y), \quad \forall y \in \partial \Omega,$$

the following estimates are a consequence of the Faà De Bruno’s formula of successive derivatives of a composition:

Lemma 2.1. Let Ω be a bounded open set of \mathbb{R}^d with a $C^{4,\alpha}$ boundary. There is a constant $C > 0$ depending on Ω such that

- the surface jacobian $J(t) := \det D\Phi_t/\|D\Phi_t^{-1}\|n$ satisfies
 $$\|J(t,.) - I\|_{C^1(\partial \Omega)} \leq C\|\Phi_t - I\|_{2,\alpha}, \quad \forall t \in [0,1]; \quad (2.4)$$

- the normal field n_t to $\partial \Omega_t$ satisfies
 $$\|n_t(\Phi_t(\cdot)) - n(\cdot)\|_{C^1(\partial \Omega)} \leq C\|\Phi_t - I\|_{2,\alpha}, \quad \forall t \in [0,1]. \quad (2.5)$$

- Set $m_V := V \cdot \tilde{n}$ for $V = X_\Theta$ or Y_Θ, then for all $t \in [0,1]$:
 $$\|m_V(\Phi_t(\cdot)) - m_V\|_{L^2(\partial \Omega)} \leq C\|m_V\|_{L^2(\partial \Omega)} \|\Phi_t - I\|_{2,\alpha}, \quad (2.6)$$
 $$\|m_V(\Phi_t(\cdot)) - m_V\|_{H^1/2(\partial \Omega)} \leq C\|m_V\|_{H^1/2(\partial \Omega)} \|\Phi_t - I\|_{2,\alpha}. \quad (2.7)$$

Remark 2.2. The fact that we have to impose a $C^{4,\alpha}$ regularity of the boundary of the initial shape (whereas we can work with shapes with a $C^{2,1}$ boundary in order to have the twice differentiability with respect to the domain) comes to the fact that we consider normal perturbations (so we loose one rank of regularity) which are divergence free (which imposes the lost of an additional derivative by construction): see [9, Section 2.1].

2.3 The general notations and the functional

The drag functional. Let Ω be a bounded and connected open subset of \mathbb{R}^d (with $d = 2$ or $d = 3$) containing a Newtonian and incompressible fluid with coefficient of kinematic viscosity $\nu > 0$. We assume that Ω is smooth (at least with a $C^{2,1}$ boundary). We also assume that ν is constant. Let $\delta > 0$ fixed (large). We define the set of admissible shapes by

$$\mathcal{O}_\delta := \{\omega \subset \Omega \text{ open set with a } C^{2,1} \text{ boundary such that } d(x, \partial \Omega) > \delta, \forall x \in \omega$$

and such that $\Omega \setminus \overline{\omega}$ is connected $\}. $
Let us consider $g \in C^{2,\alpha}(\partial \Omega)$, with $\alpha \in (0,1)$, satisfying the compatibility condition
\[
\int_{\partial \Omega} g \cdot \mathbf{n} = 0
\]
and the unique solution $(u, p) \in C^{2,\alpha}(\Omega \setminus \overline{\omega}) \times C^{1,\alpha}(\Omega \setminus \overline{\omega})$ of
\[
\begin{cases}
-\nu \Delta u + \nabla p = 0 & \text{in } \Omega \setminus \overline{\omega} \\
\text{div } u = 0 & \text{in } \Omega \setminus \overline{\omega} \\
u u = g & \text{on } \partial \Omega \\
u u = 0 & \text{on } \partial \omega.
\end{cases}
\]
The existence and uniqueness of the solution of such a problem is classical. We refer for example to the book of Galdi [14, Theorems IV.7.1 and IV.7.2]. The energy dissipated by the fluid is given by
\[
J(\omega) := \frac{1}{2} \int_{\Omega \setminus \overline{\omega}} \nu |D(u)|^2,
\]
where
\[
D(u) := (\nabla u + \tau \nabla u) = (\partial_i u_j + \partial_j u_i)_{i,j}, \quad i, j = 1, \ldots, d.
\]
The drag minimization problem is to minimize J over all subdomains ω of Ω with a given measure M:
\[
\omega^* := \text{argmin} \left\{ J(\omega); \omega \in \mathcal{O}_\delta \text{ such that } \mathcal{L}^d(\omega) = M \right\},
\]
where \mathcal{L}^d denotes the Lebesgue measure on \mathbb{R}^d.

We also define the following stress tensor:
\[
\sigma(u, p) := \nu \left(\nabla u + \tau \nabla u \right) - p I.
\]

Admissible deformations. Let $\omega \in \mathcal{O}_\delta$. Let us define some admissible deformations of the domain ω we will use in this paper. Since we want to perturb only ω (and not Ω which is fixed), we define Ω_δ an open set with a C^∞ boundary and such that
\[
\{ x \in \Omega; d(x, \partial \Omega) > \delta/2 \} \subset \Omega_\delta \subset \{ x \in \Omega; d(x, \partial \Omega) > \delta/3 \}.
\]
We then consider a diffeomorphism
\[
\Theta \in \mathfrak{U} := \left\{ \theta \in C^{2,1}(\mathbb{R}^d), \theta \equiv I \text{ in } \mathbb{R}^d \setminus \Omega_\delta \right\}.
\]
The principle of Hadamard’s approach is to consider the flow $\Phi_{\Theta,t}$ of an adequate autonomous vector field
\[
V_{\Theta} \in U := \left\{ \theta \in C^{2,1}(\mathbb{R}^d); \text{Supp } \theta \subset \overline{\Omega_\delta} \right\},
\]
i.e. the solution of
\[
\begin{cases}
\partial_t \Phi = V_{\Theta}(\Phi) \\
\Phi(0, x) = x.
\end{cases}
\]
Notice that V_{Θ} represents one of the previous fields X_{Θ} or Y_{Θ} defined in Section 2.2.

It defines a regular path $(\omega_t := \Phi_{\Theta,t}(\omega))_{t \in [0,1]}$ in \mathcal{O}_δ. For the rest of the paper, we use a subscript "\(t\)" to indicate that the quantity is defined on the time \(t\) dependent domain. For instance, \mathbf{n}_t is the external unit normal of $\Omega \setminus \overline{\omega_t}$. Moreover, in order to simplify the notations, we omit the dependency with respect to Θ: in particular, we use the notation Φ_t instead of $\Phi_{\Theta,t}$.

Let us now construct some vector fields whose flows connects the original shape ω^* to the perturbed domain $\omega_1 = \Theta(\omega)$. To
3 Computation of the shape Hessian

In this section, we prove that the shape Hessian of the functional J can be coercive for a critical shape $\omega^* \in \mathcal{O}_\delta$ with a $C^{4,\alpha}$ boundary in the $H^{1/2}(\partial\omega^*)$ norm. We assume the existence of such a critical shape. We first define, for $t \in [0,1]$,

$$j(t) := J(\omega_t) := \frac{1}{2} \int_{\Omega \setminus \omega_t} \nu |\nabla u_t|^2,$$

where $(u_t, p_t) \in C^{2,\alpha}(\Omega \setminus \omega_t) \times \left[C^{1,\alpha}(\Omega \setminus \omega_t) \cap L^2_0(\Omega \setminus \omega_t) \right]$ is the solution of the following perturbed problem:

$$
\begin{aligned}
-\nu \Delta u_t + \nabla p_t &= 0 \quad &\text{in} \quad \Omega \setminus \omega_t \\
\text{div} u_t &= 0 \quad &\text{in} \quad \Omega \setminus \omega_t \\
u u_t &= g \quad &\text{on} \quad \partial\Omega \\
0 &= \quad &\text{on} \quad \partial\omega_t.
\end{aligned}
$$

(3.1)

with $\omega_t := \Phi_t(\omega^*)$. The existence of the second order shape derivatives is proved in some previous works (see for example [20, 3, 8] for the Stokes case and [5, 7] for the Navier-Stokes case).

Let $V \in U$ be divergence free. Classically, the shape derivative (u'_t, p'_t) which belongs to $C^{2,\alpha}(\Omega \setminus \omega_t) \times \left[C^{1,\alpha}(\Omega \setminus \omega_t) \cap L^2_0(\Omega \setminus \omega_t) \right]$ is characterized as the solution of the following Stokes problem:

$$
\begin{aligned}
-\nu \Delta u'_t + \nabla p'_t &= 0 \quad &\text{in} \quad \Omega \setminus \omega_t \\
\text{div} u'_t &= 0 \quad &\text{in} \quad \Omega \setminus \omega_t \\
u u'_t &= 0 \quad &\text{on} \quad \partial\Omega \\
\nu u'_t = -\partial_n u_t (V \cdot n) \quad &\text{on} \quad \partial\omega_t.
\end{aligned}
$$

(3.2)

3.1 Shape gradient of the functional and Euler-Lagrange equation

Simon proves in [20, Theorem 3] that

$$DJ(\omega^*) \cdot V = -\frac{1}{2} \int_{\partial\omega^*} \nu |\partial_n u|^2 (V \cdot n).$$

Since we work under the constraint of constant volume and since ω^* is a critical point, there exists $\Lambda_0 \in \mathbb{R}$ such that $DJ(\omega^*) \cdot V + \Lambda_0 |V(\omega^*) - \nu V = 0$ for any perturbation V (where $V(\omega^*)$ is the volume of ω^*). Hence, for all $V \in U$,

$$-\frac{1}{2} \int_{\partial\omega^*} \nu |\partial_n u|^2 (V \cdot n) + \Lambda_0 \int_{\partial\omega^*} V \cdot n = 0,$$

and then we obtain the Euler-Lagrange equation satisfied at the critical shape: there exists $\Lambda \in \mathbb{R}$ such that

$$|\partial_n u|^2 = \frac{2}{\nu} \Lambda_0 =: \Lambda.$$

(3.3)

Notice that this result is also proved in [20, Theorem 7] in a different way.

3.2 Shape Hessian of the functional

Let T be a fixed small positive real number. Simon proves in [20, Theorem 4] that, for $t \in [0, T)$,

$$j'(t) = -\frac{1}{2} \int_{\partial\omega_t} \nu |\nabla u_t|^2 (V \cdot n).$$
In [20] Theorem 8, the second variation $j''(0)$ is computed. However, we shall use a simplified expression of $j''(0)$ which, in particular, does not depend on the second order shape derivative of the state u. Let us obtain this new expression.

Since $V = 0$ on $\partial \Omega$, we use Green’s formula to get

$$j'(t) = -\frac{1}{2} \int_{\partial \omega} \nu \div \left(|D(u_t)|^2 V \right).$$

Thus, we use Hadamard’s formula (see [15, Corollary 5.2.5]) to derive this function. For $t \in [0, T)$, it holds

$$j''(t) = -\int_{\partial \omega} \nu \div \left((D(u_t) : D(u'_t)) V \right) - \frac{1}{2} \int_{\partial \omega} \nu \div \left(|D(u_t)|^2 V \right) (V \cdot n_t)$$

$$= \frac{1}{2} \int_{\partial \omega} \nu \left(2(D(u_t) : D(u'_t)) + \nabla(|D(u_t)|^2) \cdot V + |D(u_t)|^2 \div V \right) (V \cdot n_t)$$

$$= -\frac{1}{2} \int_{\partial \omega} \nu \left(2(D(u_t) : D(u'_t)) + \nabla(|D(u_t)|^2) \cdot V \right) (V \cdot n_t), \quad (3.4)$$

since we work with a divergence free vector field V. Moreover,

$$\int_{\partial \omega} \nu D(u_t) : D(u'_t) (V \cdot n_t) = 2 \int_{\partial \omega} \nu \nabla u_t : D(u'_t) (V \cdot n_t)$$

$$= 2 \int_{\partial \omega} \nabla u_t : (\nu D(u'_t) - p'_t I)(V \cdot n_t).$$

Here we used that the solution u_t of Stokes problem is divergence free in $\Omega \setminus \overline{\omega}$ to get

$$\int_{\partial \omega} \nabla u_t : (p'_t I)(V \cdot n_t) = \int_{\partial \omega} p'_t \div u_t (V \cdot n_t) = 0.$$

Moreover, u_t satisfies the Dirichlet boundary condition $u_t = 0$ on $\partial \omega_t$, and then it follows that $\nabla u_t = \partial_n u_t \otimes n_t$ on $\partial \omega_t$. Thus,

$$\int_{\partial \omega} \nu D(u_t) : D(u'_t) (V \cdot n_t) = 2 \int_{\partial \omega} \nabla u_t : (\sigma(u'_t, p'_t) n_t) (V \cdot n_t)$$

$$= 2 \int_{\partial \omega} \partial_n u_t : (\sigma(u'_t, p'_t) n_t) (V \cdot n_t). \quad (3.5)$$

Then, combining Equalities (3.4) and (3.5),

$$j''(t) = -2 \int_{\partial \omega} \nu \partial_n u_t : (\sigma(u'_t, p'_t) n_t) (V \cdot n_t) - \frac{1}{2} \int_{\partial \omega} \nu \nabla(|D(u_t)|^2) \cdot V (V \cdot n_t).$$

Finally, since the shape derivative u'_t satisfies (3.2) and in particular $u'_t = -\partial_n u_t (V \cdot n_t)$ on $\partial \omega_t$,

$$j''(t) = 2 \int_{\partial \omega} u'_t : (\sigma(u'_t, p'_t) n_t) - \frac{1}{2} \int_{\partial \omega} \nu \nabla(|D(u_t)|^2) \cdot V (V \cdot n_t). \quad (3.6)$$

3.3 At a critical shape

We recall that ω^* is a critical shape. Now, we study the expression of $j''(0)$ and then use the fact that ω^* is a critical shape. The previous characterization of $j''(t)$ gives, for $t = 0$, the expression

$$j''(0) = 2 \int_{\partial \omega^*} u' : (\sigma(u', p') n) - \frac{1}{2} \int_{\partial \omega^*} \nu \nabla(|D(u)|^2) \cdot V (V \cdot n). \quad (3.7)$$

that we split into two terms we shall study separately.
Study of J_1. We first introduce the Steklov-Poincaré operator of Displacement-to-Traction also called *Dirichlet-to-Neumann* operator and prove that this operator is positive.

Lemma 3.1. We consider Ω and ω two Lipschitz open sets of \mathbb{R}^d ($d = 2, 3$) such that $\omega \subset \subset \Omega$ and $\Omega \backslash \omega$ is connected. For $h \in H^{1/2}(\partial \omega)$, let us define the following Steklov-Poincaré operator:

$$D_N : H^{1/2}(\partial \omega) \rightarrow H^{-1/2}(\partial \omega)$$

$$h \mapsto \sigma(U, P)n,$$

where $(U, P) \in H^1(\Omega \backslash \omega) \times L^2(\Omega \backslash \omega)$ solves

$$
\begin{cases}
-\text{div} (\sigma(U, P)) = 0 & \text{in } \Omega \backslash \omega \\
\text{div} U = 0 & \text{in } \Omega \backslash \omega \\
U = 0 & \text{on } \partial \Omega \\
U = h & \text{on } \partial \omega.
\end{cases}
$$

(3.8) Then, there exists a constant c depending of Ω and ω such that

$$\langle D_N(h), h \rangle_{H^{-1/2}(\partial \omega), H^{1/2}(\partial \omega)} \geq c \|h\|^2_{H^{1/2}(\partial \omega)}.\tag{3.9}$$

Proof. Using U as a test function in Problem (3.8), we obtain

$$\langle D_N(h), h \rangle_{H^{-1/2}(\partial \omega), H^{1/2}(\partial \omega)} = \frac{1}{2} \nu \|D(U)\|^2_{L^2(\Omega \backslash \omega)}.$$

Then, since $U = 0$ on $\partial \Omega$, Korn’s inequality (see for example [16, eq. (2.14) page 19]) leads

$$\langle D_N(h), h \rangle_{H^{-1/2}(\partial \omega), H^{1/2}(\partial \omega)} \geq c \|U\|^2_{H^1(\Omega \backslash \omega)} \geq c \|h\|^2_{H^{1/2}(\partial \omega)}.$$

Consider Problem (3.2) (for $t = 0$) solved by the shape derivative (u', p'). Then, noticing that, since $\text{div} u' = 0$,

$$-\nu \Delta u' + \nabla p' = -\text{div} (\nu D(u')) + \nabla p' = -\text{div} (\sigma(u', p')),$$

and that $u' = -\partial_n u (V \cdot n)$ on $\partial \omega^*$, we get

$$\int_{\partial \omega^*} u' \cdot (\sigma(u', p')n) = \int_{\partial \omega^*} \partial_n u (V \cdot n) D_N(\partial_n u (V \cdot n)).$$

Hence, there exists a constant $c > 0$ such that

$$J_1 \geq c \|\partial_n u (V \cdot n)\|^2_{H^{1/2}(\partial \omega^*)} = c \Lambda \|V \cdot n\|^2_{H^{1/2}(\partial \omega^*)}.\tag{3.10}$$

We used the coercivity of the operator D_N (3.9) in Lemma 3.1 and the Euler-Lagrange equation $|\partial_n u|^2 = \Lambda$ according to (3.3)

Second term J_2. Let us now study the second term of the characterization of $J''(0)$ given by (3.7). We recall that, according to subsection 2.2 only normal perturbation directions are considered. Thus, we focus on

$$\int_{\partial \omega^*} \nu \nabla(|D(u)|^2) \cdot n (V \cdot n)^2.$$

We have to compute $\nu \nabla(|D(u)|^2) \cdot n$. This is the object of next Lemma.
Lemma 3.2. It holds
\[\nu \nabla \left(|D(u)|^2 \right) \cdot n = 4 \left(\nu (d - 1) \Lambda + \nu ^t b \tilde{\kappa} b + \nabla \times p \cdot b \right) \text{ on } \partial \omega^*, \] (3.11)
where
\begin{itemize}
 \item b is the projection of $\partial_n u$ on the tangential space of $\partial \omega^*$;
 \item $\tilde{\kappa}$ is the second fundamental form of the surface $\partial \omega^*$;
 \item $\nabla \times$ denotes the tangential gradient.
\end{itemize}

Proof. By using local coordinates as in [11] or [10, 9], we can assume that ω^* is locally above the graph of a function $f : (-\varepsilon, \varepsilon)^{d-1} \to \mathbb{R}$ (of class $C^{4,\alpha}$) which is such that $f(0) = \partial_i f(0) = 0$ for $i = 1, \ldots, d - 1$.

For all $\mathbf{x} \in (-\varepsilon, \varepsilon)^{d-1}$, noticing $n = (n_1, \ldots, n_d)$,
\begin{align*}
\nabla \left(|D(u)(\mathbf{x}, f(\mathbf{x}))|^2 \right) \cdot n(\mathbf{x}, f(\mathbf{x})) &= \nabla \left(\sum_{i,j=1}^{d} (\partial_i u_j(\mathbf{x}, f(\mathbf{x})) + \partial_j u_i(\mathbf{x}, f(\mathbf{x})))^2 \right) \cdot n(\mathbf{x}, f(\mathbf{x})) \\
&= \sum_{k=1}^{d} \partial_k \left(\sum_{i,j=1}^{d} (\partial_i u_j(\mathbf{x}, f(\mathbf{x})) + \partial_j u_i(\mathbf{x}, f(\mathbf{x})))^2 \right) n_k(\mathbf{x}, f(\mathbf{x})) \\
&= 2 \sum_{i,j,k=1}^{d} (\partial_{ki} u_j(\mathbf{x}, f(\mathbf{x})) + \partial_{kj} u_i(\mathbf{x}, f(\mathbf{x}))) (\partial_i u_j(\mathbf{x}, f(\mathbf{x})) + \partial_j u_i(\mathbf{x}, f(\mathbf{x}))) n_k(\mathbf{x}, f(\mathbf{x})).
\end{align*}

Then, for $\mathbf{x} = 0$, since $n(0, f(0)) = (0, \ldots, 0, 1)$ in our system of coordinates,
\begin{align*}
\nabla \left(|D(u)(0, f(0))|^2 \right) \cdot n(0, f(0)) &= 2 \sum_{i,j=1}^{d} (\partial_{ii}^2 u_j(0, f(0)) + \partial_{ij}^2 u_i(0, f(0))) (\partial_i u_j(0, f(0)) + \partial_j u_i(0, f(0))).
\end{align*}

Moreover, since $u = 0$ on $\partial \omega^*$, we have $\partial_i u_j(0, f(0)) = 0$ for all $i = 1, \ldots, d - 1$ and $j = 1, \ldots, d$. In addition, since $\text{div} u = 0$ in $\Omega \setminus \overline{\omega}$, it follows that $\partial_i u_j(0, f(0)) = 0$. Then,
\begin{align*}
\nu \nabla \left(|D(u)(0, f(0))|^2 \right) \cdot n(0, f(0)) &= 4 \sum_{j=1}^{d-1} \nu (\partial_{ii}^2 u_j(0, f(0)) + \partial_{ij}^2 u_i(0, f(0))) \partial_i u_j(0, f(0)).
\end{align*}
(3.12)

Let us now interpret the boundary condition on $\partial \omega^*$, that is
\[u(\mathbf{x}, f(\mathbf{x})) = 0 \quad \text{for } \mathbf{x} \in (-\varepsilon, \varepsilon)^{d-1}. \]

By differentiation, for $i, j = 1, \ldots, d - 1$ and $k = 1, \ldots, d$,
\[\partial_j u_k(\mathbf{x}, f(\mathbf{x})) + \partial_j f(\mathbf{x}) \partial_d u_k(\mathbf{x}, f(\mathbf{x})) = 0 \]
and
\[\partial_{ij}^2 u_k(\mathbf{x}, f(\mathbf{x})) + \partial_i f(\mathbf{x}) \partial_{jk}^2 u_k(\mathbf{x}, f(\mathbf{x})) + \partial_j^2 f(\mathbf{x}) \partial_d u_k(\mathbf{x}, f(\mathbf{x})) \\
+ \partial_i f(\mathbf{x}) (\partial_{ik}^2 u_k(\mathbf{x}, f(\mathbf{x})) + \partial_i f(\mathbf{x}) \partial_{dk}^2 u_k(\mathbf{x}, f(\mathbf{x}))) = 0. \]
For \(\mathbf{x} = 0 \), since \(f(0) = \partial_i f(0) = 0 \) for \(i = 1, \ldots, d-1 \),
\[
\partial_{ij}^2 u_k(0, f(0)) + \partial_{ii}^2 u_k(0, f(0)) = 0 \quad \forall i, j = 1, \ldots, d-1, \quad \forall k = 1, \ldots, d.
\] (3.13)

Notice that \(-\nu \Delta u + \nabla p = 0 \) in \(\Omega \setminus \mathcal{W} \), i.e., since \(\text{div } u = 0 \) in \(\Omega \setminus \mathcal{W} \), \(-\nu \text{div } (\mathcal{D}(u)) + \nabla p = 0 \) in \(\Omega \setminus \mathcal{W} \). Hence, for \(j = 1, \ldots, d \) and any \(\mathbf{x} \in (-\varepsilon, \varepsilon)^{d-1} \),
\[
\nu (\partial_{dd}^2 u_j(\mathbf{x}, f(\mathbf{x}))) + \partial_{ij}^2 u_d(\mathbf{x}, f(\mathbf{x})) = -\sum_{i=1}^{d-1} \left[\nu (\partial_{ii}^2 u_j(\mathbf{x}, f(\mathbf{x}))) + \partial_{ij}^2 u_i(\mathbf{x}, f(\mathbf{x}))) + \partial_j p(\mathbf{x}, f(\mathbf{x})) \right].
\] (3.14)

In Equality (3.13) with \(j = i \), we sum on \(i \) to get, since \(\sum_{i=1}^{d-1} \partial_{ii}^2 u_k(0, f(0)) = (d-1)H(0) \), where \(H \) is the mean curvature of \(\partial \omega^* \) (see for example the comment after Definition 5.4.7 in [15]),
that for all \(k = 1, \ldots, d \)
\[
\sum_{i=1}^{d-1} \partial_{ii}^2 u_k(0, f(0)) + (d-1)H(0)\partial_d u_k(0, f(0)) = 0.
\] (3.15)

Hence, using (3.13) and (3.15), Equality (3.14) writes as follows for \(j = 1, \ldots, d-1 \):
\[
\nu (\partial_{dd}^2 u_j(0, f(0))) + \partial_{ij}^2 u_d(0, f(0)) = \nu (d-1)H(0) \partial_d u_j(0, f(0)) + \nu \sum_{i=1}^{d-1} \partial_{ij}^2 f(0) \partial_i u_i(0, f(0)) + \partial_j p(0, f(0)).
\]

Therefore, Equality (3.12) writes in the following form:
\[
\nu \nabla \left(|\mathcal{D}(u)(0, f(0))|^2 \right) \cdot \mathbf{n}(0, f(0)) =
4 \sum_{j=1}^{d-1} \left[(\nu (d-1)H(0) \partial_d u_j(0, f(0)))^2 + \nu \sum_{i=1}^{d-1} \partial_{ij}^2 f(0) \partial_i u_i(0, f(0)) \partial_d u_j(0, f(0)) + \partial_j p(0, f(0)) \partial_d u_j(0, f(0)) \right].
\]

Hence, since \(|\partial_d u|^2 = \Lambda \) (see (3.3)), Lemma 3.2 follows. \(\square\)

Conclusion. Finally, gathering (3.7), (3.10) and (3.11), we obtain
\[
\mathcal{D}^2 J(\omega^*) \cdot \mathbf{V} \cdot \mathbf{V} \geq c\Lambda \|\mathbf{V} \cdot \mathbf{n}\|^2_{H^{1/2}(\partial \omega^*)} - 2 \int_{\partial \omega^*} (\nu (d-1)H) \mathbf{A} + \nu^i \mathbf{b} \tilde{\mathbf{f}} \mathbf{b} + \nabla \tau p \cdot \mathbf{b} \). \nu (d-1)H \mathbf{A} + \nu^i \mathbf{b} \tilde{\mathbf{f}} \mathbf{b} + \nabla \tau p \cdot \mathbf{b}
\]

Hence, using the regularity of \(\partial \omega^* \) and of the solution \(u \), the quantity
\[
\nu (d-1)H \mathbf{A} + \nu^i \mathbf{b} \tilde{\mathbf{f}} \mathbf{b} + \nabla \tau p \cdot \mathbf{b}
\]
belongs to \(L^\infty(\partial \omega^*) \) and the second term behaves like \(\|\mathbf{V} \cdot \mathbf{n}\|^2_{L^2(\partial \omega^*)} \). Hence, a natural assumption is that the shape Hessian is coercive in the \(H^{1/2}(\partial \omega^*) \) sense. This is the case if
\[
\nu (d-1)H \mathbf{A} + \nu^i \mathbf{b} \tilde{\mathbf{f}} \mathbf{b} + \nabla \tau p \cdot \mathbf{b} < 0 \text{ on } \partial \omega^*.
\] (3.16)

Note that this condition couples geometrical effect with the solution itself. In practice, the condition (3.16) cannot easily be tested theoretically since it couples the curvature of the object with derivatives of the flow. It might be tested numerically, however it will requires a curved mesh for the surface and the fluid domain and high order elements to catch the desired effects of curvature and the derivatives of the couple \((u, p) \). Such a precise computation requires specific numerical attention.
Statement of the result We have proved the following theorem:

Theorem 3.3. Let us assume that Estimate (3.16) is satisfied. Then, there exists a constant \(c > 0 \) such that, for all \(\mathbf{V} \in \mathbf{U} \) with \(\text{div} \mathbf{V} = 0 \),

\[
j''(0) = \nabla^2 J(\omega^*) \cdot \mathbf{V} \cdot \mathbf{V} \geq c \| \mathbf{V} \cdot \mathbf{n} \|^2_{H^{1/2}(\partial \omega^*)}.
\]

4 Stability of the drag minimization problem

4.1 The results

We recall that \(\omega^* \in \mathcal{O}_\delta \) is assumed to have a \(C^{4,\alpha} \) boundary (\(\alpha \in (0,1) \)). Moreover, in this section, the shape Hessian is assumed to be coercive at \(\omega^* \) in the following sense: for any \(\mathbf{V} \) in the tangent space defined by the constraints that is with

\[
\int_{\partial \omega^*} \mathbf{V} \cdot \mathbf{n} = 0,
\]

it holds

\[
j''(0) = \nabla^2 J(\omega^*) \cdot \mathbf{V} \cdot \mathbf{V} \geq c \| \mathbf{V} \cdot \mathbf{n} \|^2_{H^{1/2}(\partial \omega^*)}.
\]

(4.1)

The main result of this section states the stability of the drag minimization problem:

Theorem 4.1. If \(\omega^* \) is a critical shape for \(J \) where (4.1) holds, there exists \(\eta > 0 \) such that, for all \(\Theta \in \mathbf{U} \) with \(\| \Theta - I \|_{C^2(\mathbb{R};\mathbb{R}^d)} < \eta \), \(|\Theta(\omega^*)| = |\omega^*| \) and \(\Theta \neq I \),

\[J(\Theta(\omega^*)) > J(\omega^*)].\]

Consider the admissible vector field \(\mathbf{Y}_\Theta \in \mathbf{U} \) defined in subsection 2.2 By assumption

\[
j''(0) \geq C \| \mathbf{Y}_\Theta \cdot \mathbf{n} \|^2_{H^{1/2}(\partial \omega^*)}.
\]

By the order two Taylor expansion

\[J(\omega) = j(1) = j(0) + \int_0^1 (1 - x)j'(x)dx = J(\omega^*) + \int_0^1 (1 - x)j''(x)dx,\]

this theorem is a direct consequence of the following theorem (and of the assumption of the \(H^{1/2} \) coercivity of the shape Hessian):

Theorem 4.2. There exists \(\eta_0 > 0 \) and a function \(w : (0, \eta_0) \to \mathbb{R} \) with \(\lim_{r \to 0} w(r) = 0 \) (which depends only on \(\Omega, \omega^* \) and the data) such that, for all \(\eta \in (0, \eta_0) \) and all \(\Theta \in \mathbf{U} \) with \(\| \Theta - I \|_{C^2(\mathbb{R};\mathbb{R}^d)} < \eta \) and \(|\Theta(\omega^*)| = |\omega^*| \), there exists a divergence free vector field \(\mathbf{Y}_\Theta \in \mathbf{U} \) constructed in (2.2) whose the flow \(\Phi_t \) defines a path \((\omega_t := \Phi_t(\omega^*))_{t \in [0,1]} \) between \(\omega^* \) and \(\Theta(\omega^*) \), such that, for all \(t \in [0,1] \), the following estimate holds:

\[
|j''(t) - j''(0)| \leq w(\eta) \| \mathbf{Y}_\Theta \cdot \mathbf{n} \|^2_{H^{1/2}(\partial \omega^*)}.
\]

Indeed, there is a non negative \(\eta \) such that \(w(\eta) \leq C/2 \), so that

\[
J(\omega) \geq J(\omega^*) + \frac{C}{4} \| \mathbf{Y}_\Theta \cdot \mathbf{n} \|^2_{H^{1/2}(\partial \omega^*)} > J(\omega^*). \quad (4.2)
\]

In the following section, we prove Theorem 4.2 that extends to the Stokes case [9 Theorem 3] (or [10 Theorem 2.1]). We follow the same strategy that the one used in these references.
Let $\Theta \in \mathfrak{M}$ with $\|\Theta - I\|_{c^{2,1}(R^d)}$ small enough. For $t \in [0, 1]$, we consider the solution $(u_t, p_t) \in C^{2,\alpha}(\Omega \setminus \omega_t) \times \left[C^{1,\alpha}(\Omega \setminus \omega_t) \cap L^2(\Omega \setminus \omega_t) \right]$ of the perturbed Stokes problem (3.1). We define

$$v_t := u_t \circ \Phi_t \quad \text{and} \quad q_t := p_t \circ \Phi_t.$$

Hence, using the change of variables $x = \Phi_{t} y$ in Problem (3.1), we prove that

$$\begin{cases}
-\text{div} \left(\nabla v_t A(t) \right) + \text{div} \left(q_t B(t) \right) = 0 & \text{in } \Omega \setminus \omega_t \\
\nabla v_t \cdot B(t) = 0 & \text{in } \Omega \setminus \omega_t \\
v_t = g & \text{in } \partial \Omega \\
v_t = 0 & \text{in } \partial \omega^*,
\end{cases} \quad (4.3)$$

with

$$\begin{align*}
Jac_t & := \det (D\Phi_t) \in C^{1,1}(R^d) \\
A(t) & := Jac_t \nu (D\Phi_t)^{-1} (1 \circ D\Phi_t)^{-1} \in C^{1,1}(R^d, M_{d,d}) \\
B(t) & := Jac_t (1 \circ D\Phi_t)^{-1} \in C^{1,1}(R^d, M_{d,d}).
\end{align*}$$

4.2 Preliminary results: bounds on the state function

Let us first focus on the proof of the following preliminary result:

Proposition 4.3. There exists a function $w : [0, 1] \to \mathbb{R}$ with $\lim_{r \searrow 0} w(r) = 0$ such that

$$\begin{align*}
\sup_{t \in [0, 1]} \| u_t \circ \Phi_t - u \|_{C^2(\Omega \setminus \omega_t)} & \leq w \left(\|\Theta - I\|_{c^{2,1}(R^d)} \right) \\
\sup_{t \in [0, 1]} \| p_t \circ \Phi_t - p \|_{C^1(\Omega \setminus \omega_t)} & \leq w \left(\|\Theta - I\|_{c^{2,1}(R^d)} \right).
\end{align*}$$

Notice that we can assume the existence of a constant C such that:

$$w(\eta) \geq C \eta. \quad (4.4)$$

since if $w(\eta) < C \eta$, we can redefine w as $w(\eta) = C \eta$ (which tends to 0 with η).

First, let us note that, using a differentiability result similar than the one given in [3 Lemma 3.2], there exist $\eta_2 > 0$ and a constant $c > 0$, depending only on the data, such that, for all $\Theta \in \mathfrak{M}$ with $\|\Theta - I\|_{c^{2,1}(R^d)} < \eta_2$,

$$\| u_t - u \|_{C^{2,\alpha}(\Omega \setminus \omega_t)} \leq c \|\Theta - I\|_{c^{2,1}(R^d)} \quad \text{and} \quad \| q_t - p \|_{C^{1,\alpha}(\Omega \setminus \omega_t)} \leq c \|\Theta - I\|_{c^{2,1}(R^d)}.$$

Hence, we deduce immediately the following lemma:

Lemma 4.4. There exists $\eta_2 > 0$ such that, for all $\Theta \in \mathfrak{M}$ with $\|\Theta - I\|_{c^{2,1}(R^d)} < \eta_2$, there exists a constant C depending only on the data and on $\|\Theta\|_{c^{2,1}(R^d)}$ such that, for all $t \in [0, 1]$,

$$\| v_t \|_{C^{2,\alpha}(\Omega \setminus \omega_t)} \leq C \quad \text{and} \quad \| q_t \|_{C^{1,\alpha}(\Omega \setminus \omega_t)} \leq C.$$
Proposition 4.1. The main ingredient is the compact embedding of $C^{2,\alpha}(\Omega \setminus \overline{\omega^*})$ into $C^2(\Omega \setminus \overline{\omega^*})$ and of $C^{1,\alpha}(\Omega \setminus \overline{\omega^*})$ into $C^1(\Omega \setminus \overline{\omega^*})$. Let $\eta_2 > 0$ given by Lemma 4.4. Define, for $\eta \in (0, \eta_2)$,

$$ w(\eta) := \sup_{\Theta \in \mathcal{U} \cap \Theta - I_{C^{2,1}(\mathbb{R}^d)}} \left(\|v_t - u\|_{C^2(\Omega \setminus \overline{\omega^*})} + \|q_t - p\|_{C^1(\Omega \setminus \overline{\omega^*})} \right). $$

Lemma 4.4 guarantees that this quantity is well defined. Since the estimate of Proposition 4.3 is obvious, it remains to prove that $w(r) = 0$.

Let us proceed by contradiction assuming that $\lim_{r \to 0} w(r) \neq 0$. Then, there exists a real $a > 0$ and some sequences $(t_n)_{n \in \mathbb{N}} \subset [0, 1]$, $(\Theta_n)_{n \in \mathbb{N}} \subset \mathcal{U}$ with $\|\Theta_n - I\|_{C^{2,1}(\mathbb{R}^d)} < \eta_2$ for all $n \in \mathbb{N}$, $(\omega_n := \Phi_{\Theta_n, t_n}(\omega^*))_{n \in \mathbb{N}}$, $(v_n := u_n \circ \Phi_{\Theta_n, t_n})_{n \in \mathbb{N}}$ and $(q_n := p_n \circ \Phi_{\Theta_n, t_n})_{n \in \mathbb{N}}$ such that for all $n \in \mathbb{N}$

$$ \|\Theta_n - I\|_{C^{2,1}(\mathbb{R}^d)} \leq \frac{1}{n}, \quad \|v_n - u\|_{C^2(\Omega \setminus \overline{\omega^*})} + \|q_n - p\|_{C^1(\Omega \setminus \overline{\omega^*})} \geq a > 0. \quad (4.5) $$

Using Lemma 4.4, the sequence $(v_n)_n$ is bounded in $C^{2,\alpha}(\Omega \setminus \overline{\omega^*})$ and $(q_n)_n$ is bounded in $C^{1,\alpha}(\Omega \setminus \overline{\omega^*})$. Hence, since $C^{2,\alpha}(\Omega \setminus \overline{\omega^*})$ (respectively $C^{1,\alpha}(\Omega \setminus \overline{\omega^*})$) is compactly imbedding in $C^2(\Omega \setminus \overline{\omega^*})$ (respectively in $C^1(\Omega \setminus \overline{\omega^*})$), there exist two sub-sequences converging respectively in $C^2(\Omega \setminus \overline{\omega^*})$ to some u_{lim} and in $C^1(\Omega \setminus \overline{\omega^*})$ to some p_{lim}. Moreover, there exists a sub-sequence $(t_n) \subset [0, 1]$ which converges to some t_{lim}. Then, notice that

$$ - \text{div} (\nabla v_n A(t_n, \Theta_n)) + \text{div} (q_n B(t_n, \Theta_n)) + \nu \Delta u_{lim} - \nabla p_{lim} $$

$$ = - \text{div} (\nabla v_n A(t_n, \Theta_n)) + \text{div} (q_n B(t_n, \Theta_n)) + \nu \Delta v_n - \nabla q_n $$

$$ - \nu \Delta (v_n - u_{lim}) + \nabla (q_n - p_{lim}), \quad \text{in} \ \Omega \setminus \overline{\omega^*} $$

and

$$ \nabla v_n : B(t_n, \Theta_n) - \nabla u_{lim} = \nabla v_n : B(t_n, \Theta_n) - \nabla v_n + \nabla (v_n - u_{lim}) \quad \text{in} \ \Omega \setminus \overline{\omega^*}. $$

Let us focus on the second equality. We proceed in the same way for the first one. Since $v_n \to u_{lim}$ in $C^2(\Omega \setminus \overline{\omega^*})$, we obtain, passing to the limit in the previous equality and using Problem (4.3) solved by the couple (v_n, q_n), that

$$ \text{div} u_{lim} = 0 \quad \text{in} \ \Omega \setminus \overline{\omega^*}. $$

Thus, using the boundary conditions, we obtain that the couple (u_{lim}, p_{lim}) solves

$$ \begin{cases}
-\nu \Delta u_{lim} + \nabla p_{lim} = 0 & \text{in} \ \Omega \setminus \overline{\omega^*} \\
\text{div} u_{lim} = 0 & \text{in} \ \Omega \setminus \overline{\omega^*} \\
u u_{lim} = g & \text{on} \ \partial \Omega \\
u u_{lim} = 0 & \text{on} \ \partial \omega^*.
\end{cases} $$

The uniqueness of such a solution implies $(u_{lim}, p_{lim}) = (u, p)$ which contradicts the second inequality of (4.3). \hfill \Box
4.3 Proof of Theorem 4.2

Again, we fix $\Theta \in \mathfrak{U}$ a diffeomorphism with $\|\Theta - I\|_{C^2(\mathbb{R}^d)} < \eta_2$ such that $|\Theta(\omega^*)| = |\omega^*|$. As previously, we consider the vector field Y_Θ, the associated flow Φ_t and the domains $(\omega_t := \Phi_t(\omega^*))_{t \in [0,1]}$ and we set $m_{Y_\Theta} := Y_\Theta \cdot \bar{n}$. The constant η_2 is given by Lemma 4.4. We denote by C any constant depending only on $\|\Theta\|_{C^2(\mathbb{R}^d)}$.

We have proved (see (3.6)) that

$$D^2 J(\omega_t) \cdot Y_\Theta \cdot Y_\Theta = -\frac{1}{2} \int_{\partial \omega_t} \nu \left(\nabla (|D(u_t)|^2) \cdot Y_\Theta \right) (Y_\Theta \cdot n_t) + 2 \int_{\partial \omega_t} u_t' \cdot (\sigma(u_t', p_t') n_t).$$

This decomposition is similar as the one in J_1 and J_2 for the Hessian at the critical shape. It is natural since the two depends on the deformation parameter Y_Θ through two distinct norms. Hence, we will prove the following two lemmas:

Lemma 4.5. We have

$$|I_1(t) - I_1(0)| \leq C w(\|\Theta - I\|_{C^2(\mathbb{R}^d)}) \|m_{Y_\Theta}\|_{L^2(\partial \omega^*)}.$$

Lemma 4.6. We have

$$|I_2(t) - I_2(0)| \leq C w(\|\Theta - I\|_{C^2(\mathbb{R}^d)}) \|m_{Y_\Theta}\|_{L^{1/2}(\partial \omega^*)}.$$

In both lemmas, w denotes the modulus of continuity introduced in Proposition 4.3.

Using the previous characterization of $D^2 J(\omega_t) \cdot Y_\Theta \cdot Y_\Theta$ and these two lemmas, Theorem 4.2 is proved. Hence, it now suffices to prove these lemmas. To simplify the notations, we set

$$\eta := \|\Theta - I\|_{C^2(\mathbb{R}^d)},$$

and, in the sequel, we denote all the constants depending only on the data and on the norm $\|\Theta\|_{C^2(\mathbb{R}^d)}$ by C.

4.3.1 Proof of Lemma 4.5

We know that

$$\nabla u_t \circ \Phi_t = \frac{1}{|D\Phi_t|} \nabla v_t \quad \text{and} \quad D(u_t) \circ \Phi_t = \frac{1}{|D\Phi_t|} D(v_t).$$

Hence, replacing u_t by $|D(u_t)|^2$,

$$\nabla \left(|D(u_t)|^2\right) \circ \Phi_t = \frac{1}{|D\Phi_t|} \nabla(|D(u_t)|^2 \circ \Phi_t) = \frac{1}{|D\Phi_t|} \nabla \left(\frac{1}{|D\Phi_t|} D(v_t)\right)^2.$$

Thus, using the change of variables $x = \Phi_t y$,

$$I_1(t) = \int_{\partial \omega^*} \nu^1 D\Phi_t^{-1} \nabla \left(\frac{1}{|D\Phi_t|} D(v_t)^2\right) \cdot (Y_\Theta \circ \Phi_t) \left(\left(Y_\Theta \circ \Phi_t\right) \cdot (n_t \circ \Phi_t)\right) J(t)$$

$$= \int_{\partial \omega^*} \nu |m_{Y_\Theta} \circ \Phi_t|^2 |D\Phi_t^{-1}| \nabla \left(\frac{1}{|D\Phi_t|} D(v_t)^2\right) \cdot n (n \cdot (n_t \circ \Phi_t)) J(t),$$

where $J(t) := \det D\Phi_t / (|D\Phi_t| n)$ is the surface jacobian. In order to study $I_1(t) - I_1(0)$, let us define

$$a_0(t) := m_{Y \circ \Phi_t}, \quad a_1(t) := \frac{1}{|D\Phi_t|} \nabla \left(\frac{1}{|D\Phi_t|} D(v_t)\right) \cdot n,$$

$$a_2(t) := n \cdot (n_t \circ \Phi_t), \quad a_3(t) := J(t).$$
Using the estimate concerning \(n_t \circ \Phi_t \) given in Lemma 2.1, we have
\[
\|a_2(t)\|_{L^\infty(\partial \omega^*)} = \|n \cdot (n_t \circ \Phi_t)\|_{L^\infty(\partial \omega^*)} \leq C
\]
Moreover, using the estimate concerning \(J(t) \) given in Lemma 2.1 we have
\[
\|a_3(t)\|_{L^\infty(\partial \omega^*)} = \|J(t)\|_{L^\infty(\partial \omega^*)} \leq C
\]
Let us now prove that, for all \(t \in [0, 1] \),
\[
\|a_1(t)\|_{L^\infty(\partial \omega^*)} \leq C \quad \text{and} \quad \|a_1(t) - a_1(0)\|_{L^\infty(\partial \omega^*)} \leq C \, w(\eta),
\]
where \(w \) is the modulus of continuity given in Proposition 4.3. Using the fact that \(v_t \) is bounded in \(C^{2, \alpha}(\Omega \setminus \overline{\omega^*}) \) (see Lemma 4.4), we have immediately
\[
\|a_1(t)\|_{L^\infty(\partial \omega^*)} = \|t^3 \Phi_t^{-1} \nabla \left(|t^3 \Phi_t^{-1} D(v_t)|^2 \right) \cdot n\|_{L^\infty(\partial \omega^*)} \leq C.
\]
Let us define \(\xi(t) := \nabla \left(|t^3 \Phi_t^{-1} D(v_t)|^2 \right) \). Inserting \(\xi(t) \), we obtain
\[
\|a_1(t) - a_1(0)\|_{L^\infty(\partial \omega^*)} = \|t^3 \Phi_t^{-1} - 1\| \xi(t) \cdot n + \left(\xi(t) - \nabla \left(|D(u)|^2 \right) \right) \cdot n\|_{L^\infty(\partial \omega^*)}
\leq C \|t^3 \Phi_t^{-1} - 1\| \|\xi(t)\|_{L^\infty(\partial \omega^*)} + C \left\| \xi(t) - \nabla \left(|D(u)|^2 \right) \right\|_{L^\infty(\partial \omega^*)}
\leq C \|t^3 \Phi_t^{-1} - 1\| \|\xi(t)\|_{L^\infty(\partial \omega^*)} + C \left\| \xi(t) - \nabla \left(|D(u)|^2 \right) \right\|_{L^\infty(\partial \omega^*)},
\]
since \(\|t^3 \Phi_t^{-1} - 1\| \leq C \) using (2.3). By Estimate (2.3), we have \(\|t^3 \Phi_t^{-1} - 1\| \|\xi(t)\|_{L^\infty(\partial \omega^*)} \leq C \eta \) and using the estimate on the norm of \(v_t \) given by Proposition 4.3
\[
\left\| \xi(t) - \nabla \left(|D(u)|^2 \right) \right\|_{L^\infty(\partial \omega^*)} \leq w(\eta).
\]
Hence, we obtain the second estimate of (4.9). Finally, Lemma 2.1 ensures that
\[
\|a_0(t)\|_{L^2(\partial \omega^*)} = \|m Y_{u_t} \circ \Phi_t\|_{L^2(\partial \omega^*)} \leq C \|m Y_{u_t}\|_{L^2(\partial \omega^*)}
\]
(4.10)
According to the expression (4.11) of \(I_1 \) and the definition of \(a_i \) \((i = 0, \ldots, 3) \),
\[
I_1(t) - I_1(0) = \int_{\partial \omega^*} \frac{\nu}{2} \left(a_i^2(t) - a_i^2(0) \right) \prod_{i=1}^3 a_i(t) + \int_{\partial \omega^*} \frac{\nu}{2} \left(\prod_{i=1}^3 a_i(t) - \prod_{i=1}^3 a_i(0) \right).
\]
(4.11)
The last integral of (4.11) is bounded by
\[
C \|m Y_{u_t}\|^2_{L^2(\partial \omega^*)} \left\| \prod_{i=1}^3 a_i(t) - \prod_{i=1}^3 a_i(0) \right\|_{L^\infty(\partial \omega^*)}.
\]
Using the estimates on the norms of \(a_i \) \((i = 1, \ldots, 3) \) given by (4.7), (4.8) and (4.9) and the fact that \(w(\eta) \geq C \eta \) by Assumption (4.4), we have
\[
\left\| \prod_{i=1}^3 a_i(t) - \prod_{i=1}^3 a_i(0) \right\|_{L^\infty(\partial \omega^*)} \leq C \sum_{i=1}^3 \|a_i(t) - a_i(0)\|_{L^\infty(\partial \omega^*)} \leq C (w(\eta) + \eta) \leq C w(\eta).
\]
Moreover, the first integral of (4.11) is bounded by
\[\left\| \prod_{i=1}^{3} a_i(t) \right\|_{L^\infty(\partial\omega^*)} \|a_0(t) - a_0(0)\|_{L^2(\partial\omega^*)} \|a_0(t) + a_0(0)\|_{L^2(\partial\omega^*)} \]
and using the estimates on the norms of \(a_i \) \((i = 0, \ldots, 3) \) given by (4.7), (4.8), (4.9) and (4.10) the remark that \(w(\eta) \geq C \eta \), it is bounded by
\[C \|w\|_{L^2(\partial\omega^*)}, \]
which concludes the proof.

4.3.2 Proof of Lemma 4.6

Since \(u'_t = -\partial_n u_t (Y_\Theta \cdot n_t) \) on \(\partial\omega_t \),
\[u'_t = -m Y_\Theta \partial_n u_t (n_t \cdot \tilde{n}) \quad \text{on} \quad \partial\omega_t. \tag{4.12} \]

Let us define the following Steklov-Poincaré operator corresponding to \(D_N \) (introduced in Lemma 3.1) on \(\partial\omega_t \):
\[C_t : H^{1/2}(\partial\omega_t) \rightarrow H^{-1/2}(\partial\omega_t) \]
\[z_t \mapsto C_t(z_t) = \sigma(Z_t, \Pi_t)n_t, \]
where \((Z_t, \Pi_t) \in H^1(\Omega\setminus\overline{\omega}) \times L^2(\Omega\setminus\overline{\omega}) \) solves
\[\begin{cases} -\text{div} (\sigma(Z_t, \Pi_t)) = 0 & \text{in} \ \Omega\setminus\overline{\omega} \\ \text{div} Z_t = 0 & \text{in} \ \Omega\setminus\overline{\omega} \\ Z_t = 0 & \text{on} \ \partial\Omega \\ Z_t = z_t & \text{on} \ \partial\omega_t. \end{cases} \tag{4.13} \]

We obviously have
\[\frac{1}{2} \nu \|D(Z_t)\|_{L^2(\Omega\setminus\overline{\omega})}^2 = \langle C_t(z_t), z_t \rangle_{\partial\omega_t}. \tag{4.14} \]

Let us define \(z_t := -m Y_\Theta \partial_n u_t (n_t \cdot \tilde{n}) \). Thus, according to the boundary condition of \(u'_t \) (see (4.12)), \(\sigma(u'_t, \Phi_t)n_t = C_t(z_t) \) and, using the definition of \(I_2 \), we obtain
\[I_2(t) = 2 \int_{\partial\omega_t} \partial_n u_t C_t(z_t)(Y_\Theta \cdot n_t). \]

Hence, using Estimate (4.14) on the norm of \(D(\cdot) \), we get
\[I_2(t) = -2 \int_{\partial\omega_t} z_t C_t(z_t) = -\nu \|D(Z_t)\|_{L^2(\Omega\setminus\overline{\omega})}^2, \]
where \((Z_t, \Pi_t) \in H^1(\Omega\setminus\overline{\omega}) \times L^2(\Omega\setminus\overline{\omega}) \) solves (4.13).

We want now to estimate
\[I_2(t) - I_2(0) = \int_{\Omega\setminus\overline{\omega}} \nu |D(Z_0)|^2 - \int_{\Omega\setminus\overline{\omega}} \nu |D(Z_t)|^2 \]
\[= \int_{\Omega\setminus\overline{\omega}} \nu |D(Z_0)|^2 - \int_{\Omega\setminus\overline{\omega}} \nu |D\Phi_t^{-1}D(Z_t)|^2 \text{Jac}_t, \]
where \(\tilde{Z}_t := Z_t \circ \Phi_t \). Since \(\text{div} Y_\Theta = 0 \), we get \(\text{Jac}_t = 1 \). We assume for a while that the following lemma is proved:
Lemma 4.7. For all $t \in [0, 1]$,
\[
\|\tilde{Z}_t\|_{H^{1/2}(\partial \omega^*)} \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)}, \quad \|\tilde{Z}_t - z_0\|_{H^{1/2}(\partial \omega^*)} \leq C \omega(\eta) \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)}, \quad \|\tilde{Z}_t - Z_0\|_{H^1(\Omega; \omega^*)} \leq C \omega(\eta) \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)}.
\]

Using this lemma and the fact that \(\|D\Phi_t^{-1}\|_{L^\infty(\mathbb{R}^d)} \leq C\) and \(\|D\Phi_t^{-1} - I\|_{L^\infty(\mathbb{R}^d)} \leq C\eta\) (see Estimate (2.3)), we have
\[
|I_2(t) - I_2(0)| = \int_{\partial \omega^*} \nu |D(Z_0)|^2 - \int_{\partial \omega^*} \nu |D(\Phi_t^{-1} D(\tilde{Z}_t)|^2 \leq C \|D(Z_0) + tD\Phi_t^{-1}D(\tilde{Z}_t)\|_{L^2(\partial \omega^*)}^2 \|D(Z_0) - tD\Phi_t^{-1}D(\tilde{Z}_t)\|_{L^2(\partial \omega^*)}^2 \leq C \left(\|D(Z_0)\|_{L^2(\partial \omega^*)} + \|tD\Phi_t^{-1}D(\tilde{Z}_t)\|_{L^2(\partial \omega^*)} \right) \left(\left\|D\Phi_t^{-1}D(\tilde{Z}_t) - tD\Phi_t^{-1}D(Z_0)\right\|_{L^2(\partial \omega^*)} + \|tD\Phi_t^{-1}D(Z_0) - D(Z_0)\|_{L^2(\partial \omega^*)} \right) \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)} \left(\left\|D\Phi_t^{-1}D(\tilde{Z}_t) - tD\Phi_t^{-1}D(Z_0)\right\|_{L^2(\partial \omega^*)} + \|tD\Phi_t^{-1}D(Z_0) - D(Z_0)\|_{L^2(\partial \omega^*)} \right) \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)} \left(\|D(Z_0)\|_{L^2(\partial \omega^*)} + C \omega(\eta) \|D(Z_0)\|_{L^2(\partial \omega^*)} \right) \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)} \left(\|D(Z_0)\|_{L^2(\partial \omega^*)} + \eta \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)} \right).
\]

The proof is completed. It remains to prove Lemma 4.7.

Proof of Lemma 4.7. We recall that
\[
z_t := -m_{\gamma_0}\partial_n u_t(n_t \cdot \tilde{n}) \quad \text{and} \quad \tilde{z}_t := z_t \circ \Phi_t.
\]

We use the following product lemma:
\[
\forall v \in H^{1/2}(\partial \omega^*), \; w \in C^1(\partial \omega^*), \; \|vw\|_{H^{1/2}(\partial \omega^*)} \leq C \|v\|_{H^{1/2}(\partial \omega^*)} \|w\|_{C^1(\partial \omega^*)}
\]

for some constant C depending only on $\Omega \setminus \overline{\omega}$ to get
\[
\|\tilde{z}_t\|_{H^{1/2}(\partial \omega^*)} \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)} \|\partial_n u_t(n_t \cdot n)\|_{C^1(\partial \omega^*)}.
\]

Then, using the estimate on the norm of n_t given by Lemma 2.1 and the estimate on the norm of v_t given by Proposition 4.3, we obtain the first estimate of the lemma:
\[
\|\tilde{z}_t\|_{H^{1/2}(\partial \omega^*)} \leq C \|m_{\gamma_0}\|_{H^{1/2}(\partial \omega^*)}.
\] (4.15)

Defining $\tilde{n}_t := n_t \circ \Phi_t$, we have
\[
\tilde{z}_t - z_0 = \tilde{z}_t - m_{\gamma_0}\partial_n u = m_{\gamma_0} (\partial_n u - \partial_n u_t \circ \Phi_t(n_t \cdot n)) \quad \text{on} \; \partial \omega^*.
\]

However,
\[
\|\partial_n u - \partial_n u_t \circ \Phi_t(n_t \cdot n)\|_{C^1(\partial \omega^*)} \leq \|\partial_n u (1 - (n_t \cdot n))\|_{C^1(\partial \omega^*)} + \|(n_t \cdot n) (\partial_n u - \partial_n u_t \circ \Phi_t)\|_{C^1(\partial \omega^*)}.
\]
Moreover, using the estimate on the norm of \(n_t \) given by Lemma 2.1, we have
\[
\| \partial_n u (1 - (\tilde{n}_t \cdot n)) \|_{\mathcal{C}^1(\partial \omega^*)} \leq C \eta,
\]
since \(\| \partial_n u \|_{\mathcal{C}^1(\partial \omega^*)} \leq C \). Now, let us bound \(\| (\tilde{n}_t \cdot n) (\partial_n u - \partial_n u_t \circ \Phi_t) \|_{\mathcal{C}^1(\partial \omega^*)} \). Using again Lemma 2.1, Estimate (2.3) and Proposition 4.3, we obtain
\[
\| (\tilde{n}_t \cdot n) (\partial_n u - \partial_n u_t \circ \Phi_t) \|_{\mathcal{C}^1(\partial \omega^*)} = \| (\tilde{n}_t \cdot n) (\partial_n u - t^2 \Phi_t^{-1} \nabla v_t \tilde{n}_t) \|_{\mathcal{C}^1(\partial \omega^*)} \\
\leq C \left(\| \nabla u (n_t - n) \|_{\mathcal{C}^1(\partial \omega^*)} + \| (\nabla u - t^2 \Phi_t^{-1} \nabla v_t) n_t \|_{\mathcal{C}^1(\partial \omega^*)} \right) \leq C w(\eta),
\]
since we can assume \(\eta \leq C w(\eta) \) (see (4.4)). Hence, the second inequality of the lemma is proved:
\[
\| \tilde{Z}_t - z_0 \|_{H^{1/2}(\partial \omega^*)} \leq C w(\eta) \| m_{\Theta} \|_{H^{1/2}(\partial \omega^*)}.
\] (4.16)

Since \(Z_0 \) solves the Stokes system with \(z_0 \) as interior boundary condition, the following energy estimate holds using the classical energy estimate concerning the Stokes system (see for example the books [13, 12]) and the first estimate (4.15)
\[
\| Z_0 \|_{H^1(\Omega \setminus \omega^*)} + \| \Pi_0 \|_{L^2(\Omega \setminus \omega^*)} \leq C \| z_0 \|_{H^{1/2}(\partial \omega^*)} \leq C \| m_{\Theta} \|_{H^{1/2}(\partial \omega^*)}.
\] (4.17)

With this inequality, it remains to prove the inequality concerning \(\| \tilde{Z}_t - Z_0 \|_{H^1(\Omega \setminus \omega^*)} \). Indeed, we will then have
\[
\| \tilde{Z}_t \|_{H^1(\Omega \setminus \omega^*)} \leq C w(\eta) \| m_{\Theta} \|_{H^{1/2}(\partial \omega^*)} + \| Z_0 \|_{H^1(\Omega \setminus \omega^*)} \leq C \| m_{\Theta} \|_{H^{1/2}(\partial \omega^*)}.
\]

The couple \((Z_t, \Pi_t) \in H^1(\Omega \setminus \omega^*) \times L^2(\Omega \setminus \omega^*)\) solves (4.13). Thus, defining \(\tilde{Z}_t := Z_t \circ \Phi_t \) and \(\tilde{\Pi}_t := \Pi \circ \Phi_t \), we prove that
\[
\begin{cases}
- \text{div} \left(\nabla \tilde{Z}_t A(t) \right) + \text{div} \left(\tilde{\Pi}_t B(t) \right) = 0 & \text{in } \Omega \setminus \omega^* \\
\nabla \tilde{Z}_t : B(t) = 0 & \text{in } \Omega \setminus \omega^* \\
\tilde{Z}_t = 0 & \text{on } \partial \Omega \\
\tilde{\Pi}_t = \tilde{Z}_t & \text{on } \partial \omega^*.
\end{cases}
\]

Using the problem solved by \((Z_0, \Pi_0)\), this problem can be rewritten as
\[
\begin{cases}
\nu \Delta (\tilde{Z}_t - Z_0) - \nabla (\tilde{\Pi}_t - \Pi_0) = L_1(t) \left(\tilde{Z}_t, \tilde{\Pi}_t \right) - S \left(\tilde{Z}_t, \tilde{\Pi}_t \right) & \text{in } \Omega \setminus \omega^* \\
- \text{div} \left(\tilde{Z}_t - Z_0 \right) = L_2(t) (\tilde{Z}_t) - \text{div} \left(\tilde{Z}_t \right) & \text{in } \Omega \setminus \omega^* \\
\tilde{Z}_t - Z_0 = 0 & \text{on } \partial \Omega \\
\tilde{Z}_t - Z_0 = \tilde{Z}_t - z_0 & \text{on } \partial \omega^*;
\end{cases}
\]
with
\[
\begin{align*}
L_1(t) \left(\tilde{Z}_t, \tilde{\Pi}_t \right) & := - \text{div} \left(\nabla \tilde{Z}_t A(t) \right) + \text{div} \left(\tilde{\Pi}_t B(t) \right) \\
L_2(t) (\tilde{Z}_t) & := \nabla \tilde{Z}_t : B(t) \\
S \left(\tilde{Z}_t, \tilde{\Pi}_t \right) & := - \nu \Delta (\tilde{Z}_t) + \nabla (\tilde{\Pi}_t).
\end{align*}
\]
Thus, using the energy estimate,
\[\| \tilde{Z}_t - Z_0 \|_{H^1(\Omega; \omega^*)} + \| \Pi_t - \Pi_0 \|_{L^2(\Omega; \omega^*)} \leq C \left(\| \tilde{Z}_t - z_0 \|_{H^{1/2}(\partial \omega^*)} + \right) \]
\[\left((L_1(t) - S) \left(\tilde{Z}_t, \Pi_t \right) \right)_{H^{-1}(\Omega; \omega^*)} + \left((L_2(t) - \text{div}) \left(\tilde{Z}_t \right) \right)_{L^2(\Omega; \omega^*)} \right). \quad (4.18) \]
We have
\[(L_1(t) - S) \left(\tilde{Z}_t, \Pi_t \right) = (L_1(t) - S) \left(\tilde{Z}_t - Z_0, \Pi_t - \Pi_0 \right) + (L_1(t) - S) \left(Z_0, \Pi_0 \right) \]
\[(L_2(t) - \text{div}) \left(\tilde{Z}_t \right) = (L_2(t) - \text{div}) \left(\tilde{Z}_t - Z_0 \right) + (L_2(t) - \text{div}) \left(Z_0 \right). \]

Let us assume for a while
\[\int_{\Omega^*} (\omega, q) \leq C \eta \left(\| w \|_{L^2(\Omega; \omega^*)} + \| q \|_{L^2(\Omega; \omega^*)} \right) \quad (4.19) \]
Then,
\[\left((L_1(t) - S) \left(\tilde{Z}_t, \Pi_t \right) \right)_{H^{-1}(\Omega; \omega^*)} + \left((L_2(t) - \text{div}) \left(\tilde{Z}_t \right) \right)_{L^2(\Omega; \omega^*)} \leq C \eta \left(\| \tilde{Z}_t - Z_0 \|_{H^1(\Omega; \omega^*)} + \| \Pi_t - \Pi_0 \|_{L^2(\Omega; \omega^*)} \right) \]
\[\| \tilde{Z}_t - Z_0 \|_{H^1(\Omega; \omega^*)} \leq C \eta \| w \|_{H^1(\Omega; \omega^*)}. \]

Then, using this inequality in Estimate (4.18) and Estimates (4.16) and (4.17) on the norms of \(\tilde{Z}_t - Z_0 \) and \(Z_0 \), we obtain
\[\| \tilde{Z}_t - Z_0 \|_{H^1(\Omega; \omega^*)} (1 - C \eta) \leq C \eta \| w \|_{H^{1/2}(\partial \omega^*)}, \]
which concludes the proof.

It remains to prove Estimate (4.19). Let us consider \(\Phi \in H^1_0(\Omega; \omega^*) \). We have
\[\left| \int_{\Omega^*} (L_1(t) - S) (w, q) \cdot \Phi \right| = \left| \int_{\Omega^*} (\text{div} (\nabla w A(t)) + \text{div} (q B(t)) + \nu \Delta w - \nabla q) \cdot \Phi \right| \]
\[= \left| \int_{\Omega^*} \left(\nabla w A(t) + q B(t) + \nu \Delta w - \nabla q \right) \cdot \nabla \Phi \right| \]
\[\leq C \| \Phi \|_{H^1_0(\Omega; \omega^*)} \left(\| A(t) \|_{L^2(\Omega; \omega^*)} \| w \|_{H^1(\Omega; \omega^*)} + \| q \|_{L^2(\Omega; \omega^*)} \right) \]
\[\leq C \| \Phi \|_{H^1_0(\Omega; \omega^*)} \left(\| w \|_{H^1(\Omega; \omega^*)} + \| q \|_{L^2(\Omega; \omega^*)} \right) \]
using Lemma 2.1 and Estimate (2.3). We proceed in the same way to prove that, for all \(\xi \in L^2(\Omega; \omega^*) \),
\[\left| \int_{\Omega^*} (L_2(t) - \text{div}) (w) \xi \right| \leq C \| \xi \|_{L^2(\Omega; \omega^*)} \| w \|_{H^1(\Omega; \omega^*)}, \]
which concludes the proof of Estimate (4.19). \(\square \)
5 Precised stability estimate

The main result of this section is a purely geometrical result valid for small smooth perturbations of a domain.

Proposition 5.1. In the assumptions of Section 2 there is a constant \(C \) that depends only on \(\Omega \) such that

\[
\mathcal{L}^d(\Omega \Delta \Omega_{\text{per}}) \leq C \|h\|_{L^1}. \tag{5.1}
\]

Proof. We first consider the case of a smooth positive deformation function \(h \) and prove (5.1) in this first case. Since \(h \) is positive, \(\Omega \) is a subset of \(\Omega_{\text{per}} \) and hence

\[
\mathcal{L}^d(\Omega \Delta \Omega_{\text{per}}) = \mathcal{L}^d(\Omega_{\text{per}}) - \mathcal{L}^d(\Omega).
\]

To this function, is associated the vector field \(V \) by the construction (2.1) of subsection 2.2 (in general or by (2.2) if a volume constraint has to satisfied). We then apply the classical Lemma about variations of the volume

\[
\frac{d}{dt} \mathcal{L}^d(\Omega_t) = \int_{\partial \Omega_t} V \cdot n_t \, d\sigma_{\partial \Omega_t}(y)
\]

to get along the flow of the field \(V \):

\[
\mathcal{L}^d(\Omega_{\text{per}}) - \mathcal{L}^d(\Omega) = \int_0^1 \int_{\partial \Omega_t} V(y) \cdot n_t(y) \, d\sigma_{\partial \Omega_t}(y) \, dt
\]

\[
= \int_0^1 \int_{\partial \Omega_t} h(p_{\partial \Omega}(y)) \, n(p_{\partial \Omega}(y)) \cdot n_t(y) \, d\sigma_{\partial \Omega_t}(y) \, dt
\]

\[
= \int_0^1 \int_{\partial \Omega} h(x) \, n(x) \cdot n_t(x + tV(x)) J_t(x) \, dt \, d\sigma_{\partial \Omega}(x)
\]

\[
= \int_{\partial \Omega} h(x) \int_0^1 n(x + tV(x)) \cdot n_t(x + tV(x)) J_t(x) \, dt \, d\sigma_{\partial \Omega}(x),
\]

where \(J_t \) is the surface jacobian. We estimate the middle term

\[
\int_0^1 n(x + tV(x)) \cdot n_t(x + tV(x)) J_t(x) \, dt
\]

thanks to Lemma 2.1 and conclude. The same proof works for smooth negative deformation field, then by density to any signed Lipschitz deformation.

For a general deformation, expressed with a smooth normal deformation \(h \), we split it into \(h = h^+ - h^- \) its positive and negative part and define \(V^+ \) and \(V^- \) by the construction (2.1). Then it suffices to notice that \(\Omega_{\text{per}} = \Phi_1(V^-)[\Phi_1(V^+)\Omega] \): the idea is to first apply the field \(V^+ \) to match the inflating areas then the field \(V^- \) to contract the domain.

Now, in the context of our problem, Cauchy Schwarz inequality provides

\[
\|h\|_{L^1(\partial \omega^*)} \leq |\partial \omega^*|^{1/2} \|h\|_{L^2(\partial \omega^*)} \leq |\partial \omega^*|^{1/2} \|h\|_{H^{1/2}(\partial \omega^*)}.
\]
so that our previous stability estimates (4.2) provides the existence of a non negative real η and of a constant C such that for any diffeomorphism $\Theta \in \mathfrak{X}$ with $\| \Theta - I \|_{C^{2,1}(\mathbb{R}^d)} < \eta$ and $|\Theta(\Omega)| = |\Omega|$, it holds

$$J(\omega) \geq J(\omega^*) + \frac{C}{4} \| Y_{\Theta} \cdot n \|_{H^{1/2}(\partial \omega^*)}^2 \geq J(\omega^*) + C \mathcal{L}^d(\omega^* \Delta \Theta(\omega^*))^2,$$

where Y_{Θ} is defined in subsection 2.2. We have shown the precise estimate:

Theorem 5.2. If ω^* is a critical shape for J where (4.1) holds, there exists $\eta > 0$ and $C > 0$ depending only on Ω and ω^* such that, for all $\Theta \in \mathfrak{X}$ with $\| \Theta - I \|_{C^{2,1}(\mathbb{R}^d)} < \eta$, $|\Theta(\omega^*)| = |\omega^*|$ and $\Theta \neq I$,

$$J(\Theta(\omega^*)) > J(\omega^*) + C \mathcal{L}^d(\omega^* \Delta \Theta(\omega^*))^2.$$

Let us make a final comment: this result can be understood as a quantitative estimate of the deviation from minimality for sets close to ω^* in a strong sense (here the $C^{2,\alpha}$ norm). Similar results have been introduced recently. The present work corresponds to the first step in extending to the drag functional ideas and result on isoperimetric problems, see [1]. In a second step, using additional regularity properties provided by the perimeter, Acerbi et al. manage to extend this result on smooth domains to less regular sets.

6 Conclusion

This paper is, in some sense, a generalization to a vectorial of some previous work (see [10, 9]) where the stability of critical shapes is investigated for the scalar case. Indeed, we here focused on the minimization problem of the energy dissipated by a Newtonian and incompressible fluid driven by the Stokes law. Then, we gave a sufficient condition for the shape Hessian to be coercive in a weaker norm than the differentiability norm. However, we showed that this coercivity is sufficient to prove that such a critical shape is a local minimizer. Finally, we obtained a lower bound of the variations of the drag in terms of the symmetric difference of the domain.

This paper may be extended to the case where the fluid motion is assumed to be governed by the (stationary) Navier-Stokes equations. The most difficult part in order to obtain analogous results seems to be the coercivity of the shape Hessian. Moreover, the present work can be adapted to other classical boundary conditions. Finally, it should be possible to adapt these results to unbounded domain. However, due to the approach using derivatives, removing the regularity assumptions on the boundary and the deformations seems out of reach without new ideas.

References

