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SOME ASPECTS OF FLUCTUATIONS OF RANDOM WALKS ON R

AND APPLICATIONS TO RANDOM WALKS ON R
+

WITH NON-ELASTIC REFLECTION AT 0

RIM ESSIFI, MARC PEIGNÉ, AND KILIAN RASCHEL

Abstract. In this article we refine well-known results concerning the fluctuations of
one-dimensional random walks. More precisely, if (Sn)n>0 is a random walk starting from
0 and r > 0, we obtain the precise asymptotic behavior as n → ∞ of P[τ>r = n, Sn ∈ K]

and P[τ>r > n, Sn ∈ K], where τ>r is the first time that the random walk reaches the
set ]r,∞[, and K is a compact set. Our assumptions on the jumps of the random walks
are optimal. Our results give an answer to a question of Lalley stated in [12], and are
applied to obtain the asymptotic behavior of the return probabilities for random walks
on R

+ with non-elastic reflection at 0.

1. Introduction

General context. An essential aspect of fluctuation theory of discrete time random walks
is the study of the two-dimensional renewal process formed by the successive maxima (or
minima) of the random walk (Sn)n>0 and the corresponding times; this process is called

the ascending (or descending) ladder process. It has been studied by many people, with
major contributions by Baxter [2], Spitzer [18], and others who introduced Wiener-Hopf
techniques and established several fundamental identities that relate the distributions of

the ascending and descending ladder processes to the law of the random walk.
Let (Sn)n>0 be a random walk defined on a probability space (Ω,T ,P) and starting from

0; in other words, S0 = 0 and Sn = Y1 + · · · + Yn for n > 1, where (Yi)i>1 is a sequence

of independent and identically distributed (i.i.d.) random variables. The strict ascending
ladder process (T ∗+

n ,Hn)n>0 is defined as follows:

(1.1) T ∗+
0 = 0, T ∗+

n+1 = inf{k > T ∗+
n : Sk > ST ∗+

n
}, ∀n > 0,

and

Hn = ST ∗+
n
, ∀n > 0.

There exists a large literature on this process, which typically focuses on so-called local
limit theorems, and in particular on the behavior of the probabilities P[T ∗+

1 > n] and

P[T ∗+
1 > n,H1 ∈ K], where K ⊂ R is some compact set. Roughly speaking, when the

variables (Yi)i>1 admit moments of order 2 and are centered, one has the asymptotic
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Figure 1. Definition of τ>r

behavior, as n→ ∞,

P[T ∗+
1 > n] =

a√
n
(1 + o(1)), P[T ∗+

1 > n,H1 ∈ K] =
b

n3/2
(1 + o(1)),

for some constants a, b > 0 to be specified (see for instance [13] and references therein).
These estimations are of great interest in several domains: one may cite for example

branching processes in random environment (see for instance [8, 9, 11]) and random walks
on non-unimodular groups (see [13, 14]); they also play a crucial role in several other less
linear contexts, as in the study of return probabilities for random walks with reflecting

zone on a half-line [12].
In [12], Lalley introduced for r > 0 the waiting time

τ>r = inf{n > 0 : Sn > r},
see Figure 1, and first looked at the behavior, as n → ∞, of the probability P[τ>r =

n, Sn ∈ K], where K is a compact set. Under some strong conditions (namely, if the
variables (Yi)i>1 are lattice, bounded from above and centered), Lalley proved that

(1.2) P[τ>r = n, Sn ∈ K] =
c

n3/2
(1 + o(1)), n→ ∞,

for some non-explicit constant c > 0, and wrote that “[he] do[es] not know the minimal
moment conditions necessary for [such an] estimate” (see Equation (3.18) and below

in [12, page 590]). His method is based on the Wiener-Hopf factorization and on a
classical theorem of Darboux which, in this case, relates the asymptotic behavior of certain
probabilities to the regularity of the underlying generating function in a neighborhood of

its radius of convergence. In [12], the fact that the jumps (Yi)i>1 are bounded from above
is crucial since it allows the author to verify that the generating function of the jumps
(Yi)i>1 is meromorphic in a neighborhood of its disc of convergence, with a non-essential

pole at 0.

Aim and methods of this article. In this article we obtain the asymptotic behavior of
the probability in (1.2), with besides an explicit formula for the constant c, under quite

general hypotheses (Theorem 7). This in particular answers to Lalley’s question. We will
also obtain (Theorem 10) the asymptotic behavior of

(1.3) P[τ>r > n,Sn ∈ K], n→ ∞.
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To prove Theorems 7 and 10, we shall adopt another strategy as that in [12], inspired by
the works of Iglehart [10], Le Page and Peigné [13] (Sections 2 and 3). We will also propose
an application of our main results to random walks on R

+ with non-elastic reflection at

0 (Section 4). Finally, we shall emphasize the connections of our results with the ones of
Denisov and Wachtel [3], where quite a new approach is developed in any dimension, to
find local limit theorems for random walks in cones (Section 5).

2. First results

2.1. Notations. We consider here a sequence (Yi)i>1 of i.i.d. R-valued random variables
with law µ, defined on a probability space (Ω,T ,P). For any n > 1, we set Tn =

σ(Y1, . . . , Yn). Let (Sn)n>0 be the corresponding random walk on R starting from 0, i.e.,
S0 = 0 and for n > 1, Sn = Y1 + · · · + Yn. In order to study the fluctuations of (Sn)n>0,
we introduce for r ∈ R the random variables τ>r, τ>r, τ6r and τ<r, defined by

τ>r := inf{n > 1 : Sn > r},
τ>r := inf{n > 1 : Sn > r},
τ6r := inf{n > 1 : Sn 6 r},
τ<r := inf{n > 1 : Sn < r}.

Throughout we shall use the convention inf{∅} = ∞. The latter variables are stopping
times with respect to the canonical filtration (Tn)n>1. When r = 0, in order to use standard
notations, we shall rename τ>0, τ>0, τ60 and τ<0 in τ+, τ∗+, τ− and τ∗−, respectively.
Asa R

− = R \ R∗+ (resp. R+ = R \ R∗−), there will be some duality connections between

τ− and τ∗+ (resp. τ+ and τ∗−).
We also introduce, as in (1.1), the sequence (T ∗+

n )n>0 of successive ascending ladder
epochs of the walk (Sn)n>0. One has T ∗+

1 = τ∗+. Further, setting τ∗+n+1 := T ∗+
n+1 − T ∗+

n for

any n > 0, one may write T ∗+
n = τ∗+1 + · · · + τ∗+n , where (τ∗+n )n>1 is a sequence of i.i.d.

random variables with the same law as τ∗+.b

2.2. Hypotheses. Throughout this manuscript, we shall assume that the law µ satisfies
one of the following moment conditions M:

M(k): E[|Y1|k] <∞;
M(exp): E[exp(γY1)] <∞, for all γ ∈ R;

M(exp−): E[exp(γY1)] <∞, for all γ ∈ R
−.

We shall also often suppose

C: E[Y1] = 0.

Under M(1) and C, the variables τ+, τ∗+, τ− and τ∗− are P-a.s. finite, see [7],c and we
denote by µ+ (resp. µ∗+, µ−, µ∗−) the law of the variable Sτ+ (resp. Sτ∗+, Sτ− and Sτ∗−).

aHere and throughout, we shall note R
+ = [0,∞[, R∗+ =]0,∞[, R− =]−∞, 0] and R

∗− =]−∞, 0[.
bSimilarly, we may also consider the sequences (T+

n )n>0, (T−

n )n>0 and (T ∗−

n )n>0 defined respectively
by T+

0 = T−

0 = T ∗−

0 = 0 and for n > 0, T+

n+1 = inf{k > T+
n : Sk > S

T+
n

}, T−

n+1 = inf{k > T−

n : Sk 6 S
T−

n

}
and T ∗−

n+1 = inf{k > T ∗−

n : Sk < S
T∗−

n

}.
cNotice that this property also holds for symmetric laws µ without any moment assumption.



4 RIM ESSIFI, MARC PEIGNÉ, AND KILIAN RASCHEL

We will also consider the two following couples of hypotheses AA:

AA(Z): the measure µ is adapted on Z (i.e., the group generated by the support Sµ of µ is
equal to Z) and aperiodic (i.e., the group generated by Sµ − Sµ is equal to Z);

AA(R): the measure µ is adapted on R (i.e., the closed group generated by the support Sµ
of µ is equal to R) and aperiodic (i.e., the closed group generated by Sµ − Sµ is
equal to R).

2.3. Classical results. Let us now recall the result below, which concerns the probability
(1.3) for r = 0.

Theorem 1 ([10, 13]). Assume that the hypotheses AA, C and M(2) hold. Then for any

continuous function φ with compact support on R, one hasd

lim
n→∞

n3/2E[τ∗+ > n;φ(Sn)] = a−(φ) :=

∫

R−

φ(t)a−(dt) :=
1

σ
√
2π

∫

R−

φ(t)λ− ∗ U−(dt),

where

• σ2 := E[Y 2
1 ];

• λ− is the counting measure on Z
− when AA(Z) holds (resp. the Lebesgue measure

on R
− when AA(R) holds);e

• U− is the σ-finite potential U− :=
∑

n>0(µ
−)∗n.

Since some arguments will be quite useful and used in the sequel, we give below a sketch
of the proof of Theorem 1, following [10, 13]. By a standard argument in measure theory
(see Theorem 2 in Chapter XIII on Laplace transforms in the book [7]), it is sufficient to

prove the above convergence for all functions φ of the form φ(t) = exp(αt), α > 0 (indeed,
notice that the support of the limit measure a−(dt) is included in R

−). We shall use the
same remark when proving Theorems 6 and 7.

Sketch of the proof of Theorem 1 in the case AA(Z). We shall use the following identity,

which is a consequence of the Wiener-Hopf factorization (see [18, P5 in page 181]):

(2.1) φα(s) :=
∑

n>0

snE[τ∗+ > n; eαSn ] = expBα(s), ∀s ∈ [0, 1[, ∀α > 0,

where

Bα(s) :=
∑

n>1

sn

n
E[Sn 6 0; eαSn ].

Further, by the classical local limit theorem on Z (this is here that we use M(2), see for

instance [18, P10 in page 79]), one gets

E[Sn 6 0; eαSn ] =
1

σ
√
2πn

1

1− e−α
(1 + o(1)), n→ ∞.

dBelow and throughout, for any bounded random variable Z : Ω → R and any event A ∈ T , one sets
E[A;Z] := E[Z1A].

eFor an upcoming use, we also introduce
• the counting measures λ∗−, λ+ and λ∗+ on Z

∗−, Z+ and Z
∗+, respectively;

• the Lebesgue measures λ∗−, λ+ and λ∗+ on R
∗−, R+ and R

∗+, respectively.
Notice that λ∗− = λ− and λ∗+ = λ+ when AA(R) holds, but we keep the two notations in order to unify
the statements under the two types of hypotheses AA.
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Accordingly, the sequence (n3/2E[τ∗+ > n; eαSn ])n>1 is bounded, thanks to Lemma
2 below (taken from [10, Lemma 2.1]), applied with bn := E[Sn 6 0; eαSn ]/n and
dn := E[τ∗+ > n; eαSn ].

Lemma 2 ([10]). Let
∑

n>0 dns
n = exp

∑
n>0 bns

n. If the sequence (n3/2bn)n>1 is bounded,

the same holds for (n3/2dn)n>1.

Differentiating the two members of (2.1) with respect to s, one gets

φ′α(s) =
∑

n>1

nsn−1
E[τ∗+ > n; eαSn ] = φα(s)

∑

n>1

sn−1
E[Sn 6 0; eαSn ].

We then make use of Lemma 3 (see [10, Lemma 2.2] for the original statement), applied

with cn := E[Sn 6 0; eαSn ] = nbn, dn := E[τ∗+ > n; eαSn ] and an := nE[τ∗+ > n; eαSn ].

Lemma 3 ([10]). Let (cn)n>0 and (dn)n>0 be sequences of non-negative real numbers such

that

(i) limn→∞
√
ncn = c > 0;

(ii)
∑

n>0 dn = D <∞;
(iii) (ndn)n>0 is bounded.

If an =
∑

06k6n−1 dkcn−k, then limn→∞
√
nan = cD.

This way, one reaches the conclusion that

lim
n→∞

n3/2E[τ∗+ > n; eαSn ] =
1

σ
√
2π

1

1− e−α

∑

n>0

E[τ∗+ > n; eαSn ].

To conclude, it remains to express differently the limit. First, the factor 1/(1 − e−α) is
equal to

∫
R
eαtλ−(dt). Further, since the vectors (Y1, . . . , Yn) and (Yn, . . . , Y1) have the

same law, one gets
∑

n>0

E[τ∗+ > n; eαSn ] =
∑

n>0

E[S1 6 0, S2 6 0, . . . , Sn 6 0; eαSn ]

=
∑

n>0

E[Sn 6 Sn−1, Sn 6 Sn−2, . . . , Sn 6 0; eαSn ]

=
∑

n>0

E[∃ℓ > 0 : T−
ℓ = n; eαSn ]

=
∑

ℓ>0

E[e
αS

T−

ℓ ] = U−(x 7→ eαx),

i.e.,
∑

n>0 E[τ
∗+ > n;Sn ∈ dx] = U−(dx), so that

1

σ
√
2π

1

1− e−α

∑

n>0

E[τ∗+ > n; eαSn ] =
1

σ
√
2π

∫

R−

eαtλ− ∗ U−(dt).

The proof is complete. �
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Remark 4. For similar reasons as in the proof of Theorem 1, one has
∑

n>0 E[τ
+ > n;Sn ∈ dx] = U∗−(dx) :=

∑
n>0(µ

∗−)∗n(dx),
∑

n>0 E[τ
∗− > n;Sn ∈ dx] = U+(dx) :=

∑
n>0(µ

+)∗n(dx),
∑

n>0 E[τ
− > n;Sn ∈ dx] = U∗+(dx) :=

∑
n>0(µ

∗+)∗n(dx),

as well as the weak convergences, as n→ ∞,

n3/2E[τ∗+ > n;Sn ∈ dx] −→ a−(dx) := (1/σ
√
2π)λ− ∗ U−,

n3/2E[τ+ > n;Sn ∈ dx] −→ a∗−(dx) := (1/σ
√
2π)λ∗− ∗ U∗−,

n3/2E[τ∗− > n;Sn ∈ dx] −→ a+(dx) := (1/σ
√
2π)λ+ ∗ U+,

n3/2E[τ− > n;Sn ∈ dx] −→ a∗+(dx) := (1/σ
√
2π)λ∗+ ∗ U∗+.

We conclude this part by finding the asymptotic behavior of P[τ∗+ > n]. Using the
well-known expansion

√
1− s = exp

(
1

2
ln(1− s)

)
= exp

(
−1

2

∑

n>1

sn

n

)

and setting α = 0 in (2.1), one gets that for s close to 1,

∑

n>0

snP[τ∗+ > n] = exp

(
∑

n>1

sn

n
P[Sn 6 0]

)
=

expκ√
1− s

(1 + o(1)),

where

(2.2) κ =
∑

n>1

1

n

(
P[Sn 6 0]− 1

2

)
.

Notice that the series in (2.2) is absolutely convergent, see [17, Theorem 3].f By a standard

Tauberian theorem, since the sequence (P[τ∗+ > n])n>0 is decreasing, one obtains (see [13])

(2.3) P[τ∗+ > n] =
expκ√
πn

(1 + o(1)), n→ ∞.

Note that the monotonicity of the sequence (P[τ∗+ > n])n>0 is crucial to replace the Cesàro

means convergence by the usual convergence.

2.4. Extensions. Equation (2.3) shows that the asymptotic behavior of P[τ∗+ > n] is in
1/
√
n as n→ ∞. As for the probability P[τ∗+ = n], we have the following result, which is

proved in [1, 5].

Proposition 5. Assume that the hypotheses AA, C and M(2) hold. Then the sequence

(n3/2P[τ∗+ = n])n>0 converges to some positive constant.

We now refine Proposition 5, by adding in the probability the information of the position
of the walk at time τ∗+. Using the same approach as for Theorem 1, we may obtain the

following theorem, which we did not find in the literature:

fThere also exists the following expression for κ: eκ = (
√
2/σ)E[Sτ∗+ ], see [18, P5 in Section 18].
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Theorem 6. Assume that the hypotheses AA, C and M(2) hold. Then for any continuous
function φ with compact support on R, one has

lim
n→∞

n3/2E[τ∗+ = n;φ(Sn)] = b∗+(φ) :=

∫

R+

φ(t)b∗+(dt) :=
1

σ
√
2π

∫

R+

φ(t)λ∗+ ∗ µ∗+(dt),

where λ∗+ is the counting measure on Z
∗+ when AA(Z) holds (resp. the Lebesgue measure

on R
∗+ when AA(R) holds).

Sketch of the proof of Theorem 6 in the case AA(Z). We shall use the following identity,
which as (2.1) is a consequence of the Wiener-Hopf factorization:

(2.4) ψα(s) :=
∑

n>0

snE[τ∗+ = n; e−αSn ] = 1− exp−B̃α(s), ∀s ∈ [0, 1[, ∀α > 0,

where

B̃α(s) :=
∑

n>1

sn

n
E[Sn > 0; e−αSn ].

Setting dn := E[τ∗+ = n; e−αSn ], the same argument as in the proof of Theorem 1 (via

Lemma 2) implies that the sequence (n3/2dn)n>1 is bounded (we notice that in Lemma 2,
the sequences (bn)n>0 and (dn)n>0 are not necessarily non-negative, so it can be applied

in the present situation).
Differentiating the two members of (2.4) with respect to s then yields

ψ′
α(s) =

∑

n>1

nsn−1
E[τ∗+ = n; e−αSn ] = (1− ψα(s))

∑

n>1

sn−1
E[Sn > 0; e−αSn ],

and Theorem 6 is thus a consequence of Lemma 3, applied with cn := E[Sn > 0; e−αSn ],
dn := 1{n=0} − E[τ∗+ = n; e−αSn ] and an := nE[τ∗+ = n; e−αSn ]. �

According to the previous proof, we also have, as n→ ∞, the weak convergences below:

n3/2E[τ∗+ = n;Sn ∈ dx] −→ b∗+(dx) := (1/σ
√
2π)λ∗+ ∗ µ∗+,

n3/2E[τ+ = n;Sn ∈ dx] −→ b+(dx) := (1/σ
√
2π)λ+ ∗ µ+,

n3/2E[τ∗− = n;Sn ∈ dx] −→ b∗−(dx) := (1/σ
√
2π)λ∗− ∗ µ∗−,

n3/2E[τ− = n;Sn ∈ dx] −→ b−(dx) := (1/σ
√
2π)λ− ∗ µ−.

3. Main results

In this section we are first interested in the expectation E[τ>r = n;φ(Sn)], for any fixed
value of r > 0. In Theorem 7 we find its asymptotic behavior as n→ ∞, for any continuous
function φ with compact support on R. Then in Proposition 9 we take φ identically equal

to 1, and we prove that the sequence (nP[τ>r = n])n>0 is bounded. We then consider
the expectation E[τ>r > n;φ(Sn)]. We first derive its asymptotic behavior as n → ∞,
in Theorem 10. Finally, in Proposition 11 we obtain the asymptotics of the probability

P[τ>r > n] for large values of n. The theorems stated in Section 3 concern the hitting time
τ>r; similar statements (obtained exactly along the same lines) exist for the hitting times
τ>r, τ<r and τ6r.
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Theorem 7. Assume that the hypotheses AA, C and M(2) hold. Then for any continuous
function φ with compact support on ]r,∞[, one has

lim
n→∞

n3/2E[τ>r = n;φ(Sn)] =

∫∫

∆r

φ(x+y)U∗+(dx)b∗+(dy)+

∫∫

∆r

φ(x+y)a∗+(dx)µ∗+(dy),

where ∆r := {(x, y) ∈ R
∗+ ×R

∗+ : 0 6 x 6 r, x+ y > r}.
Proof. Since φ has compact support in ]r,∞[, one has

E[τ>r = n;φ(Sn)] =
∑

06k6n

E[∃ℓ > 0, T ∗+
ℓ = k, Sk 6 r, n − k = τ∗+ℓ+1

, Sn > r;φ(Sn)]

=
∑

06k6n

∫∫

∆r

φ(x+ y)P[∃ℓ > 0, T ∗+
ℓ = k, Sk ∈ dx]×

×P[τ∗+ = n− k, Sn−k ∈ dy]

=
∑

06k6n

In,k(r, φ),

where we have set

(3.1) In,k(r, φ) :=

∫∫

∆r

φ(x+ y)P[τ− > k, Sk ∈ dx]P[τ∗+ = n− k, Sn−k ∈ dy].

In Equation (3.1) above, we have used the equality P[∃ℓ > 0, T ∗+
ℓ = k, Sk ∈ dx] = P[τ− >

k, Sk ∈ dx]. It follows by the same arguments as in the proof of Theorem 1 (below Lemma

3). To pursue the proof, we shall use the following elementary result (see [13, Lemma II.8]
for the original statement and its proof):

Lemma 8. Let (an)n>0 and (bn)n>0 be two sequences of non-negative real numbers such

that limn→∞ n3/2an = a ∈ R
∗+ and limn→∞ n3/2bn = b ∈ R

∗+. Then:

• there exists C > 0 such that, for any n > 1 and any 0 < i < n− j < n,

n3/2
∑

i+16k6n−j

akbn−k 6 C

(
1√
i
+

1√
j

)
;

• setting A :=
∑

n>0 an and B :=
∑

n>0 bn, one has

lim
n→∞

n3/2
n∑

k=0

akbn−k = aB + bA.

Since φ is non-negative with compact support in ]r,∞[, there exists a constant cφ > 0

such that φ(t) 6 cφe
−t, for all t > 0. This yields that for any 0 < i < n− j < n,

∑

i+16k6n−j

In,k(r, φ) 6 cφ
∑

i+16k6n−j

akbn−k,

with ak := E[τ− > k; e−Sk ] and bk := E[τ∗+ = k; e−Sk ]. With Lemma 8 we deduce that
there exists some constant C > 0 such that

∑

i+16k6n−j

In,k(r, φ) 6 C

(
1√
i
+

1√
j

)
.
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On the other hand, for any fixed k > 1 and x ∈ [0, r], one has by Theorem 6

lim
n→∞

n3/2
∫

{y>0}
φ(x+ y)P[τ∗+ = n− k, Sn−k ∈ dy] =

∫

{y>0}
φ(x+ y)b∗+(dy).

Further, for any k > 1, the function

x 7→ n3/2
∫

{y60}
φ(x+ y)P[τ∗+ = n− k, Sn−k ∈ dy]

is dominated on [0, r] by x 7→ cφ(supn>1 n
3/2

E[τ∗+ = n−k; e−Sn−k ])e−x, which is bounded
(by Theorem 6) and so integrable with respect to the measure P[τ− > k, Sk ∈ dx]. The

dominated convergence theorem thus yields

lim
n→∞

n3/2
∑

06k6i

In,k(r, φ) =
∑

06k6i

∫∫

∆r

φ(x+ y)P[τ− > k, Sk ∈ dx]b∗+(dy).

The same argument leads to

lim
n→∞

n3/2
∑

n−j6k6n

In,k(r, φ) =
∑

06k6j

∫∫

∆r

φ(x+ y)a∗+(dx)P[τ∗+ = k, Sk ∈ dy].

Letting i, j → ∞ and using the equalities
∑

k>0

E[τ− > k;Sk ∈ dx] = U∗+(dx),
∑

k>0

E[τ∗+ = k;Sk ∈ dy] = µ∗+(dy),

one concludes. �

Proposition 9. Assume that the hypotheses AA, C and M(2) hold. Then for any r ∈ R
+,

the sequence (nP[τ>r = n])n>0 is bounded.

Proof. By the proof of Theorem 7, one may decompose P[τ>r = n] as
∑

06k6n In,k(r, 1),
with In,k defined in (3.1). One easily obtains that

In,k(r, 1) 6 P[τ− > k, Sk ∈ [0, r]]P[τ∗+ = n− k],

∆r being defined as in Theorem 7. One concludes by applying Remark 4 (we obtain the

estimate 1/k3/2 for the first probability above), Proposition 9 (we deduce the estimate

1/(n − k)3/2 for the second probability) and Lemma 8. �

We now pass to the second part of Section 3, which is concerned with the expectation

E[τ>r > n;φ(Sn)].

Theorem 10. Assume that the hypotheses AA, C and M(2) hold. Then for any

continuous function φ with compact support on R, one has

lim
n→∞

n3/2E[τ>r > n;φ(Sn)] =

∫∫

Dr

φ(x+y)U∗+(dx)a−(dy)+

∫∫

Dr

φ(x+y)a∗+(dx)U−(dy),

where Dr := {(x, y) ∈ R
2 : 0 6 x 6 r, y 6 0} = [0, r]× R

−.
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We do not write the proof of Theorem 10 in full details, for the three following reasons.
First, it is similar to that of Theorem 7. We just emphasize the unique but crucial difference
in the decomposition of the expectation E[τ>r > n;φ(Sn)], namely:

(3.2)

E[τ>r > n;φ(Sn)] =
∑

06k6n

∫∫

Dr

φ(x+ y)P[τ− > k, Sk ∈ dx]P[τ∗+ > n− k, Sn−k ∈ dy].

The second reason is that Theorem 10 is equivalent to [13, Theorem II.7]. Indeed, the
event [τ>r > n] can be written as [Mn 6 r], where Mn = max(0, S1, . . . , Sn). Likewise,
Proposition 11 below on the asymptotics of P[τ>r > n] can be found in [13]. Finally,

Theorem 10 is also proved in the recent article [4], see in particular Proposition 11.

Proposition 11. Assume that the hypotheses AA, C and M(2) hold. One has

(3.3) P[τ>r > n] =
expκ√
πn

U∗+([0, r])(1 + o(1)), n→ ∞.

Proof. By (3.2), the probability P[τ>r > n] may be decomposed as
∑

06k6n Jn,k(r), with

Jn,k(r) =

∫∫

Dr

P[τ− > k, Sk ∈ dx]P[τ∗+ > n− k, Sn−k ∈ dy]

= P[τ− > k, Sk ∈ [0, r]]P[τ∗+ > n− k],

where the domain Dr is defined in Theorem 10. One concludes, using the following three
facts. Firstly, by Remark 4, one has n3/2P[τ− > n,Sn ∈ [0, r]] → a∗+([0, r]) as n→ ∞.

Secondly, by Equation (2.3), one has
√
nP[τ∗+ > n] → eκ/

√
π as n→ ∞. Thirdly, one has∑

n>0 P[τ
− > n,Sn ∈ [0, r]] = U∗+([0, r]), also thanks to Remark 4. �

Remark 12. Theorem 7 (for which r > 0) formally implies Theorem 6 (r = 0). To see this,
it is enough to check that for r = 0, the constant in the asymptotics of E[τ>r = n;φ(Sn)]

coincides with the one in the asymptotics of E[τ∗+ = n;φ(Sn)]. To that purpose, we first
notice that for r = 0, the domain ∆r degenerates in {0} × R

∗+. Furthermore, U∗+(0) = 1
and a∗+(0) = 0. Accordingly,
∫∫

∆r

φ(x+ y)U∗+(dx)a−(dy) +

∫∫

∆r

φ(x+ y)a∗+(dx)U−(dy) =

∫

R∗+

φ(y)b∗+(dy).

In the right-hand side of the equation above, R
∗+ can be replaced by R

+, as b∗+(0) = 0.
We then obtain the right constant in Theorem 6. Likewise, we could see that Theorem 10
formally implies Theorem 1.

4. Applications to random walks on R
+ with non-elastic reflection at 0

In this section we consider a sequence (Yi)i>1 of i.i.d. random variables defined on a
probability space (Ω,T ,P), and we define the random walk (Xn)n>0 on R

+ with non-

elastic reflection at 0 (or absorbed at 0) recursively, as follows:

Xn+1 := max(Xn + Yn+1, 0), ∀n > 0,
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where X0 is a given R
+-valued random variable. The process (Xn)n>0 is a Markov chain

on R
+. We obviously have that for all n > 0, Xn+1 = fYn+1

(Xn), with

fy(x) := max(x+ y, 0), ∀x, y ∈ R.

The chain (Xn)n>0 is thus a random dynamical system; we refer the reader to [15, 16]

for precise notions and for a complete description of recurrence properties of such Markov
processes.

The profound difference between this chain and the classical random walk (Sn)n>0 on Z

or R is due to the reflection at 0. We therefore introduce the successive absorption times
(aℓ)ℓ>0:

a0 := 0,

a = a1 := inf{n > 0 : X0 + Y1 + · · ·+ Yn < 0},
aℓ := inf{n > aℓ−1 : Yaℓ−1+1 + · · · + Yaℓ−1+n < 0}, ∀ℓ > 2.

Let us assume the first moment condition M(1) (i.e., that E[|Y1|] < ∞). If in addition
E[Y1] > 0, the absorption times are not P-a.s. finite, and in this case, the chain is transient.
Indeed, one has Xn > X0+Y1+· · ·+Yn, with Y1+· · ·+Yn → ∞, P-a.s. If E[Y1] 6 0, all the
aℓ, ℓ > 1, are P-a.s. finite, and the equality Xaℓ

1{aℓ<∞} = 0, P-a.s., readily implies that

(Xn)n>0 visits 0 infinitely often. On the event [X0 = 0], the first return time of (Xn)n>0

at the origin equals τ−. In the subcase E[Y1] = 0, it has infinite expectation, and (Xn)n>0

is null recurrent. If E[Y1] < 0, one has E[τ−] < ∞, and the chain (Xn)n>0 is positive

recurrent. In particular, when E[Y1] > 0, for any x > 0 and any continuous function φ
with compact support included in R

+, one has

(4.1) lim
n→∞

E[φ(Xn)|X0 = x] = 0.

We shall here focus our attention on the speed of convergence in (4.1), by proving the

following result:

Theorem 13. Assume that the hypotheses AA, C and M(2) are satisfied. Then, for any
x > 0 and any continuous function φ with compact support on R

+, one has

lim
n→∞

√
nE[φ(Xn)|X0 = x] =

κ̃√
π

∫

R+

φ(t)U+(dt),

whereg

(4.2) κ̃ := exp

(
∑

n>1

P[Sn < 0]− 1/2

n

)
.

If E[Y1] > 0 and if furthermore AA and M(exp−) hold,h there exists ρ = ρ(µ) ∈]0, 1[
and a positive constant C(φ) (which can be computed explicitly) such that

lim
n→∞

n3/2

ρn
E[φ(Xn)|X0 = x] = C(φ).

gWe refer to Footnote f for another expression of κ̃.
hIn fact, it would be sufficient to assume that E[eγY1 ] < ∞ for γ belonging to some interval [a, 0], if

[a, 0] is such that the convex function γ 7→ E[eγY1 ] reaches its minimum at a point γ0 ∈]a, 0[.
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Proof. We first assume that X0 = 0. On the event [T ∗−
ℓ 6 n < T ∗−

ℓ+1
], one has that

Xn = Sn − ST ∗−

ℓ
. It readily follows that

E[φ(Xn) |X0 = 0]

=
∑

ℓ>0

E[aℓ 6 n < aℓ+1;φ(Xn)|X0 = 0]

=
∑

ℓ>0

E[T ∗−
ℓ 6 n < T ∗−

ℓ+1
;φ(Xn)|X0 = 0]

=
∑

ℓ>0

E[T ∗−
ℓ 6 n < T ∗−

ℓ+1
;φ(Sn − ST ∗−

ℓ
)]

=
∑

ℓ>0

∑

06k6n

E[T ∗−
ℓ = k, Yk+1 > 0, . . . , Yk+1 + · · · + Yn > 0;φ(Yk+1 + · · ·+ Yn)]

=
∑

06k6n


∑

ℓ>0

P[T ∗−
ℓ = k]


E[Yk+1 > 0, . . . , Yk+1 + · · · + Yn > 0;φ(Yk+1 + · · · + Yn)].

Using the fact that for any k > 0, the events [T ∗−
ℓ = k], ℓ > 0, are pairwise disjoint

together with the fact that L(Y1, . . . , Yn) = L(Yn, . . . , Y1), one gets
∑

ℓ>0

P[T ∗−
ℓ = k] = P[∃ℓ > 0, T ∗−

ℓ = k] = P[Sk < 0, Sk < S1, . . . , Sk < Sk−1] = P[τ+ > k],

which in turn implies that

(4.3) E[φ(Xn)|X0 = 0] =
∑

06k6n

P[τ+ > k]E[τ∗− > n− k;φ(Sn−k)].

The situation is more complicated when the starting point is x > 0. In that case, one
has the decomposition

(4.4) E[φ(Xn)|X0 = x] = E1(x, n) + E2(x, n),

with E1(x, n) := E[a > n;φ(Xn)|X0 = x] and E2(x, n) := E[a 6 n;φ(Xn)|X0 = x]. From

the definition of a, one gets E1(x, n) = E[τ<−x > n;φ(x+ Sn)]. Similarly, by the Markov
property and the fact that Xa = 0, P-a.s., one may write

E2(x, n) =
∑

06ℓ6n

P[τ<−x = ℓ]E[φ(Xn−ℓ)|X0 = 0].

The centered case. We first assume that hypotheses AA and M(2) are satisfied and

that the (Yi)i>1 are centered (hypothesis C). In this case, by fluctuation theory of centered
random walks, one gets P[aℓ <∞] = 1 for any ℓ > 0 and any initial distribution L(X0).

We first consider the case when X0 = 0 and we use the identity (4.3). By [13, Theorem

II.2] (see also how (2.3) is obtained), one gets

lim
n→∞

√
nP[τ+ > n] =

κ̃√
π
,

with κ̃ defined in (4.2). On the other hand, by Remark 4 in Section 2 we know that

lim
n→∞

n3/2E[τ∗− > n;φ(Sn)] = a+(φ).
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We conclude, setting cn := P[τ+ > n, dn := E[τ∗− > n;φ(Sn)], thus c := κ̃/
√
π and

D :=
∑

n>0 E[τ
∗− > n;φ(Sn)] = U+(φ), in Lemma 3.

In the general case (when X0 = x), we use identity (4.4). By the results of Section

3 (Theorem 10 with τ<−x instead of τ>r), one gets E1(x, n) = O(n−3/2).i On the other

hand, by the Markov property, since Xa = 0, P-a.s., one has

E2(x, n) =
∑

06k6n

E[a = k;φ(Xn)|X0 = x]

=
∑

06k6n

P[a = k|X0 = x]E[φ(Xn−k)|X0 = 0]

=
∑

06k6n

P[τ<−x = k]E[φ(Xn−k)|X0 = 0].

Recall that limn→∞
√
nE[φ(Xn)|X0 = 0] = (κ̃/

√
π)U+(φ); on the other hand, it follows

from Proposition 9 (with τ<−x instead of τ>r) that (nP[τ<−x = n])n>0 is bounded.
Furthermore,

∑
n>1 P[τ

<−x = n] = P[τ<−x < ∞] = 1. One may thus apply Lemma
3, which yields

lim
n→∞

√
nE[φ(Xn−k)|X0 = x] = lim

n→∞

√
nE2(x, n) =

κ̃√
π
U+(φ).

The non-centered case. Hereafter, we assume that hypotheses M(1), M(exp−) and
AA hold, and that in addition E[Y1] > 0. We use the standard relativisation procedure

that we now recall: the function

µ̂(γ) := E[eγY1 ]

is well defined on R
−, tends to ∞ as γ → −∞, and has derivative E[Y1] > 0 at 0. It thus

achieves its minimum at a point γ0 < 0, and we have ρ := µ̂(γ0) ∈]0, 1[. The measure

µ̃(dx) := (1/ρ)eγ0xµ(dx)

is a probability on R. Furthermore, if (Ỹi)i>1 is a sequence of i.i.d. random variables with

law µ̃ and (S̃n)n>1 is the corresponding random walk on R starting from 0, one gets

E[ϕ(Y1, . . . , Yn)] = ρnE[ϕ(Ỹ1, . . . , Ỹn)e
−γ0S̃n ]

for any n > 1 and any bounded test Borel function ϕ : Rn → R. Denoting by τ̃+ and τ̃∗−

the first entrance times of (S̃n)n>1 in R
+ and R

∗−, respectively, we may thus write (4.3)
as

E[φ(Xn)|X0 = 0] = ρn
∑

06k6n

E[τ̃+ > k; e−γ0S̃k ]E[τ̃∗− > n− k;φ(S̃n−k)e
−γ0S̃n−k ],

and by Lemma 8 the sequence ((n3/2/ρn)E[φ(Xn)|X0 = x])n>0 converges to some constant

C(φ) > 0.

iNotice that in the preceding formula, O(n−3/2) depends on x.
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Following the same way, for any x > 0 one can decompose as above E[φ(Xn)|X0 = x]
as E1(x, n) + E2(x, n), with

E1(x, n) = ρnE[τ̃<−x > n;φ(S̃n)e
−γ0S̃n−k ],

E2(x, n) =
∑

06k6n

ρkE[τ̃<−x = k; e−γ0S̃k ]E[φ(Xn)|X0 = 0].

One concludes using Section 3 (Theorem 7 with τ<−x instead of τ>r) for the behavior of

the sequence (E[τ̃<−x = n; e−γ0S̃n ])n>0 and the previous estimation for the behavior of
(E[φ(Xn)|X0 = 0])n>0. �

5. Local limit theorems and links with results by Denisov and Wachtel

Hereafter, we shall assume that AA(Z) holds; in particular, the random walk (Sn)n>0

is Z-valued. Taking φ(Sn) = 1{Sn=i}, Theorem 10 immediately leads to:

Corollary 14. Assume that the hypotheses AA(Z), C and M(2) hold. Then for i 6 r,

P[τ>r > n,Sn = i] =
Z(r, i)

n3/2
(1 + o(1)), n→ ∞,

where we have set

(5.1) Z(r, i) =
∑

max{i,0}6k6r

[a−(i− k)U∗+(k) + U−(i− k)a∗+(k)].

It is worth noting that the definition of a− implies that for y ∈ Z
∗+, a−(y) = 0, and for

y ∈ Z
−,

a−(y) =
1

σ
√
2π

∑

n>0

E[τ∗+ > n;Sn ∈ [y, 0]].

Likewise, for y ∈ Z
−, a∗+(y) = 0, and for y ∈ Z

∗+,

a∗+(y) =
1

σ
√
2π

∑

n>0

E[τ− > n;Sn ∈]0, y]].

Remark 15. Using these facts and similar remarks for the potentials U∗+ and U−, we
obtain that the quantity (5.1) can also be written as a sum of two convolution terms:

Z(r, i) =
∑

−∞<k<r

[a−(i− k)U∗+(k) + U−(i− k)a∗+(k)](5.2)

=
∑

−∞<k<∞

[a−(i− k)U∗+(k)1{k6r} + U−(i− k)a∗+(k)1{k6r}].(5.3)

In the remaining of this section we compare the local limit theorem of Corollary 14
with the one in [3]. All results taken from [3] make the assumptions that the (Yi)i>1 have

moments of order 2 + ǫ, with ǫ > 0. To state the local limit theorem [3, Theorem 7], we
need to introduce the function (see [3, Section 2.4] for more details)

(5.4) V (x) := −E[Sτ6−x ] = −E[Sτ<−x+1].
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This function is positive on R
+ and is harmonic for the random walk (Sn)n>0 killed when

reaching R
−; it means that for x > 0,

E[V (x+ Y1); τ
<−x > 1] = V (x).

Define V ′ as the harmonic function for the random walk with increments (−Yi)i>1 with
the same construction as (5.4). We have the following result:

Theorem 16 ([3]). Assume that the hypotheses AA(Z), C and M(2 + ǫ) hold. Then for
i 6 r,

P[τ>r > n,Sn = i] =
1

σ

√
2

π

V ′((r + 1)/σ)V ((r + 1− i)/σ)

n3/2
(1 + o(1)), n→ ∞.

Proof. Theorem 7 in [3] states that if (S̃n)n>0 is a random walk on a lattice hZ starting

from 0 and with increments (Ỹi)i>0 having a variance equal to 1, the following local limit

theorem holds:

P[x+ S̃n = y, τ6−x > n] = h

√
2

π

V (x)V ′(y)

n3/2
(1 + o(1)), n→ ∞.

Applying this result to the random walk (S̃n)n>0 := (−Sn/σ)n>0, and letting x := (r+1)/σ
and y := (r + 1− i)/σ, we obtain Theorem 16. �

By Corollary 14 and Theorem 16, we must have

(5.5) Z(r, i) =
1

σ

√
2

π
V ′((r + 1)/σ)V ((r + 1− i)/σ).

However:

Question 1. It is an open problem to show by a direct computation that (5.5) holds.

To conclude Section 5, we prove (5.5) for the simple random walk, with probabilities of
transition P[Yi = −1] = P[Yi = 1] = p and P[Yi = 0] = 1 − 2p. In this case the harmonic

functions have the simple form V (x) = V ′(x) = x, and obviously σ =
√
2p. We deduce

that the constant in Theorem 16 is

(5.6)
(r + 1)(r + 1− i)

2p3/2
√
π

.

To compute Z(r, i), we start from the formulation (5.1), where we assume that i > 0 (the
computation for i < 0 would be similar). We recall that for the simple random walk one
has U∗+(k) = 1{k>0} and U−(k) = 1{k60}/p. Then for k 6 0, a−(k) = (|k| + 1)/(pσ

√
2π)

and for k > 0, a∗+(k) = k/(σ
√
2π). We deduce that

Z(r, i) =
1

pσ
√
2π

∑

i6k6r

[(k − i+ 1) + k].

It is then an easy exercise to show that Z(r, i) equals (5.6).
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