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Abstract

We consider a variant of the Bin Packing Problem dealing with frag-

mentable items. Given a fixed number of bins, the objective is to put all

the items into the bins by splitting them in a minimum number of frag-

ments. This problem is useful for modeling splittable resource allocation.

In this paper we introduce the problem and its complexity then we present

a 6

5
-approximation algorithm for a special case in which all bins have the

same capacities.

1 Introduction

The bin packing problem is a widely studied problem. In its standard form,
many results have been proposed (see for instance [3], [8], [10]) as well as on
approximation algorithms for this problem [1], [11]. A variant of this problem
has been proposed to model a problem of VLSI Circuit design [2]. In this variant,
it is allowed to split an item into two or more fragments. Each fragment needs
an additional space to be packed and the objective is to minimize the number of
bins used. In [12], the application is a scheduling problem in CATV (Community
Antenna TeleVision) networks. Again, it is possible to fragment items and two
variants are considered. In the first one, as in [2], overhead units are added to
the size of each fragment. The second concerns the bin packing problems where
a cost function has to be minimized (the processing time or the reassembly delay
in their scheduling application). Each fragmentation induces an extra cost in
this case.

In this paper, we study a new variant in which the number of bins is fixed
and items are fragmentable but without additional space. The goal is there to
put the items into the bins by splitting them in a minimum number of fragments.
This variant is usefull to modelize splittable resource allocation such as the two
following applications.



The first application deals with settling accounts. A group of friends goes in
holidays. Common charges, such as food, locations ... are payed by some people
of the group and recorded in a list. At the end of the holidays the friends settle
accounts. Some of them have payed more and need to be refunded by those
who have payed less. Obviously, they would like to make a minimum of money
transferts. In such an application, a bin corresponds a member of the group
who has to be refunded while an item is a member who has to pay. The total
size of items is equal to the total space of bins. Finally, each money transfert
(a cheque for instance) corresponds to one fragment.

The second application is the wavelength assignment. In optical networks
using POADM (Packet Optical Add/Drop Multiplexer) technology [5], [4], a
node is able to send trafic on any wavelength but it could read trafic on a
limited number of wavelengths. The least wavelengths are read, the least energy
is consumed. The problem is to assign the trafic sent by node to wavelengths in a
way which allows a receiver node to read a minimum number of wavelengths. As
it can be seen on Fig. 2, this application also corresponds to a bin packing with
fragmentable items. The items are the transmitting nodes with the quantity of
trafic they have to send while the bins are the wavelengths. Here, the total size
of the items could differ from the total space of the bins but, on another hand,
all the bins have the same capacity that was not the case in the first application.
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Figure 1: Four nodes send different amount of traffic to four receiver nodes.
Traffic sent from node S4 to R4 is split on two wavelengths. R1, R2 and R3 read
one wavelength but R4 have to read two wavelengths. By switching the trafic
from S2 on the first wavelength, we can assign all trafic from R4 to the second
wavelength. Then R4 reads only one wavelength and saves power.

A related problem can be found in wireless networks but the problem is
studied in two dimensions [7]. Due to its complexity , it has been solved us-
ing simple heuristic algorithms without performance guarantee. To the best of
our knowledge no other work deals with this variant of the bin packing problem.

The remainder of this paper is organized as follows: Section 2 describes the
problem, proves its complexity and presents some general properties; Section 3
describes algorithms and particulary a 6

5
-approximation. Finally, Section 4 con-
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cludes this paper by summarizing its main achievements and discussing further
work.

2 Bin Packing with Fragmentable Items

2.1 Presentation and modelisation of the problem

The Fragmentable Item Bin Packing Problem, FIBP, is a bin packing problem
in which each item e is allowed to be splitted into multiple smaller items, called
fragments, whose the sum of sizes is equal to the size of e. An uncut item is
also be considered as a fragment. Let us mention that, in the paper, we will say
either that an item is fragmented or that it is cut.

Let us consider the following notations:

• We have N items, the ith (i ∈ [1..N ]) of these items has a size si.

• We have M bins, the jth (j ∈ [1..M ]) of these bins has a capacity cj . If
the capacities of all the bins are equal, the unique capacity is denoted as
C.

Moreover, we consider that the total size of the items is lower than the total
capacity of the bins:
∑N

i=1
si ≤

∑M

j=1
cj (or M.C)

This means that there is capacity enough for all the items into the bins. The
difficulty is just to minimize the number of fragments when placing these items
into the bins.

In order to give a clear formulation of the problem, we propose a possible
mathematical model under the form of a Linear Program:

Minimize (
∑N

i=1

∑M

j=1
yij) (1)

so that :
∑M

j=1
xij = si ∀i ∈ [1..N ] (2)

∑N

i=1
xij ≤ cj ∀j ∈ [1..M ] (3)

xij

si
≤ yij ∀i ∈ [1..N ], ∀j ∈ [1..M ] (4)

xij ∈ N, yij ∈ {0, 1} ∀i ∈ [1..N ], ∀j ∈ [1..M ] (5)

The variable xij represents the size of the fragment of the item i put in the
bin j. We consider this variable as integer (included between 0 and si) (see con-
straints (5)). Constraints (2) mean that the sum of the sizes of the fragments of
any item i must be equal to si: the item i must be entirely put in the different
bins.
The meaning of constraints (3) is that the sum of the sizes of the fragments put
in any bin j must not exceed the capacity cj of this bin.

As soon as a part of the item i is present in the bin j (even a very small
part), yij is equal to 1. Otherwise yij is equal to 0. So, yij is a bivalent variable,
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equal to 0 or 1 (see constraints (5)) that detects the presence of item i in bin
j. Constraints (4) force the variable yij to be equal to 1 as soon as the variable
xij is strictly greater than 0.
The sum of all the variables yij corresponds to the total number of fragments
of items. It is this quantity that we want to minimize (function (1)).

2.2 Complexity

Let us now present the problem FIBP under the following decision form : given
a set of M bins of capacity cj ∈ N

+, N items of size si ∈ N
+ (with

∑N

i=1
si ≤

∑M

j=1
cj) and an integer K ≥ N , does-it exist a packing of the N items into the

M bins such that the number of fragments is less than K?

Theorem 1. FIBP is strongly NP-complete.

Proof. Clearly, FIBP belongs to NP. Moreover the most classical version of the
bin packing problem is a sub problem of FIBP in which all bins have the same
size and maximum number of fragment allowed is K = N (no fragmentation).
The bin packing problem is strongly NP-complete [6], so FIBP is strongly NP-
complete.

Min-FIBP, the minimization problem associated to FIBP consists in min-
imizing the total number of fragments.

2.3 Some properties

We now present different easy but interesting properties on optimal solutions.
We begin with properties true for any instances and we will pursue with prop-
erties only true for instances with identical bins.

Property 1. The value of the optimal solution is at most equal to N +M − 1
(with M the number of bins and N the number of items).

Proof. An obvious heuristic consists in sequentially placing the items in any
order into the bins also taken in any order. If the current item cannot be entirely
put in the current bin, it is cut in two fragments, the first one to complete the
current bin and the second starts the next bin. This heuristic provides a solution
(and thus an upper bound) where there are at most M − 1 cuts. We then have
at most N +M − 1 fragments.

Property 2. For some instances, this upper value is reached. The optimal
solution is sometimes equal to N +M − 1.

Proof. Let us consider the following instance:

• We have M identical bins of capacity C = M + 1.

• We have M + 1 identical items of size s = M .
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There is no way to put a subset of entire items in k bins with k < M . With
the exception of the last one, each time a new bin is filled, at least one cut has
to be made. The optimal solution is equal to N +M − 1. An example of such
an instance is given in Figure 2.

Figure 2: On the right an instance (three bins and four items), on the right an
optimal solution with 2 cuts.

Property 3. It is always possible to consider that the sum of the sizes of the
items is equal to the sum of the capacities of the bins.

Proof. It has been said in the description of the problem that the total size of
the items is considered lower than the total capacity of the bins. If the total size
of the items is strictly lower than the total capacity of the bins, it is possible
to add (

∑M

j=1
cj −

∑N

i=1
si) items of size 1 corresponding to holes. Thus, we

obtain an equivalent problem with more items but with the equality between
total sizes of items and bins.

From now on, we model a bin of capacity C as a linear bin with elementary
parts numered from 1 to C. With such a graduation, we can define a part of a
bin as an interval [a, b] of size b− a+ 1.

Property 4. If the size of an item i is equal to the capacity of a bin j (si = cj),
there is at least one optimal solution in which this item i is entirely placed in
this bin j. In such a case, it is possible to reduce the problem by deleting this
item and this bin. The reduced problem contains N − 1 items and M − 1 bins.

Proof. Assume an optimal configuration with item i splitted in k bins with one
fragment per bin of respective sizes f1, ..., fk. First, cut items in bin j in k
contiguous parts [1, f1], [f1 + 1, f1 + f2], ..., [fk−1 + 1, fk]. Each part has the
size of one fragment of item i. In the worst case, this step adds k − 1 cuts to
the solution. Second, each part of bin j is exchanged with the corresponding
fragment of item i of same size. This step groups all the fragments of item i
in bin j and withdraws k − 1 fragments. Finally, the number of fragments is
unchanged and item i completly fills bin j.

We have now properties that are true when all the bins have the same ca-
pacity but that can be false when it is not the case.

We first define a basic fragment-exchange operation as follows:
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• Let us assume that an item i has a fragment of size f1 in bin j and a
fragment of size f2 in bin k and that the capacity of bin j is greater than
the total size of these two fragments: cj ≥ f1 + f2.

• Reorganise bin j to have the fragment of size f1 in position [1, f1] and
exchange part [f1 + 1, f1 + f2] of bin j with the fragment of size f2 in bin
k.

• Let us remark that this fragment-exchange operation may add a new cut
at position f1 + f2 but, on another hand, the concatenation of the two
fragments of item i in bin j reduces by 1 the number of cuts.

Property 5. In the case where all the bins have the same capacity C, if the
sum of the sizes of two items k and l is equal to C, there is at least one optimal
solution in which these items k and l are placed in the same bin. In such a case,
it is possible to reduce the problem by deleting these two items and a bin. The
reduced problem contains N − 2 items and M − 1 bins.

Proof. Assume an optimal configuration. Choose a bin i with one fragment of
item k. Make a fragment-exchange operation for each other fragment of item
k. At the end of these operations, the configuration is still optimal and item k
is completly in bin i in position [1, sk]. Assume that item l does not have any
fragment in bin i. Choose a fragment of item l, let say of size f and exchange
this fragment with part [sk + 1, sk + f ]. This operation could add one cut.
Make a fragment-exchange operation for each other fragment of item l except
one. These operations do not change the number of cuts. Finally for the last
fragment, the fragment-exchange operation reduces the number of cuts by one.
At the end the number of cuts is unchanged and the two items k and l completly
fill the bin. We can note that, if item l has a fragment in bin i at the beginning,
the construction reduces by one the number of cuts. It is not possible since the
original configuration is optimal.

Remark that this property is true only if the capacities of all the bins are
the same. Let us consider for example an instance where we have six items
of respective size 4, 2, 3, 3, 3, 3 and three bins of respective capacity 6, 5, 7.
The sum of the sizes of the two first items is equal to the capacity of the first
bin (4+2 = 6) but if we place these two items in this bin we have a solution
where at least one item of size 3 is cut, while the optimal solution has no cut
(3 + 3, 2 + 3, 4 + 3).

Property 6. In the case where all the bins have the same capacity C, if an
item i has a size greater than C, there is at least one optimal solution in which
this item i completely fills ⌊ si

C
⌋ bins. The reduced problem contains N or N − 1

(if the previous fraction is integer) items and (M−⌊ si
C
⌋) bins. By repeating this

operation on all the items whose size is greater than C, we obtain an equivalent
problem in which the sizes of the items are all strictly lower than C.

Proof. Choose a bin j with a fragment of item i. Apply the fragment-exchange
operation on other fragments of item i until no more fragment can be completly

6



exchanged in bin j (the remaining part in bin j that is not filled with item i
has a size lower than the size of any fragment of item i in other bins) . Now, in
bin j let f i be the size of this remaining part not filled with fragment of item i.
Assume we have a fragment of object i in bin k of size f with f > f i. Cut the
fragment in k in two sub-fragments, with one of size f i and make an exchange of
this sub-fragment with the fragments not belonging to i in j. This exchange do
not change the number of cuts and we have bin j entirely filled with a fragment
of i. This process can be repeated on ⌊ si

C
⌋ − 1 other bins.

Property 7. Even in the case where all the bins have the same capacity C, if
the sum of the sizes of three items j, k and l is equal to this capacity C, it could
happen that there is no optimal solution where these three items are both placed
in the same bin.

Proof. Let us consider the following instance:

• we have four bins of capacity 7,

• we have ten items, one of size 5, two of size 1 and seven of size 3.

The solution where the item of size 5 and the two items of size 1 are placed
in the same bin gives 12 fragments because two cuts are needed for the seven
items of size 3 in the three remaining bins. The optimal solution is composed
of 11 fragments with only one cut: two bins with items 3+3+1 and one cut for
the remaining items in the two last bins.

Property 8. If all the items are of size less than C, any solution is equivalent
to a solution where:

• each item is completly in one bin or is cut in two fragments in two con-
secutive bins (j and j + 1),

• for any couple of consecutive bins (j, j+1), there is at most one item with
a fragment in j and the other one in j + 1.

Proof. First, from property 6, we can consider that, after reduction, all the
items are of size less than C. We start from bin 1 and choose any item k with
a fragment in bin 1. Then, we apply fragment-exchange operations until item
k is completly in bin 1. We keep on choosing items with a fragment in bin 1
and apply fragment-exchange operations until items are completly in bin 1 or
until bin 1 is full. The last item l treated by this process may be completly in
bin 1. In this case, the process is repeated with bin 2. In the other case where
the last object l is just partially in bin 1, we start by renumbering bins in such
a way that a fragment of l is in bin 2 (remember all the bins are identical of
capacity C) and apply fragment-exchange operations to put all the remaining
fragments of item l in bin 2. At this step, bin 1 is filled with complete objects
except the item l that is shared between bin 1 and bin 2. The property is thus
proved for all the items in bin 1 and for the couple of bins (1, 2). We have just
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to repeatedly apply the same procedure on the other bins starting from bin 2
to complete the property.

Based on the above property, we have a friendly representation of a solution
as depicted in figure 3.

3 Approximation algorithms

3.1 Even the simplest algorithm provides an approxima-

tion guarantee

We present here a first algorithm, probably the simplest. It does not optimize
the placement of the items in the bin but we will show that it leads to a first
approximation ratio. This algorithm works with any instance with the only
restriction that the number of items is greater than the number of bins. This is
the case when the sizes of all the items are smaller than the capacity of bins.

The algorithm, denoted by A0 is the following. Fill the bins with the items
chosen in an arbitrary order. If an item is larger than the remaining space in
the current bin, cut the item in two fragments. Complete the current bin with
the first fragment and start a new bin with the second one.

In the worst case, this algorithm creates M − 1 cuts (with M the number
of bins) even if a solution with no cut exists. We illustrate the algorithm in
Figure 3.

9 items

5 bins cuts

Figure 3: Illustration of the simplest algorithm with 9 items and 5 bins. It
places the items in an arbitrary order and cuts them if needed. In that case, it
creates 4 cuts.

Property 9. There exists a 2−approximation algorithm for Min-FIBP re-
stricted to instances with more items than bins.

Proof. Consider an instance of the problem with N items and M bins. In
the worst case, the simple algorithm described above produces a solution of
N +M − 1 fragments whereas the optimal solution has no cut, this means N
fragments. The approximation ratio is

ρ0 =
N +M − 1

N
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Since the number of items is larger than the number of bins, N ≥ M ,

ρ0 ≤
2N − 1

N
< 2

This means that the problem is approximable and that any algorithm with
an approximation ratio greater than 2 is useless. As shown on Figure 4, this is
a tight bound.

m+1 items
m-1 cuts

2m fragments

m+1 items
0 cut

m+1 fragments

m bins 1 2 3 m

Figure 4: Two solutions for the same instance. By placing the items arbitrary,
the simple algorithm could produce the first solution with M-1 cuts whereas the
best solution has 0 cut. In such a case, the approximation ratio could be as
close to 2 as desired.

3.2 Perfect fitting objects

In the example of Figure 4 the previous algorithm is particularly not efficient
because we know from property 4 that if an object has exactly the size of a bin,
it should be put alone in this bin and this simple property is not used. We build
a second algorithm taken into account this property. First place all the perfect
fitting objects in bins then use algorithm A0 to place the remaining objects.
This algorithm is denoted by A1. A1 is at least as good as A0. To prove that
it is better we need first to introduce a new notation.

Definition 1. In a given solution, a block is a subset of items (say k items)
that perfectly fills a given number of bins (say l bins). The sum of the sizes of
these k items is so exactly equal to l×C. At least, the first and the last item are
not fragmented since they start and finish the block. Moreover, a block can not
be divided into sub-blocks: it does not exist a subset of the k items that exactly
fills l′ bins, with l′ < l. The number of items k contained in a block is called the
size of a block. The figure 5 illustrates the notion of block.

Property 10. The number of fragments of such a block is: k + l − 1

Proof. As there is no possibility of sub-blocks in the block, there are k items
and l − 1 cuts for a total number of k + l − 1 fragments.
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block with 3 items,

2 bins, 1 cut

block with 6 items,

1 bin, 0 cut

block with 8 items,

3 bins, 2 cuts

Figure 5: An exemple of solution composed of three blocks.

Property 11. It is equivalent to minimize the number of fragments and to
maximize the number of blocks that compose the solution.

Proof. A solution composed of a total of B blocks is a solution with N +M −B
fragments: one cut less for each block, see property 10. Maximizing B is thus
equivalent to minimize the number of fragments.

Property 12. A1 is a 3

2
−approximation algorithm for Min-FIBP restricted to

instances with identical bins and more items than bins.

Proof. Consider an instance of the problem with N items and M bins. We
consider an optimal solution transformed in such a way that all the blocks of
size 1 are in the optimal solution (thanks to property 4). We note b∗1 the number
of these blocks of size 1 and b∗>2 the number of blocks of size 2 or more in the
optimal solution. The value S∗ of this solution is

S∗ = N +M − b∗1 − b∗>2 ⇔ N +M = S∗ + b∗1 + b∗>2

The solution of A1 is composed of b1 blocks of size 1 and b2 blocks of size
2 or more. In the solution produced by A1, the number of blocks of size 1 is
automatically maximized in the first step of the algorithm. So, b1 = b∗1. We
can express the value S of the solution of A1 as follows:

S = N +M − b1 − b>2 ⇔ S = S∗ + b∗>2 − b>2

S ≤ S∗ + b∗>2 (1)

In the optimal solution, there are exactly b∗1 items contained in the blocks
of size 1 and at least 2b∗>2 items in all the blocks of size 2 or more. Then we
can bound the number N of items by a function depending on the number of
blocks.

b∗1 + 2b∗>2 ≤ N

b∗>2 ≤
N − b∗1

2
(2)

By combining equations 1 and 2 we obtain

S ≤ S∗ +
N − b∗1

2
≤ S∗ +

N

2
(3)
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The approximation ratio is

ρ1 =
S

S∗
≤ 1 +

N

2S∗

As S∗ ≥ N we deduce that A1 is an approximation algorithm of ratio
ρ1 ≤ 3

2
.

Equation 3 gives an indication of instances for which the ratio is reached:
when there is no perfect fitting object (Figure 6). In such instances, A1 is not
able to optimize the placement of items but these instances contain enough
items, at least two per bins, to limit the weight of cuts.

Approximation

Optimal

Figure 6: An exemple of instance without exact fitting object. In that case, the
weight of the optimal solution is 2M and the weight of the solution produced
by A1 could be, in the worst case, 3M − 1.

3.3 Perfect fitting couples of objects

Previously, we adapt A0 to take into account the perfect fitting objects. We
can do the same thing for the perfect fitting couples of objects. We build a new
algorithm A2 which works as follows. First, place all the perfect fitting objects
in bins, next place as many perfect fitting couples of objects as possible and
then use the simple algorithm A0 to place the remaining objects.

Finding all perfect fitting objects and couples is equivalent to the maximum
set packing (with sets of size 1 and 2). This can be done in polynomial time
using matching techniques [6].

Property 13. A2 is a 4

3
−approximation algorithm for Min-FIBP restricted to

instances with identical bins and more items than bins.

Proof. Consider an instance of the problem with N items, M bins and an opti-
mal solution composed of b∗1 blocks of size 1, b∗2 blocks of size exactly 2 and b∗>3

blocks of size 3 or more. We consider also that properties 4 and 5 have been
applied on the optimal solution and that b∗1 and b∗2 are maximal. The value S∗

of this solution is

S∗ = N +M − b∗1 − b∗2 − b∗>3 ⇔ N +M = S∗ + b∗1 + b∗2 + b∗>3

Similarly, the solution of A2 is

S = N +M − b1 − b2 − b>3 ⇔ S = S∗ + b∗1 + b∗2 + b∗>3 − b1 − b2 − b>3

11



In the solution produced by A2, the number of blocks of size 1 is maximized
as well as the number of blocks of size 2. This means that b1 = b∗1 and b2 = b∗2.

S = S∗ + b∗>3 − b>3 ≤ S∗ + b∗>3 (4)

We can bound the number N of objects by a function depending on the
number of blocks.

b∗1 + 2b∗2 + 3b∗>3 ≤ N

b∗>3 ≤
N − b∗1 − 2b∗2

3
(5)

By combining equations 4 and 5 we obtain

S ≤ S∗ +
N − b∗1 − 2b∗2

3
≤ S∗ +

N

3
(6)

The approximation ratio is

ρ2 =
S

S∗
≤ 1 +

N

3S∗

As S∗ ≥ N we deduce that A2 is an approximation algorithm of ratio ρ2 ≤ 4

3
.

The approximation ratio is a tight bound. Similary to the example proposed
for the A1 (figure 6), we can provide instances without perfect fitting object and
couple in which the approximation ratio is reached.

3.4 6

5
-Approximation Algorithm

We have presented three algorithms, the first one, A0, does not optimize the
block number. The second, A1, maximizes the number of blocks of size 1 and
the third, A2, maximizes the number of blocks whose sizes are 1 and 2. We
present now a generalization. For a fixed k, Ak maximizes the number of blocks
whose sizes are less or equal than k. The algorithm is composed of four steps:

1. place the maximum number of blocks of size 1;

2. place the maximum number of blocks of size 2;

3. place the maximum number of blocks of size 3 to k;

4. place the remaining items using A0.

With the properties 4 and 5, we know that there exists at least one optimal
solution S∗ in which the numbers of blocks of size 1 and 2, are the same as in
the solution S provided by Ak.

Solving the third step of our algorithm is equivalent to solving the maximum
set packing problem with set of size less or equal than k ≥ 3. This cannot be
done in polynomial time but it can be approximated within 2/k [9]. This means
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that in S the total number of blocks of size 3 to k is at least 2/k times the
maximum number of blocks of size 3 to k that can be obtained by any solution,
and in particular by S∗. As we will see, the approximation ratio of our algorithm
is then linked with the approximation ratio of maximum set packing.

Property 14. A4 is a 6

5
−approximation algorithm for Min-FIBP restricted to

instances with identical bins and more items than bins.

Proof. Consider an instance of the problem with N items, M bins and the
optimal solution S∗ maximizing the number of blocks of size 1 and 2. It is
composed of b∗1, b

∗

2, . . . , b
∗

k blocks whose size are 1, 2, . . . , k and b∗>k block of size
k + 1 and more. The weight S∗ of this solution is

S∗ = N +M −

k
∑

i=1

b∗i − b∗>k ⇔ N +M = S∗ +
k

∑

i=1

b∗i + b∗>k

Similarly, the solution of Ak is

S = N +M −

k
∑

i=1

bi − b>k ⇔ S = S∗ +

k
∑

i=1

b∗i + b∗>k −

k
∑

i=1

bi − b>k

In the solution produced by Ak, the number of blocks of sizes 1 and 2 are
maximized : b1 = b∗1 and b2 = b∗2. We use an approximation algorithm to find
as many blocks of size 3 to k as possible. The 2

k
-approximation provided by [9]

allows us to find
∑k

i=3
bi ≥

2

k

∑k

i=3
b∗i blocks.

S ≤ S∗ +
k

∑

i=3

b∗i + b∗>k −
2

k

k
∑

i=3

b∗i − b>k ≤ S∗ +
k − 2

k

k
∑

i=3

b∗i + b∗>k (7)

We can bound the number N of objects by a function depending on the
number of blocks.

k
∑

i=1

ib∗i + (k + 1)b∗>k ≤ N

b∗>k ≤
N −

∑k

i=1
ib∗i

k + 1
(8)

By combining equations 7 and 8 we obtain

S ≤ S∗ +
k − 2

k

k
∑

i=3

b∗i +
N −

∑k

i=1
ib∗i

k + 1

S ≤ S∗ +

k
∑

i=3

(
k − 2

k
−

i

k + 1
)b∗i +

N

k + 1
−

b∗1
k + 1

−
2b∗2
k + 1
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S ≤ S∗ +

k
∑

i=3

(
k − 2

k
−

i

k + 1
)b∗i +

N

k + 1

S

S∗
≤ 1 +

1

S∗

k
∑

i=3

(

k − 2

k
−

i

k + 1

)

b∗i +
N

S∗(k + 1)

As S∗ ≥ N

S

S∗
≤

k + 2

k + 1
+

1

S∗

k
∑

i=3

(

k − 2

k
−

i

k + 1

)

b∗i (9)

The approximation ratio obtained in equation 9 is bounded by k+2

k+1
as long

as all the terms with b∗i are negative. This is the case when k = 3: with i = 3,
k−2

k
− i

k+1
= −5

12
. This is still the case when k = 4: k−2

k
− i

k+1
= −1

10
and

−3

10
for i = 3 and 4. But it does not work anymore when k = 5 and i = 3:

k−2

k
− i

k+1
= 1

10
> 0. The best approximation ratio is so reached and, in this

case, A4 is a 6

5
-approximation algorithm.

As for the previous algorithms, this is a thight bound which can be asymp-
totically reached for large instances without block of size strictly less than 5.

4 Conclusion

In this paper a new variant of bin packing problem has been introduced. The
items are allowed to be splitted into several fragments so that all the items can fill
a given number of bins but the total number of fragments has to be minimized.
This problem is specially usefull to model splittable resource allocation. We
have first defined this problem formally and presented properties on optimal
solutions. We have then presented a family of approximation algorithms for
instances of the problem in which the bins are all of the same size and each item
is smaller than a bin. The best one provides a 6

5
approximation ratio.

Many questions remain open but we think that the following ones are the
most important. First is it possible to provide a better approximation ratio
than 6

5
. Then, how to generalize the approximation algorithm to the general

case where the bins can have different capacities. Finally, which optimization
methods - heuristics and exact methods - can be proposed to efficiently solve
this problem.
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